ON THE SUMS OF FUNCTIONS SATISFYING THE CONDITION $\left(s_{1}\right)$

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the condition $\left(s_{1}\right)$ if for each real $r>0$, for each x, and for each set $U \ni x$ belonging to the density topology there is an open interval I such that $C(f) \supset I \cap U \neq \emptyset$ and $f(U \cap I) \subset(f(x)-r, f(x)+r) .(C(f)$ denotes the set of all continuity points of f). In this article we investigate the sums of two Darboux functions satisfying the condition $\left(s_{1}\right)$.

Let \mathbb{R} be the set of all reals. Let μ denote Lebesgue measure on \mathbb{R} and let μ_{e} denote Lebesgue outer measure on \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{aligned}
& \limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
& \liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively. }
\end{aligned}
$$

A point x is said to be an outer density point (a density point) of a set A if $D_{l}(A, x)=1$ (if there is a Lebesgue measurable set $B \subset A$ such that $\left.D_{l}(B, x)=1\right)$. The family T_{d} of all sets A for which the implication $x \in$ $A \Longrightarrow x$ is a density point of A holds, is a topology called the density topology ($[1,3]$). The sets $A \in T_{d}$ are Lebesgue measurable [1, 3].

In [2] the following properties are investigated.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property $\left(s_{1}\right)$ at a point $x\left(f \in s_{1}(x)\right)$ if for each positive real r and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$, where $C(f)$ denotes the set of all continuity points of f, and $|f(t)-f(x)|<r$ for all points $t \in I \cap U$. A function f has property $\left(s_{1}\right)$ if $f \in s_{1}(x)$ for every point $x \in \mathbb{R}$.

[^0]A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property $\left(s_{2}\right)$ if for each nonempty set $U \in T_{d}$ there is an open interval I such that $\emptyset \neq I \cap U \subset C(f)$.

Evidently each function f having property $\left(s_{1}\right)$ also has property $\left(s_{2}\right)$ and for each function f having property $\left(s_{2}\right)$ the set $D(f)=\mathbb{R} \backslash C(f)$ is nowhere dense and of Lebesgue measure 0 . But the closure $\operatorname{cl}(D(f))$ for some functions f having property $\left(s_{1}\right)$ may be of positive measure. For example, if $A \subset[0,1]$ is a Cantor set of positive measure and $\left(I_{n}\right)$ is a sequence of the components of the set $\mathbb{R} \backslash A$ such that $I_{n} \neq I_{m}$ for $n \neq m$, then the function

$$
f(x)= \begin{cases}\frac{1}{n} & \text { for } x \in \operatorname{cl}\left(I_{n}\right) \text { for } n=1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

has property $\left(s_{1}\right)$ but $\mu(\operatorname{cl}(D(f)))>0$.
Obviously the sum of two functions having property $\left(s_{2}\right)$ also has property $\left(s_{2}\right)$ and the sum of a continuous function and a function having property $\left(s_{2}\right)$ has property $\left(s_{2}\right)$. We will prove that every function having property $\left(s_{2}\right)$ is the sum of two functions having property $\left(s_{1}\right)$.

Theorem 1. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is the sum of two functions g and h having property $\left(s_{1}\right)$, then there are two Darboux functions ϕ and ψ having property $\left(s_{1}\right)$ such that $f=\phi+\psi$.

Proof. The sets $D(g)$ and $D(h)$ of all discontinuity points of g and h respectively are no where dense and of measure zero; so the union $A=D(g) \cup D(h)$ is the same. Without loss of the generality we can suppose that the set A is nonempty.

We start from the case where $\mu(\operatorname{cl}(A))=0$. If $(a, b), a, b \in \mathbb{R}$, is a bounded component of the complement $\mathbb{R} \backslash \operatorname{cl}(A)$, then we find two monotone sequences of points

$$
a<\cdots<a_{n+1}<a_{n}<\cdots a_{1}<b_{1}<\cdots<b_{n}<b_{n+1}<\cdots<b
$$

such that $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n+1}-b_{n}}{b-b_{n+1}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{a-a_{n+1}}=0 \tag{1}
\end{equation*}
$$

