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Abstract

Let E ⊆ R and g : E → R. We show that if |g(E)| = 0, then g
ap

(x) ≤
0 ≤ gap(x) almost everywhere on E, which immediately implies a lemma
of Krzyzewski [10] and Foran [7]. The function g is said to satisfy the
inverse Lusin condition (N−1) on E if |g−1(H)| = 0 for every H ⊆ g(E)
with |H| = 0. We prove that if g′ap(x) exists almost everywhere on E,
then g is an N−1-function if and only if g′ap(x) 6= 0 almost everywhere
on E. We also improve upon Foran’s [7] chain rule for approximate
derivatives, and obtain necessary and sufficient conditions for its validity
almost everywhere.

1 Introduction

Some general chain rules for derivatives and approximate derivatives over
a linear interval [a, b], with applications to integration, were obtained by
Krzyzewski [10], Serrin and Varberg [14], Goodman [8] and Foran [7]. Their
proofs are based on the following assertion.

Krzyzewski–Foran Lemma. Let F : [a, b] → R and let E be a subset of
[a, b] whose image under F has outer Lebesgue measure zero, |F (E)| = 0. If
F ′(x) [F ′

ap(x)] exists for each x in E, then F ′(x) = 0 [F ′
ap(x) = 0] for almost

every x in E.

The case of F ′ was proved by Krzyzewski [10, Lemma 1, page 99] (and, also
by Serrin and Varberg [14, Theorem 1, page 515]), from which the case of F ′

ap

was deduced by Foran [7, Lemma K, p. 446]. We remark that, since the set
where F ′

ap is infinite has measure zero, Chow [4, Theorem 1], it is immaterial
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here whether F ′(x) (or F ′
ap(x)) is assumed to be finite or not. The case of

F ′
ap was proved again by Ene [6, Lemma 2.17.2, page 70] for measurable F ,

with the subsequent remark that Foran’s proof for arbitrary F was not clear
to him. Perhaps Ene overlooked that F ′

ap(x) is assumed to exist on E, which
justifies Foran’s proof. Cater [3, Theorem 2.1, page 641] obtained Foran’s
result for measurable functions defined on arbitrary bounded measurable sets,
and deduced from it an equivalent result [3, Corollary 2.2, page 642].

In this paper, for an arbitrary function g defined on an arbitrary set, in Section
3 we first obtain some very useful results about the approximate Dini deriva-
tives of g. Without assuming the existence of g′ap(x), and by a new method of
proof, we then obtain a general result, Theorem 1, which immediately implies
the above results of Krzyzewski, Foran and Cater. Also, a related result con-
cerning the inverse Lusin condition (N−1), Theorem 2, immediately implies a
result of Villani [17] and one of Cater [3].

Foran [7], extending Goodman [8], gave two sets of sufficient conditions for
the validity almost everywhere of a variant of the usual chain rule for the
approximate derivatives of functions defined on intervals. In Theorem 3 and
Corollary 4, with a new and simpler method of proof we improve upon this
result and obtain natural necessary and sufficient conditions for the validity
almost everywhere of the chain rule for arbitrary functions defined on arbitrary
sets, with no added hypothesis. Finally we show by example that Foran’s
theorems [7, page 445] are in fact false.

2 Notation and Preliminaries

We shall deal exclusively with an arbitrary set E ⊆ R and an arbitrary function
g : E → R. For x ∈ R, we define

d+(E, x) = lim sup
y→x+

∣∣E ∩ [x, y]
∣∣

y − x
, d+(E, x) = lim inf

y→x+

∣∣E ∩ [x, y]
∣∣

y − x
.

If d+(E, x) = d+(E, x), then this common value is called the right density of
E at x. Similarly we define d−(E, x), d−(E, x) as the left density of E at x.
We also define

d(E, x) = max
{
d+(E, x), d−(E, x)

}
, d(E, x) = min

{
d+(E, x), d−(E, x)

}
.

If d(E, x) = d(E, x), then this common value is called the density of E at x.
If B is any measurable cover of E, then E has density 1 almost everywhere on
B and 0 almost everywhere on R \B [12, Lemma 4.1, page 245].
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The infimum [supremum] of the extended real numbers K for which the set{
y ∈ E : g(y) ≥ K

} [{
y ∈ E : g(y) ≤ K

}]
has right density 0 at x, is called the upper [lower] right approximate limit of
g at x and is denoted by A+g(x) [A+g(x)]. Similarly we define A−g(x) and
A−g(x), and put

Ag(x) = max
{
A+g(x), A−g(x)

}
, A g(x) = min

{
A+g(x), A−g(x)

}
.

If d+(E, x) = 0, then A+g(x) = −∞ and A+g(x) = ∞, etc. The extended
real valued functions Ag and A g defined on R are the measurable boundaries
of g on E [1, 18, 13]. These are measurable on R and satisfy

A g(x) ≤ g(x) ≤ A g(x) (1)

almost everywhere on E [13, page 443]. Also from the proof of Chow [4,
Lemma 1, page 795] we deduce that, for almost every x in E,

A+g(x) = A−g(x) = A g(x) and A+ g(x) = A− g(x) = A g(x). (2)

Given x ∈ E, define

f(y) =
g(y)− g(x)

y − x
for y ∈ E \ {x}.

Following Ward [18] and Saks [11], we define

g +
ap (x) = A+ f(x), g+

ap
(x) = A+ f(x),

g−ap (x) = A− f(x), g−
ap

(x) = A− f(x),

gap (x) = A f(x), g
ap

(x) = A f(x).

If gap(x) = g
ap

(x), then this common value is called the approximate deriva-
tive of g at x and is denoted by g′ap(x), and we say that g′ap(x) exists (finite
or not). If d(E, x) = 0, then gap(x) = −∞ and g

ap
(x) = ∞, etc. We will

often tacitly use the fact that if x ∈ A ⊆ E, then
(
g�A

)
ap

(x) ≤ gap(x), etc.
Our notations should cause no confusion since all definitions are relative to
the domain of the function.

Recall that [11, page 224] the function g is said to satisfy Lusin’s condition
(N) on E if |g(B)| = 0 for every B ⊆ E with |B| = 0. We say that g satisfies
the inverse Lusin condition (N−1) on E if

∣∣g−1(H)
∣∣ = 0 for every H ⊆ g(E)

with |H| = 0.
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3 Results

We begin with some crucial lemmas leading to the main theorems.

Lemma 1. (cf. [9, Theorem 7.17, page 200]). The functions gap and g
ap

are
measurable on E, relatively to E (that is, with respect to the σ-algebra of sets
{E∩M : M ⊆ R measurable}). Also the set E′ = {x ∈ E : g′ap(x) exists} is
measurable relatively to E and the function g′ap is measurable on E′ relatively
to E.

Proof. Let B =
{
x ∈ R : −∞ < A g(x) = A g(x) < ∞

}
. Define f : R → R

by

f(x) =


g(x) if x ∈ E ∩B

A g(x) = A g(x) if x ∈ B \ E

0 if x ∈ R \B

By (1), f(x) = A g(x) = A g(x) almost everywhere on B. Since the functions
A g and A g are measurable on R, it follows that the set B is measurable,
and the function f is measurable on R. Then the functions f ap and f

ap
are

measurable on R [2, Lemma 3, page 349; 9, Theorem 7.18, page 201].

Now, given x ∈ E ∩B and K ≤ ∞, write

Rx =
{

y ∈ R : y 6= x and
f(y)− f(x)

y − x
≥ K

}
,

Ex =
{

y ∈ E : y 6= x and
g(y)− g(x)

y − x
≥ K

}
.

Since f is measurable, so the set Rx is measurable. Since f = g on E ∩B, so
Ex ∩ B = Rx ∩ B ∩ E. Thus Rx ∩ B is a measurable set containing Ex ∩ B.
Consider any measurable set

M ⊆
(
Rx ∩B

)
\

(
Ex ∩B

)
=

(
Rx ∩B

)
\

(
Rx ∩B ∩ E

)
=

(
Rx ∩B

)
\ E.

Then E ⊆ R \M and so E has density 0 at almost every point of M . On the
other hand, since Ag(y) = A g(y) for each y ∈ M , so E has positive upper
density at each point of M . Hence |M | = 0. Therefore, Rx∩B is a measurable
cover of Ex∩B, and Rx∩B has density 0 at x if and only if Ex∩B has density
0 at x [12, Lemma 4.1, page 245]. Thus if R\B has density 0 at x, then Rx has
density 0 at x if and only if Ex has density 0 at x. However R \B has density
0 at almost every point x of E ∩B. Consequently fap(x) = gap(x) for almost
every x ∈ E ∩B. Likewise, f

ap
(x) = g

ap
(x) for almost every x ∈ E ∩B.
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Again, by (1) and (2), for almost every x ∈ E \B we have either

g(x) < A+g(x) = A−g(x)org(x) > A+g(x) = A−g(x).