In each interval $\left(a_{n+1}, a_{n}\right)\left(\left(b_{n}, b_{n+1}\right)\right)$ we find disjoint nondegenerate closed intervals $I_{n, 1}, I_{n, 2} \subset\left(a_{n+1}, a_{n}\right) \quad\left(J_{n, 1}, J_{n, 2} \subset\left(b_{n}, b_{n+1}\right)\right)$ such that for $i=1,2$ we have

$$
\begin{equation*}
\frac{d\left(I_{n, i}\right)}{a_{n}-a_{n+1}}<\frac{1}{2 n} \quad\left(\frac{d\left(J_{n, i}\right)}{b_{n+1}-b_{n}}<\frac{1}{2 n}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left(\cup_{n=1}^{\infty} \cup_{i=1}^{2}\left(I_{n, i} \cup J_{n, i}\right)\right)<(b-a)^{2} \tag{3}
\end{equation*}
$$

where $d\left(I_{n, i}\right)$ denotes the length of $I_{n, i}$. If (a, b) is an unbounded component of the complement $\mathbb{R} \backslash \operatorname{cl}(A)$; i.e., $a=-\infty$ or $b=\infty$, then we find only two sequences $\left(J_{n, i}\right), i=1,2$ or respectively $\left(I_{n, i}\right)$ satisfying the above conditions.

For $i=1,2$ let $g_{n, i}: I_{n, i} \rightarrow \mathbb{R}$ and $h_{n, i}: J_{n, i} \rightarrow \mathbb{R}$ be continuous functions such that $g_{n, i}(x)=0$ if x is an endpoint of $I_{n, i}, h_{n, i}(y)=0$ if y is an endpoint of $J_{n, i}$ and
$\left(g+g_{n, 1}\right)\left(I_{n, 1}\right) \cap\left(h+h_{n, 1}\right)\left(J_{n, 1}\right) \cap\left(g+h_{n, 2}\right)\left(J_{n, 2}\right) \cap\left(h+g_{n, 2}\right)\left(I_{n, 2}\right) \supset[-n, n]$.
If (a, b) is a bounded component of the complement $\mathbb{R} \backslash \operatorname{cl}(A)$, then we put

$$
g_{(a, b)}(x)= \begin{cases}g(x)+g_{n, 1}(x) & \text { for } x \in I_{n, 1} \\ g(x)+h_{n, 2}(x) & \text { for } x \in J_{n, 2} \\ g(x)-h_{n, 1}(x) & \text { for } x \in J_{n, 1} \\ g(x)-g_{n, 2}(x) & \text { for } x \in I_{n, 2} \\ g(x) & \text { otherwise on }(a, b)\end{cases}
$$

and

$$
h_{(a, b)}(x)= \begin{cases}h(x)+h_{n, 1}(x) & \text { for } x \in J_{n, 1} \\ h(x)+g_{n, 2}(x) & \text { for } x \in I_{n, 2} \\ h(x)-g_{n, 1}(x) & \text { for } x \in I_{n, 1} \\ h(x)-h_{n, 2}(x) & \text { for } x \in J_{n, 2} \\ h(x) & \text { otherwise on }(a, b)\end{cases}
$$

Similarly we define the functions $g_{(a, b)}$ and $h_{(a, b)}$ on unbounded components (a, b) of the set $\mathbb{R} \backslash \operatorname{cl}(A)$.

Putting $\phi(x)=g_{(a, b)}(x)$ and $\psi(x)=h_{(a, b)}(x)$ on every component (a, b) of the complement $\mathbb{R} \backslash \operatorname{cl}(A)$ and $\phi(x)=g(x)$ and $\psi(x)=h(x)$ on $\operatorname{cl}(A)$ we obtain Darboux functions ϕ and ψ with $\phi+\psi=g+h=f$.

If a point $x \in \mathbb{R} \backslash \operatorname{cl}(A)$, then the functions ϕ and ψ are continuous at some open neighborhood of x and consequently they have property $\left(s_{1}\right)$ at the point x. So we fix a point $x \in \operatorname{cl}(A)$, a set $U \in T_{d}$ containing x and a positive real r. Since the function g has property $\left(s_{1}\right)$ and $\phi(x)=g(x)$ and by (2) and (3) the upper density $D_{u}(\{u \in \mathbb{R} ; \phi(u) \neq g(u)\}, x)=0$, there is an open interval $I \subset \mathbb{R} \backslash \operatorname{cl}(A) \backslash\{u ; \phi(u) \neq g(u)\}$ such that
$\emptyset \neq I \cap U$ and $\phi(I \cap U)=g(I \cap U) \subset(g(x)-r, g(x)+r)=(\phi(x)-r, \phi(x)+r)$.

So the function ϕ has property $\left(s_{1}\right)$ at x. Similarly we can show that the function ψ has property $\left(s_{1}\right)$ at x.

Now we will consider the case, where $\mu(\operatorname{cl}(A))>0$. In this case there are positive numbers $c_{1}>c_{2}>\cdots>c_{n} \rightarrow 0^{+}$such that $\sum_{n} c_{n}<\infty$ and the sets $E_{1}=\left\{x ; \operatorname{osc} g(x) \geq c_{1}\right\} \cup\left\{x ; \operatorname{osc} h(x) \geq c_{1}\right\}$ and $E_{n+1}=\left\{x ; c_{n}>\right.$ osc $\left.g(x) \geq c_{n+1}\right\} \cup\left\{x ; c_{n}>h(x) \geq c_{n+1}\right\}$ are nonempty for $n \geq 1$.

In the first step, as in the case $\mu(\operatorname{cl}(A))=0$, we construct functions ϕ_{1}, ψ_{1} continuous at each point $x \in \mathbb{R} \backslash \operatorname{cl}(A)$, having property $\left(s_{1}\right)$ at each point $x \in E_{1}$ and such that $\phi_{1}(x)=g(x)$ and $\psi_{1}(x)=h(x)$ for $x \in \operatorname{cl}(A)$, $\phi_{1}+\psi_{1}=g+h$ everywhere on \mathbb{R}, the sets $H_{1}=\left\{x ; \phi_{1}(x) \neq g(x)\right\}$ and $M_{1}=$ $\left\{x ; \psi_{1}(x) \neq h(x)\right\}$ are contained in countable unions of pairwise disjoint nondegenerate closed intervals $I_{1, k}$ and respectively $J_{1, k}, k \geq 1$,

$$
\operatorname{cl}\left(H_{1} \cup M_{1}\right)=\bigcup_{k}\left(I_{1, k} \cup J_{1, k}\right) \cup E_{1}
$$

and for each point $x \in E_{1}$, each nondegenerate closed interval $I \ni x$ and each positive integer m, the density $D_{u}\left(\operatorname{cl}\left(H_{1} \cup M_{1}\right), x\right)=0$, and there are intervals $I_{1, k_{1}}$ and $J_{1, k_{2}}$ such that $\phi_{1}\left(I_{1, k_{1}}\right) \cap \psi_{1}\left(J_{1, k_{2}}\right) \supset[-m, m]$. For the construction of such functions ϕ_{1}, ψ_{1} and intervals $I_{1, k}$ and $J_{1, k}$ we consider the components (a, b) of the set $\mathbb{R} \backslash \operatorname{cl}(A)$ and repeat the reasoning from the case $\mu(\operatorname{cl}(A))=0$ for the set E_{1}.

As in the second step above, we find pairwise disjoint nondegenerate closed intervals

$$
I_{2, k, i} \subset \mathbb{R} \backslash \operatorname{cl}(A) \backslash \bigcup_{k}\left(I_{1, k} \cup J_{1, k}\right), \quad i=1,2 \text { and } k \geq 1
$$

such that max $\left(\operatorname{osc}_{I_{2, k, i}} g, \operatorname{osc}_{I_{2, k, i}} h\right)<c_{1}, \lim _{k \rightarrow \infty} \operatorname{dist}\left(I_{2, k, i}, E_{2}\right)=0$, for $i=$ 1,2 , where $\operatorname{dist}\left(I_{2, k, i}, E_{2}\right)=\inf \left\{|x-y| ; x \in I_{2, k, i}, \quad y \in E_{2}\right\}$,

$$
\begin{gathered}
E_{2} \subset \operatorname{cl}\left(\bigcup_{k} I_{2, k, i}\right) \subset \bigcup_{k} I_{2, k, i} \cup E_{1} \cup E_{2}, \text { for } i=1,2, \\
D_{u}\left(\bigcup_{k, i} I_{2, k, i}, x\right)=0 \text { for } x \in E_{2}
\end{gathered}
$$

for each point $x \in E_{2}$ and for each nondegenerate closed interval $I \ni x$ there are intervals $I_{2, k_{1}, i}, i=1,2$, contained in I and such that $\operatorname{osc}_{I_{2, k_{1}, i}} g<$ c_{1} and $\operatorname{osc}_{I_{2, k_{1}, i}} h<c_{1}$ for $i=1,2$. For each pair (k, i), where $k \geq 1$ and $i=1,2$ denote by $K_{2, k, i}\left(L_{2, k, i}\right)$ the closed interval of the length $3 c_{1}$ and having the same center as $g\left(I_{2, k, i}\right)\left(h\left(I_{2, k, i}\right)\right)$ and define continuous functions