So clearly, gap(x) = ∞ and g
ap

(x) = −∞, almost everywhere on E \B.

Since fap and f
ap

are measurable on R, and since E ∩ B and E \ B are
measurable relatively to E, it readily follows from above that both gap and
g

ap
are measurable on E, relatively to E. The second part is now obvious.

Lemma 2. Let g be nondecreasing [nonincreasing ] on E with g′ ≥ r > 0
[g′ ≤ −r < 0] almost everywhere on E. Then |g(E)| ≥ r|E|. Also, if c ∈ E is
such that g(x) 6= g(c) for all x ∈ E \ {c} and gap(c) < ∞ [g

ap
(c) > −∞], then

for any set Yc having density 0 at g(c) the set g−1(Yc) has density 0 at c.

Proof. We prove the first case, leaving the analogous second case. Now,
if A =

{
x ∈ E : r ≤ g′(x) < ∞

}
then |E \ A| = 0. Let 0 < t < r and

g(E) ⊆ G, where G is open. The family V of the intervals [a, b] with a, b ∈ E
and satisfying g(b) − g(a) ≥ t(b − a) and

[
g(a), g(b)

]
⊂ G, is clearly a Vitali

cover of the set A. Then, by Vitali’s covering theorem [11, page 109], V has
a disjoint subfamily

{
[an, bn]

}
that covers almost entirely the set A. Since g

is nondecreasing on E, clearly
{
[g(an), g(bn)]

}
is a nonoverlapping family of

intervals contained in G, and

|A| ≤
∑

n

(bn − an) ≤ 1
t

∑
n

(
g(bn)− g(an)

)
≤ 1

t
|G|.

Thus, |G| ≥ t|A| = t|E|, for all open sets G ⊇ g(E) and all 0 < t < r. Hence
|g(E)| ≥ r|E|, proving the first part.

Next, put E0 = g−1(Yc). If gap(c) < K < ∞, then the set

E1 =
{

x ∈ E : x 6= c and
g(x)− g(c)

x− c
≥ K

}
has density 0 at c. Let y > c. If

∣∣(E0 \ E1) ∩ [c, y]
∣∣ = 0, then E0 has right

density 0 at c. In the contrary case, we can find x ∈ (E0 \E1) ∩ (c, y) so that

∣∣(E0 \ E1) ∩ [c, x]
∣∣ >

1
2

∣∣(E0 \ E1) ∩ [c, y]
∣∣.
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Then c < x < y and 0 < g(x)− g(c) < K(x− c). Hence, using the first part,∣∣E0 ∩ [c, y]
∣∣

y − c
≤

∣∣(E0 ∩ E1) ∩ [c, y]
∣∣

y − c
+

∣∣(E0 \ E1) ∩ [c, y]
∣∣

y − c

<

∣∣E1 ∩ [c, y]
∣∣

y − c
+

2
∣∣(E0 \ E1) ∩ [c, x]

∣∣
y − c

≤
∣∣E1 ∩ [c, y]

∣∣
y − c

+
2
r
·
∣∣g(

(E0 \ E1) ∩ [c, x]
)∣∣

x− c

≤
∣∣E1 ∩ [c, y]

∣∣
y − c

+
2K

r
·
∣∣Yc ∩

[
g(c), g(x)

]∣∣
g(x)− g(c)

.

Since E1 has density 0 at c and Yc has density 0 at g(c), it follows at once
from above that E0 has right density 0 at c. Similarly E0 has left density 0 at
c. Hence E0 has density 0 at c.

Lemma 3. (cf. [15, Lemma 51, page 120]). Let g
ap

(x) > r > −∞
[
gap(x) <

r < ∞
]

and d(E, x) > 0 for each x in a set A ⊆ E. Then A is the union of
a sequence of sets An such that no point of A \ An is a two-sided limit point
of An, and the function g(t)− rt is strictly increasing [decreasing ] on An for
each n.