$$
g_{2, k, 1}: I_{2, k, 1} \rightarrow K_{2, k, 1} \text { and } h_{2, k, 2}: I_{2, k, 2} \rightarrow L_{2, k, 2}
$$

such that $g_{2, k, 1}\left(I_{2, k, 1}\right)=K_{2, k, 1}, h_{2, k, 2}\left(I_{2, k, 2}\right)=L_{2, k, 2}$ and $g_{2, k, 1}(x)=g(x)$ at the endpoints of $I_{2, k, 1}$ and $h_{2, k, 2}(x)=h(x)$ at the endpoints of $I_{2, k, 2}$.

Let

$$
\phi_{2}(x)= \begin{cases}g_{2, k, 1}(x) & \text { for } x \in I_{2, k, 1} \\ g(x)-h_{2, k, 2}(x)+h(x) & \text { for } x \in I_{2, k, 2} \\ \phi_{1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

and

$$
\psi_{2}(x)= \begin{cases}h(x)-g_{2, k, 1}(x)+g(x) & \text { for } x \in I_{2, k, 1} \\ h_{2, k, 2}(x) & \text { for } x \in I_{2, k, 2} \\ \psi_{1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

Then $\left|\phi_{2}-\phi_{1}\right| \leq 2 c_{1}, \quad\left|\psi_{2}-\psi_{1}\right| \leq 2 c_{1}$ and $\phi_{2}+\psi_{2}=\phi_{1}+\psi_{1}=g+h$.
For the construction of such functions ϕ_{2}, ψ_{2} and of intervals $I_{2, k, i}$ we consider the components (a, b) of the set

$$
(\mathbb{R} \backslash \operatorname{cl}(A)) \backslash \bigcup_{k}\left(I_{1, k} \cup J_{1, k}\right)
$$

and analogously as in the proof of the case $\mu(\operatorname{cl}(A))=0$ we take intervals $I_{2, k, i}$ satisfying all requirements. Next we repeat the reasoning from the case $\mu(\operatorname{cl}(A))=0$ and construct functions ϕ_{2} and ψ_{2} satisfying our required conditions.

In step $m>2$ we construct similarly two functions ϕ_{m}, ψ_{m} which are continuous on $\mathbb{R} \backslash \operatorname{cl}(A)$ and such that $\operatorname{cl}\left(\left\{x ; \phi_{m}(x) \neq g(x)\right\}\right) \cap \operatorname{cl}\left(\left\{x ; \phi_{i}(x) \neq\right.\right.$ $g(x)\}) \subset E_{1} \cup \ldots \cup E_{m}$ and $\operatorname{cl}\left(\left\{x ; \psi_{m}(x) \neq h(x)\right\}\right) \cap \operatorname{cl}\left(\left\{x ; \psi_{i}(x) \neq h(x)\right\}\right) \subset$ $E_{1} \cup \ldots \cup E_{m}$ for $i<m, \phi_{m}+\psi_{m}=g+h$ and $\max \left(\left|\phi_{m}-\phi_{m-1}\right|, \mid \psi_{m}-\right.$ $\left.\psi_{m-1} \mid\right) \leq 2 c_{m-1}$, the sets $H_{m}=\left\{x ; \phi_{m}(x) \neq \phi_{m-1}(x)\right\}$ and $M_{m}=$ $\left\{x ; \psi_{m}(x) \neq \psi_{m-1}(x)\right\}$ are contained in the countable unions of pairwise disjoint nondegenerate closed intervals $I_{m, n}$ and respectively $J_{m, n}, n \geq 1$, contained in

$$
\mathbb{R} \backslash \operatorname{cl}(A) \backslash \bigcup_{k<m} \bigcup_{n}\left(I_{k, n} \cup J_{k, n}\right)
$$

for which $\max \left(\operatorname{osc}_{I_{m, n}} g, \operatorname{osc}_{I_{m, n}} h, \operatorname{osc}_{J_{m, n}} g, \operatorname{osc}_{J_{m, n}} h\right)<c_{m-1}$,

$$
\begin{gathered}
E_{m} \subset \operatorname{cl}\left(\bigcup_{m, n}\left(I_{m, n} \cup J_{m, n}\right) \subset \bigcup_{m, n}\left(I_{m, n} \cup J_{m, n}\right) \cup E_{1} \cup \ldots \cup E_{m}\right. \\
\lim _{n \rightarrow \infty} \operatorname{dist}\left(I_{m, n}, E_{m}\right)=0, \lim _{n \rightarrow \infty} \operatorname{dist}\left(J_{m, n}, E_{m}\right)=0 \\
D_{u}\left(\bigcup_{n}\left(I_{m, n} \cup J_{m, n}\right), x\right)=0 \text { for each } x \in E_{m}
\end{gathered}
$$

and for each point $x \in E_{m}$ and each nondegenerate closed interval $I \ni x$ there are intervals $I_{m, n_{1}}, J_{m, n_{2}} \subset I \backslash \operatorname{cl}(A)$ for which $\max \left(d\left(g\left(I_{m, n_{1}}\right)\right), d\left(h\left(J_{m, n_{2}}\right)\right)\right)<$ c_{m-1} and $g\left(I_{m, n_{1}}\right) \subset \phi_{m}\left(I_{m, n_{1}}\right), \quad h\left(J_{m, n_{2}}\right) \subset \psi_{m}\left(J_{m, n_{2}}\right)$ and $d\left(\phi_{m}\left(I_{m, n_{1}}\right)\right)=$ $d\left(\psi_{m}\left(J_{m, n_{2}}\right)=3 c_{m-1}\right.$.

The sequences $\left(\phi_{n}\right)$ and $\left(\psi_{n}\right)$ uniformly converge to functions ϕ and ψ respectively. Observe that $\phi+\psi=\lim _{n \rightarrow \infty}\left(\phi_{n}+\psi_{n}\right)=g+f$. As the uniform limits the functions ϕ and ψ are continuous at each point of the set $\mathbb{R} \backslash A$. So they have property $\left(s_{1}\right)$ at the points $x \in \mathbb{R} \backslash \operatorname{cl}(A)$. We will prove that these functions have also property $\left(s_{1}\right)$ at other points. For this fix a point $x \in \operatorname{cl}(A)$, a real $r>0$ and a set $U \in T_{d}$ containing x. Let j be an integer such that $\left|\phi_{j}-\phi\right|<\frac{r}{3}$. Since the function g has property $\left(s_{1}\right)$ and $D_{u}\left(\left\{u ; \phi_{j}(u) \neq\right.\right.$ $g(u)\}, x)=0$, there is an open interval $I \subset\left\{u ; \phi_{j}(u)=g(u)\right\}$ such that

$$
I \cap U \neq \emptyset \text { and } g(I \cap U)=\phi_{j}(I \cap U) \subset\left(g(x)-\frac{r}{3}, g(x)+\frac{r}{3}\right)
$$

Consequently, for $u \in I \cap U$ we have
$|\phi(u)-\phi(x)| \leq\left|\phi(u)-\phi_{j}(u)\right|+\left|\phi_{j}(u)-\phi_{j}(x)\right|+\left|\phi_{j}(x)-\phi(x)\right|<\frac{r}{3}+\frac{r}{3}+\frac{r}{3}=r$.
So the function ϕ has property $\left(s_{1}\right)$. The same we can check that ψ has property $\left(s_{1}\right)$.

Now we will prove that the function ϕ has property of Darboux. Assume to the contrary that it has not the Darboux property. Then there are points a, b with $a<b$ and $\phi(a) \neq \phi(b)$ and a real $c \in K=(\min (\phi(a), \phi(b))$, $\max (\phi(a), \phi(b))$ such that $\phi^{-1}(c) \cap[a, b] \neq \emptyset$. If there is a point $x \in E_{1} \cap[a, b]$, there is a nondegenerate closed interval $I \subset[a, b]$ with $\phi(I)=\phi_{1}(I) \supset K \ni c$, a contradiction. So $E_{1} \cap[a, b]=\emptyset$. Fix a point

$$
z \in[a, b] \cap \operatorname{cl}(\{u ; \phi(u)<c\}) \cap \operatorname{cl}(\{u ; \phi(u)>c\})
$$

Then $z \in A$ and there is an integer $m>1$ with $z \in E_{m}$. So osc $g(z)<$ c_{m-1} and there is an open interval $I \ni z$ such that $\operatorname{osc}_{I} g<c_{m-1}$. We have either $\phi(z)=g(z)<c$ or $\phi(z)=g(z)>c$. Suppose that $g(z)<z$. Then there is a point $t \in I \cap[a, b]$ with $g(t)>c$. Since $t \in I$, we have $g(t)-g(z)<c_{m-1}$ and consequently $c-g(z)<c_{m-1}$. From the construction of ϕ_{m} follows that there is a nondegenerate closed interval $J \subset[a, b] \cap I$ such that $\phi_{m}(J) \supset[g(z), g(t)] \ni c$, a contradiction. So the function ϕ has Darboux property. If $g(z)>c$ the reasoning is similar. The same we can show that the function ψ has Darboux property.