Proof. Since (−g) ap(x) = −gap(x), we need only prove the first case. Now,
for each x ∈ A, we have d(Ex, x) = 0 where

Ex =
{

t ∈ E : t 6= x and
g(t)− g(x)

t− x
≤ r

}
.

Then, A = ∪∞n=1 ∪∞k=1 Ak,n, where Ak,n denotes the set of points x ∈ A such
that, if u ≤ x ≤ v and 0 < v − u ≤ 1

n , then∣∣Ex ∩ [u, v]
∣∣ <

1
2k

(v − u) and
∣∣E ∩ [u, v]

∣∣ >
1
k

(v − u).

If x ∈ Ap,m and y ∈ Aq,n with 0 < y − x ≤ min
{

1
m , 1

n

}
, then∣∣Ex ∩ [x, y]

∣∣ <
1
2p

(y − x) and
∣∣E ∩ [x, y]

∣∣ >
1
p
(y − x),

∣∣Ey ∩ [x, y]
∣∣ <

1
2q

(y − x) and
∣∣E ∩ [x, y]

∣∣ >
1
q
(y − x).

Setting k = min{p, q}, it then follows from these that∣∣(Ex ∪ Ey) ∩ [x, y]
∣∣≤∣∣Ex ∩ [x, y]

∣∣ +
∣∣Ey ∩ [x, y]

∣∣
<

1
2k

(y − x) +
1
2k

(y − x) =
1
k

(y − x)<
∣∣E ∩ [x, y]

∣∣.
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There exists points t ∈ E ∩ (x, y) \ (Ex ∪ Ey), so that then

g(t)− g(x) > r(t− x) and g(y)− g(t) > r(y − t).

So g(y)− ry > g(x)− rx, for all pairs x, y as above.

Now, for i = 0,±1,±2, . . ., let Ai
k,n = Ak,n ∩

[
i
n , i+1

n

]
and let Bi

k,n = Ai
k,n ∪

{x ∈ A : c is a two-sided limit point of Ai
k,n}. Clearly Bi

k,n ⊆
[

i
n , i+1

n

]
and no

point of A \ Bi
k,n is a two-sided limit point of Bi

k,n. Let u, v ∈ Bi
k,n, u < v.

Then 0 < v − u ≤ 1
n , and choosing x, y ∈ Ai

k,n sufficiently close to u,with v
respectively, with u ≤ x < y ≤ v, it readily follows from above that

g(v)− rv ≥ g(y)− ry > g(x)− rx ≥ g(u)− ru.

Hence the function g(t)−rt is strictly increasing on each Bi
k,n. Then the proof

ends by taking A1, A2, . . . as an enumeration of the countable family of sets
{Bi

k,n}.

From Lemma 3 and Lemma 2 we easily obtain:

Corollary 1.
∣∣{x ∈ E : g

ap
(x) = ∞ or gap(x) = −∞}

∣∣ = 0.

This also follows from the next corollary.

Corollary 2. (cf. [18, Theorem II, page 344]). At almost every point of the
set

{
x ∈ E : g

ap
(x) > −∞ or gap(x) < ∞

}
, g′ap(x) exists and is finite.

Proof. Let B =
{
x ∈ E : g

ap
(x) > −k

}
, where k is a fixed positive integer.

By Lemma 1, B is measurable relatively to E. If A =
{
x ∈ B : d(E, x) > 0

}
then |B \ A| = 0. By Lemma 3, A is the union of a sequence of sets An such
that no point of A \ An is a two-sided limit point of An, and the function
g(x) + kx is strictly increasing on An for each n. Clearly An is measurable
relatively to E and (g|An

)′(x) exists finitely almost everywhere on An for
each n. Since An has density 1 (and E \ An has density 0) at almost every
point of An, it follows that g′ap(x) exists and is finite almost everywhere on
An, B and on

{
x ∈ E : g

ap
(x) > −∞

}
. The proof ends by noting that

(−g) ap(x) = −gap(x). The result also follows from [9, Theorem 7.13, page
198].

Lemma 4. (cf. [11, Theorem 10.14, page 239]). Let −r < g+
ap

(x) ≤ g +
ap(x) <

r < ∞ and d+(E, x) > 0 for each x in a set A ⊆ E. Then A is the union
of an increasing sequence of sets (Ak) where Ak is the union of an increasing
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sequence of sets (Ak,n), such that for each n and each pair of points x, y ∈ Ak,n

with 0 < y− x ≤ 1
n we have

∣∣g(y)− g(x)
∣∣ < r(y− x). Also |g(A)| ≤ r|A|, so g

satisfies Lusin’s condition (N) on A. If, further, g +
ap(x) = g +

ap
(x) = 0 for all

x ∈ A, then |g(A)| = 0.