Lemma 1. If $A \subset \mathbb{R}$ is a nonempty compact set of Lebesgue measure zero, $U \supset A$ is a bounded open set and $E \subset U \backslash A$ is a dense set in U, then there is a
family $K_{i, j}, i, j=1,2, \ldots$, of pairwise disjoint nondegenerate closed intervals $K_{i, j} \subset U \backslash A$ with the endpoints belonging to E such that for each positive integer i and each point $x \in A$ the upper density $D_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1$ and for each positive real r the set of pairs (i, j) for which $\operatorname{dist}\left(K_{i, j}, A\right) \geq r$ is empty or finite.

Proof. Since the set A is compact, there are pairwise disjoint open intervals

$$
I_{1,1}, I_{1,2}, \ldots, I_{1, i(1)} \subset U \cap \bigcup_{x \in A}(x-1, x+1)
$$

such that $A \subset U_{1}=I_{1,1} \cup \ldots \cup I_{1, i(1)}$ and $I_{1, i} \cap A \neq \emptyset$ for $i \leq i(1)$. There are pairwise disjoint nondegenerate closed intervals $L_{1,1}, \ldots, L_{1, k(1)} \subset U_{1} \backslash A$ with the endpoints belonging to E such that for every positive integer $j \leq i(1)$ the inequality

$$
\frac{\mu\left(I_{1, j} \cap \bigcup_{i \leq k(1)} L_{1, i}\right)}{\mu\left(I_{1, j}\right)}>\frac{1}{2}
$$

is true.
In the second step put

$$
r_{2}=\frac{\inf \left\{|x-y| ; x \in A, y \in \bigcup_{i \leq k(1)} L_{1, i}\right\}}{2}
$$

There are pairwise disjoint open intervals

$$
I_{2,1}, I_{2,2}, \ldots, I_{2, i(2)} \subset U \cap \bigcup_{x \in A}\left(x-r_{2}, x+r_{2}\right)
$$

such that $A \subset U_{2}=I_{2,1} \cup \ldots \cup I_{2, i(2)}$ and $I_{2, j} \cap A \neq \emptyset$ for $j \leq i(2)$. Now we find pairwise disjoint nondegenerate closed intervals $L_{2,1}, \ldots, L_{2, k(2)} \subset U_{2} \backslash A$ with the endpoints belonging to E such that for every positive integer $j \leq i(2)$ the inequality

$$
\frac{\mu\left(I_{2, j} \cap \bigcup_{i \leq k(2)} L_{2, i}\right)}{\mu\left(I_{2, j}\right)}>1-\frac{1}{2^{2}}
$$

is true.
In general in $n^{t h}$ step we define the positive real

$$
r_{n}=\frac{\inf \left\{|x-y| ; x \in A, y \in \bigcup_{i \leq k(n-1)} L_{n-1, i}\right\}}{2}
$$

pairwise disjoint open intervals $I_{n, 1}, I_{n, 2}, \ldots, I_{n, i(n)} \subset U \cap \bigcup_{x \in A}\left(x-r_{n}, x+r_{n}\right)$ such that $A \subset U_{n}=I_{n, 1} \cup \ldots \cup I_{n, i(n)}$ and $I_{n, j} \cap A \neq \emptyset$ for $j \leq i(n)$, and
pairwise disjoint nondegenerate closed intervals $L_{n, 1}, \ldots, L_{n, k(n)} \subset U_{n} \backslash A$ with the endpoints belonging to E such that for each positive integer $j \leq i(n)$ the inequality

$$
\frac{\mu\left(I_{n, j} \cap \bigcup_{i \leq k(n)} L_{n, i}\right)}{\mu\left(I_{n, j}\right)}>1-\frac{1}{2^{n}}
$$

holds.
Let $N_{1}, N_{2}, \ldots, N_{m}, \ldots$ be a sequence of pairwise disjoint infinite subsets of positive integers and let $N_{k}=\left\{n_{k, 1}, n_{k, 2}, \ldots\right\}$, where $n_{k, i}<n_{k, j}$ for $i<j$. For $i=1,2, \ldots$ let

$$
\left(K_{i, j}\right)_{j}=\left(L_{n_{i, 1}, 1}, \ldots, L_{n_{i, 1}, k\left(n_{i, 1}\right)}, L_{n_{i, 2}, 1}, \ldots, L_{n_{i, 2}, k\left(n_{i, 2}\right)}, \ldots\right)
$$