Note. The left-hand analogue of Lemma 4 is also true. The last assertion
extends a similar result of Ellis [5, 3.1, page 480].

Proof. The set A is the union of the increasing sequence of sets (Ak) where

Ak =
{

x ∈ A : d+(E, x) >
1
k

and − kr

k + 1
≤ g+

ap
(x) ≤ g +

ap(x) <
kr

k + 1

}
.

Fix any k. For each x ∈ Ak we have d+(Ex, x) = 0 where

Ex =
{

t ∈ E : t 6= x and
∣∣∣g(t)− g(x)

t− x

∣∣∣≥ kr

k + 1

}
.

Then Ak is the union of the increasing sequence of sets (Ak,n) where Ak,n

denotes the set of points x of Ak such that, if 0 < u− x ≤ 2
n then∣∣Ex ∩ [x, u]

∣∣ <
1

4k2
(u− x) and

∣∣E ∩ [x, u]
∣∣ >

1
k

(u− x).

Let x, y ∈ Ak,n and 0 < y − x ≤ 1
n . If u = y + y−x

2k , then

0 < u− y < u− x < 2(y − x) ≤ 2
n

,

and so ∣∣Ex ∩ [x, u]
∣∣

u− x
<

1
4k2

,

∣∣Ey ∩ [y, u]
∣∣

u− y
<

1
4k2

,

∣∣E ∩ [y, u]
∣∣

u− y
>

1
k

.

Noting that u− x = (2k + 1)(u− y), we obtain∣∣(Ex ∪ Ey) ∩ [y, u]
∣∣≤∣∣Ex ∩ [x, u]

∣∣ +
∣∣Ey ∩ [y, u]

∣∣
<

1
4k2

(u− x) +
1

4k2
(u− y)

=
k + 1
2k2

(u− y)) ≤ 1
k

(u− y)<
∣∣E ∩ [y, u]

∣∣.
Hence, there exists points t ∈ E ∩ (y, u) \ (Ex ∪ Ey), so that∣∣g(y)− g(x)

∣∣≤∣∣g(y)− g(t)
∣∣ +

∣∣g(t)− g(x)
∣∣

<
kr

k + 1
(t− y) +

kr

k + 1
(t− x)

<
kr

k + 1
[
(u− y) + (u− x)

]
=r(y − x).
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Next, consider any open cover {(aj , bj)}∞j=1 of the set Ak,n, where bj −aj < 1
n

for each j. For all x, y in Ak,n ∩ (aj , bj) we have then∣∣g(y)− g(x)
∣∣ ≤ r|y − x| < r(bj − aj).

Since
∣∣g(

Ak,n ∩ (aj , bj)
)∣∣ cannot exceed the oscillation of g on Ak,n ∩ (aj , bj),

it follows that

∣∣g(Ak,n)
∣∣ ≤ ∞∑

j=1

∣∣g(
Ak,n ∩ (aj , bj)

))
≤

∞∑
j=1

r(bj − aj).

Therefore,
∣∣g(Ak,n)

∣∣ ≤ r|Ak,n|. Letting n → ∞, we get
∣∣g(Ak)

∣∣ ≤ r|Ak|.
Letting k →∞, we get

∣∣g(A)
∣∣ ≤ r|A|.

Finally, when g +
ap(x) = g+

ap
(x) = 0 for all x ∈ A, for any positive integer n

taking r = 1
n ·

1
2n , we have

∣∣g(
A ∩ (−n, n)

)∣∣ ≤ r
∣∣A ∩ (−n, n)

∣∣ ≤ 1
n

,

which plainly implies that |g(A)| = 0.

We now generalize the Krzyzewski–Foran lemma as follows.

Theorem 1. If |g(E)| = 0, then g
ap
≤ 0 ≤ gap almost everywhere on E.

Proof. Since
∣∣(−g)(E)

∣∣ =
∣∣g(E)

∣∣ = 0 and (−g) ap = −gap, clearly it is
enough to show that |A| = 0 where A =

{
x ∈ E : d(E, x) = 1 and g

ap
(x) >

0
}
.
Now, A = ∪∞k=1Ak where

Ak =
{
x ∈ A : g

ap
(x) >

1
k

}
.

By Lemma 3, each Ak is the union of a sequence of sets (Ak,n) such that the
function g(t)− t

k is strictly increasing on Ak,n for each n. Then

g(t) =
(
g(t)− t

k

)
+

t

k

is strictly increasing on Ak,n and
(
g|Ak,n

)′ ≥ 1
k almost everywhere on Ak,n.

So by Lemma 2, |Ak,n| ≤ k
∣∣g(Ak,n)

∣∣ ≤ k
∣∣g(E)

∣∣ = 0. Thus, it follows that
|A| = 0.
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Theorem 2. (compare [3, Corollary 2.3, page 642]). Suppose g′ap(x) exists
for almost every x in E. Then g satisfies the inverse Lusin condition (N−1)
on E if and only if |E0| = 0, where E0 = {x ∈ E : g′ap(x) = 0}.

Proof. First assume that g satisfies the condition (N−1) on E. Let A ={
x ∈ E0 : d(E, x) = 1

}
. Then |E0 \ A| = 0, and by Lemma 4 |g(A)| = 0. So

|E0| = |A| ≤
∣∣g−1

(
g(A)

)∣∣ = 0, by (N−1). Hence |E0| = 0.

Conversely, assume that |E0| = 0. Consider any H ⊆ g(E) with |H| = 0. Let
B = g−1(H). Then |g(B)| = 0. Since (g|B)′ap(x) = g′ap(x) exists for almost
every x in B, Theorem 1 implies that g′ap = 0 almost everywhere on B. Due
to |E0| = 0, it follows that |B| = 0. Hence g is an (N−1)-function on the set
E.

Corollary 3. (Villani [17, Theorem 2, page 331]). If f : [a, b] → R is strictly
monotone and continuous, then the inverse function f−1 is absolutely contin-
uous if and only if f ′ 6= 0 almost everywhere on [a, b].

Below, we improve upon Foran’s chain rule [7, Theorem 1, page 445].

Define [7] g∗ap(x) = g′ap(x) if it exists and is finite, and g∗ap(x) = 0 otherwise.

Theorem 3. Let f : Y → R where g(E) ⊆ Y ⊆ R, and let

A =
{
x ∈ E : both g′ap(x) and f ′ap

(
g(x)

)
exist and g′ap(x) 6= 0

}
.

(i) For almost every x in A, (f ◦ g)′ap(x) exists and

(f ◦ g)′ap(x) = f ′ap

(
g(x)

)
· g′ap(x) 6= ±∞. (3)

(ii) Let Z =
{
x ∈ E \A : (f ◦ g)∗ap(x) 6= 0

}
. Foran’s chain rule

(f ◦ g)∗ap(x) = f∗ap

(
g(x)

)
· g∗ap(x) (4)

holds true almost everywhere on E if and only if |Z| = 0.

Proof. Let A0 = {x ∈ E : g′ap(x) exists and is not 0}, and note the following.
We have d(E, x) = 1 for almost every x in A0. By Corollary 1, g′ap(x) is finite
for almost every x in A0. Again by Corollary 1 on f , if B is the set of points
x of A for which f ′ap

(
g(x)

)
is infinite, then |g(B)| = 0. Since B ⊆ A ⊆ A0,

Theorem 1 implies that |B| = 0. Thus both g′ap(x) and f ′ap

(
g(x)

)
are finite

for almost every x in A.
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Now, by Lemma 1, for each positive integer k the set

Ak =
{

x ∈ A0 : d(E, x) = 1 and g′ap(x) >
1
k

}
is measurable relatively to E. By Lemma 3, Ak is the union of a sequence of
sets Ak,n such that no point of Ak \Ak,n is a two-sided limit point of Ak,n and
the function g(x)− x

k is strictly increasing on Ak,n for each n. Then, clearly,
the set Ak,n is measurable relatively to E, g is strictly increasing on Ak,n and(
g|Ak,n

)′ ≥ 1
k almost everywhere on Ak,n.