We will prove that the family $\left\{K_{i, j} ; i, j=1,2, \ldots\right\}$ satisfies all requirements. From the construction follows immediately that the intervals $K_{i, j} \subset U \backslash A$ are pairwise disjoint and their endpoints belong to E. Fix a positive real r. There is an integer k such that $r_{n}<r$ for $n \geq k$. Observe that for $L_{n, j}$ with $n \geq k$ we obtain $\operatorname{dist}\left(A, L_{n, j}\right)<r_{n}<r$. So the set of all pairs (i, j) for which $\operatorname{dist}\left(A, K_{i, j}\right) \geq r$ is empty or finite. Now fix an integer i and a point $x \in A$. For each integer $n_{i, j}$ there is an open interval $I_{n_{i, j}, l_{i, j}} \ni x$, where $l_{i, j} \leq i\left(n_{i, j}\right)$. Evidently $\lim _{j \rightarrow \infty} d\left(I_{n_{i, j}, l_{i, j}}\right)=0$. Since

$$
\frac{\mu\left(I_{n_{i, j}, l_{i, j}} \cap \bigcup_{m \leq k\left(n_{i, j}\right)} L_{n_{i, j}, m}\right)}{\mu\left(I_{n_{i, j}, l_{i, j}}\right)}>1-\frac{1}{2^{n_{i, j}}}
$$

and all intervals $L_{n_{i, j}, m}$ occur in the sequence $\left(K_{i, j}\right)$, we have

$$
D_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1
$$

Theorem 2. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has property $\left(s_{2}\right)$, then there are functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ having the property $\left(s_{1}\right)$ such that $f=g+h$.
Proof. At first suppose that the set $D(f)$ of all discontinuity points is bounded. Then $\operatorname{cl}(D(f))$ is a compact set. If $\mu(\operatorname{cl}(D(f))=0$, then by Lemma 1 there is a family $K_{i, j}$ of pairwise disjoint nondegenerate closed intervals $K_{i, j} \subset \mathbb{R} \backslash \operatorname{cl}(D(f)), \quad i, j \geq 1$ such that for each positive real r the set of pairs (i, j) for which $\operatorname{dist}\left(K_{i, j}, \operatorname{cl}(D(f))\right) \geq r$ is empty or finite and such that for each integer i and each point $x \in \operatorname{cl}(D(f))$ the upper density $D_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1$. Let $\left(w_{i}\right)$ be a sequence of all rationals and let

$$
g(x)= \begin{cases}w_{i} & \text { for } x \in K_{2 i-1, j} \\ f(x)-w_{i} & \text { for } x \in K_{2 i, j} \\ f(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

and

$$
h(x)= \begin{cases}f(x)-w_{i} & \text { for } x \in K_{2 i-1, j} \\ w_{i} & \text { for } x \in K_{2 i, j} \\ 0 & \text { otherwise on } \mathbb{R}\end{cases}
$$

Evidently, $g+h=f$. If $x \in \mathbb{R} \backslash \operatorname{cl}(D(f))$, then g and h are continuous on some interval $[x, x+s) \subset \mathbb{R} \backslash \operatorname{cl}(D(f))$ or $(x-s, x] \subset \mathbb{R} \backslash \operatorname{cl}(D(f))$, where $s>0$ and consequently they have property $\left(s_{1}\right)$ at x.

If $x \in \operatorname{cl}(D(f)), x \in U \in T_{d}$ and $r>0$, then there is an index k with $\left|f(x)-w_{k}\right|<r$. Since $D_{u}\left(\bigcup_{j=1}^{\infty} K_{2 k-1, j}, x\right)=1$, there is an index m such that $\emptyset \neq \operatorname{int}\left(K_{2 k-1, m}\right) \cap U$. For $u \in K_{2 k-1, m} \cap U$ we have $|g(u)-g(x)|=$ $\left|w_{k}-f(x)\right|<r$, thus the function g has property $\left(s_{1}\right)$ at x. Similarly we can check that the function h has property $\left(s_{1}\right)$ at $x \in \operatorname{cl}(D(f))$. So the proof in the case, where $\mu(\operatorname{cl}(D(f))=0$ (and $D(f)$ is bounded) is finished.