Take any c ∈ A∩Ak,n where d(Ak,n, c) = 1 and both g′ap(c) and f ′ap

(
g(c)

)
are

finite. Let 0 < ε < g′ap(c). Then the set

Ec =
{

x ∈ E : x = c or
∣∣∣g(x)− g(c)

x− c
− g′ap(c)

∣∣∣ ≥ ε
}

has density 0 at c. Also the set

Yc =
{

y ∈ Y : y 6= g(c) and
∣∣∣f(y)− f

(
g(c)

)
y − g(c)

− f ′ap

(
g(c)

)∣∣∣ ≥ ε
}

has density 0 at g(c), and so by Lemma 2 on g|Ak,n
the set Ak,n ∩ g−1(Yc) has

density 0 at c. Recalling that d(E, c) = d(Ak,n, c) = 1, the set

D = (E \Ak,n) ∪ Ec ∪
(
Ak,n ∩ g−1(Yc)

)
has density 0 at c. If x ∈ E \D, then x ∈ Ak,n, x 6= c,∣∣∣g(x)− g(c)

x− c
− g′ap(c)

∣∣∣ < ε, (5)

so g(x) 6= g(c), and x /∈ g−1(Yc), that is, g(x) /∈ Yc, and so∣∣∣f(
g(x)

)
− f

(
g(c)

)
g(x)− g(c)

− f ′ap

(
g(c)

)∣∣∣ < ε. (6)

Evidently, (5) and (6) together imply by virtue of the relation

(f ◦ g)(x)− (f ◦ g)(c)
x− c

=
f
(
g(x)

)
− f

(
g(c)

)
g(x)− g(c)

· g(x)− g(c)
x− c

,

that (f ◦ g)′ap(c) exists and equals f ′ap

(
g(c)

)
· g′ap(c). So (f ◦ g)′ap(x) exists

and satisfies (3) almost everywhere on {x ∈ A : g′ap(x) > 0} and similarly, on
{x ∈ A : g′ap(x) < 0}, and on A, proving (i).

Now by (i), (4) is true for almost every x in A. Also from the definitions,
f∗ap

(
g(x)

)
· g∗ap(x) = 0 at each point x of E \A. Thus, (ii) follows at once.
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Note. Let Z ′ = {x ∈ Z : d(E, x) = 1}. For each x in Z, since (f ◦g)∗ap(x) 6= 0
so (f◦g)′ap(x) exists and is finite and non-zero. So by Lemma 4 and Theorem 2,
f ◦ g satisfies both the conditions (N) and (N−1) on Z ′. Hence, the condition
|Z| = 0 is equivalent to each of the conditions |Z ′| = 0 and |(f ◦ g)(Z ′)| = 0.

We continue to use consistently the notations of Theorem 3.

Corollary 4. Let

P =
{
x ∈ E : (f ◦ g)∗ap(x) 6= 0

}
, Q =

{
y ∈ Y : f∗ap(y) 6= 0

}
and

K =
{
x ∈ P ∩ g−1(Q) : g∗ap(x) = 0 and d

(
Y, g(x)

)
= 0

}
.

The chain rule (4) holds true almost everywhere on E if and only if g is
measurable on P relatively to E and |K| =

∣∣P \ g−1(Q)
∣∣ = 0.

Proof. Note that, by Lemma 1, the set P [Q] and the function (f ◦ g)′ap on
P [f ′ap on Q] are measurable relatively to E [Y ].

Now, suppose the chain rule (4) holds true almost everywhere on E. Then
obviously |K| = 0 and |P \ g−1(Q)| = 0. Also, for almost every point x in P ,
we must have g∗ap(x) 6= 0 and so g is plainly approximately continuous at x
relatively to E. Hence g is measurable on P relatively to E (cf. [12, Theorem
4.2, page 245]).

Conversely, assume that the stated conditions hold. Put

P ′ =
{
x ∈ P : d(E, x) > 0

}
, Q′ =

{
y ∈ Q : d(Y, y) > 0

}
.

Note that, if a subset H ⊆ Q′ is measurable relatively to Y , then H = (Y ∩
M) ∪ W where M is an Fσ-set and |W | = 0. Since by Lemma 4 f satisfies
(N) on Q′, then |f(W )| = 0. Therefore, since

(f ◦ g)
(
P ∩ g−1(W )

)
⊆ f(W )

and by Theorem 2 f ◦ g satisfies (N−1 on P , we have |P ∩ g−1(W )| = 0. Also
P ∩g−1(Y ∩M) = P ∩g−1(M) is measurable relatively to E, due to hypothesis
g is measurable on P relatively to E. Therefore P ∩ g−1(H) is measurable
relatively to E.

Now, using Lemma 3, we can evidently express P ′ [Q′] as the union of a
sequence of sets Pn [Qn], each measurable relatively to E [Y ] and on each of
which f ◦ g [f ] is strictly monotone (not necessarily of the same type). Then
for all i, j = 1, 2, . . ., by above Pi ∩ g−1(Qj) is measurable relatively to E and
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g is strictly monotone on it (use the type of monotonicity of f ◦ g on Pi and
then that of f on Qj). Hence, obviously, g′ap(x) exists and is finite almost
everywhere on Pi ∩ g−1(Qj), and on P ′ ∩ g−1(Q′).

Now let B =
{
x ∈ P ′ ∩ g−1(Q′) : g′ap(x) exists and is 0

}
. By Lemma 4,

|g(B)| = 0. Since f satisfies (N) on Q′, then∣∣(f ◦ g)(B)
∣∣ =

∣∣f(
g(B)

)∣∣ = 0.

Since f ◦ g satisfies (N−1) on P , so |B| = 0.

Recalling Corollary 1, g∗ap 6= 0 almost everywhere on P ′ ∩ g−1(Q′). Since |P \
P ′| = 0 and |K| = 0, it follows that g∗ap 6= 0 almost everywhere on P ∩g−1(Q).
Additionally g∗ap = 0 on Z ∩ g−1(Q), and by hypothesis

∣∣P \ g−1(Q)
∣∣ = 0, so

|Z| = 0 and the result follows from Theorem 3.

Corollary 5. If the set E is measurable, then the chain rule (4) holds true
almost everywhere on E if (and only if) |C| = 0, where

C =
{
x ∈ E : (f ◦ g)∗ap(x) 6= 0 and g∗ap(x) = 0

}
.

Proof. By Lemma 1, the set

D =
{
x ∈ E : d(E, x) > 0 and g∗ap(x) 6= 0 and (f ◦ g)∗ap(x) 6= 0

}
and the functions g′ap and (f ◦ g)′ap on D are measurable. So Lemma 3 plainly
implies that D is the union of a sequence of measurable sets Dn on each of
which both g and f ◦g are strictly monotone (not necessarily of the same type).
Then for each n, f is strictly monotone on g(Dn) (use the type of monotonicity
of g−1 on g(Dn) and that of f ◦ g on Dn). Also, since g is measurable on Dn

and by Lemma 4 it satisfies (N) on Dn, so g(Dn) is measurable [5, 2.1, page
476]. Obviously, f ′ap(y) exists and is finite almost everywhere on g(Dn), and
on g(D). Thus,∣∣g(D0)

∣∣ = 0 where D0 =
{
x ∈ D : f ′ap

(
g(x)

)
does not exist

}
.

Since by Theorem 2 g satisfies (N−1) on D, then |D0| = 0. Since also by
hypothesis |C| = 0, and d(E, x) = 0 for all x ∈ Z \ (C ∪D0), so |Z| = 0 and
the result follows from Theorem 3.

Remark. Foran considered the following two theorems [7, page 445]:

Suppose E = [a, b] and Y is any interval.

(F0) If f satisfies (N) on Y and f ′ap(y) exists almost everywhere on



188 D. N. Sarkhel

g(E), then the chain rule (4) holds true almost everywhere on E.

(F1) Let V = {x ∈ E : g′ap(x) exists and is 0} and B = {x ∈ E : g′ap(x)
does not exist}. If f satisfies (N) on g(V ∪B) and f ′ap(y) exists almost
everywhere on g(B), then the chain rule (4) holds true almost everywhere
on E.

While (F1) implies (F0) the following simple example shows that both are
false. Take E = [0, 1] and Y = [−1, 1]. Express E as the union of two disjoint
non-measurable sets S and T such that |S| = |T | = 1 [16, §1]. Let g(x) = x
if x ∈ S and g(x) = −x if x ∈ T , and let f(y) = |y| for all y ∈ Y . Then
(f ◦ g)(x) = x and g∗ap(x) = 0 for all x ∈ E, and the hypotheses of (F0) are
satisfied but the conclusion is not.

However, both (F0) and (F1) can be repaired in various ways in the light of
Theorem 3 and its corollaries (see, also, [6, page 202–204].
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