So suppose that $\mu\left(\operatorname{cl}(D(f))>0\right.$. Then there is a sequence $\left(a_{n}\right)$ of positive reals such that $a_{n+1}<a_{n}$ for ≥ 1 and $\sum_{k=1}^{\infty} a_{k}<\infty$, and $A_{n+1} \backslash A_{n} \neq$ \emptyset for $n=1,2, \ldots$, where $A_{n}=\left\{x ; \operatorname{osc} f(x) \geq a_{n}\right\}$. Every set A_{n} is closed of measure zero and for the set $D(f)$ of all discontinuity points of f the equality $D(f)=\bigcup_{n=1}^{\infty} A_{n}$ is true. By Lemma 1 there is a family of pairwise disjoint closed intervals

$$
K_{1, i, j} \subset \mathbb{R} \backslash A_{1}, \quad i, j=1,2, \ldots
$$

with the endpoints belonging to $C(f)$ such that for each $i=1,2, \ldots$ and for each $x \in A_{1}$ the upper density $D_{u}\left(\bigcup_{j=1}^{\infty} K_{1, i, j}, x\right)=1$ and for each positive real r the set of pairs (i, j) for which $\operatorname{dist}\left(K_{1, i, j}, A_{1}\right) \geq r$ is empty or finite.

In the interiors $\operatorname{int}\left(K_{1, i, j}\right)$ we find closed intervals $I_{1, i, j} \subset \operatorname{int}\left(K_{1, i, j}\right)$ such that for each point $x \in A_{1}$ and for each integer $i=1,2, \ldots$ the upper density

$$
D_{u}\left(\bigcup_{j=1}^{\infty} I_{1, i, j}, x\right)=1
$$

Let $w_{1, i}$ be a sequence of all rationals and let $g_{1}, h_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows

$$
g_{1}(x)= \begin{cases}w_{1, i} & \text { for } x \in I_{1,2 i, j}, \quad i, j=1,2, \ldots \\ f(x) & \text { for } x \in \mathbb{R} \backslash \bigcup_{i, j=1}^{\infty} \operatorname{int}\left(K_{1,2 i, j}\right)\end{cases}
$$

g_{1} is linear on all components of the sets $K_{1,2 i . j} \backslash \operatorname{int}\left(I_{1,2 i, j}\right), i, j=1,2, \ldots$, and $h_{1}(x)=f(x)-g_{1}(x)$ for $x \in \mathbb{R}$.

In the second step we consider the set $A_{2} \backslash A_{1}=A_{2} \cap\left(\mathbb{R} \backslash A_{1}\right)$. There are pairwise disjoint open intervals $P_{2, k} \subset \mathbb{R} \backslash A_{1}, k \geq 1$, with the centers
belonging to $C(f)$ such that every set $A_{2} \cap P_{2, k}$ is nonempty and compact and

$$
A_{2} \backslash A_{1}=\bigcup_{k}\left(A_{2} \cap P_{2, k}\right)
$$

A construction of such intervals $P_{2, k}$ may be the following.w We find a bounded open set $G \supset A_{2}$ and divide each component of the the set $G \backslash A_{1}$ by points belonging to $C(f)$ into open intervals. As $P_{2, k}$ we take all from the above intervals which have common points with A_{2}.

If $x \in\left(A_{2} \cap \operatorname{int}\left(K_{1,2 i, j}\right)\right) \backslash A_{1}$ for some pair (i, j), then g_{1} is continuous at x, and consequently osc $g_{1}(x)=0$ and $\operatorname{osc} h_{1}(x)=\operatorname{osc} f(x)<a_{1}$. If

$$
x \in A_{2} \backslash A_{1} \backslash \bigcup_{i, j \geq 1} K_{1,2 i, j}
$$

then $g_{1}(t)=f(t)$ and $h_{1}(t)=0$ on an open interval containing x and contained in $\mathbb{R} \backslash A_{1}$. So osc $g_{1}(x)=\operatorname{osc} f(x)<a_{1} \quad$ and $\quad \operatorname{osc} h_{1}(x)=0$. Similarly we show that $\max \left(\operatorname{osc} g_{1}(x)\right.$, osc $\left.h_{1}(x)\right)<a_{1}$ if $x \in A_{2} \backslash A_{1}$ is an endpoint of some $K_{1,2 i, j}$. So for each integer k and each point $x \in A_{2} \cap P_{2, k}$ there is an open interval $J_{2, k}(x) \subset P_{2, k}$ containing x such that on the interval $J_{2, k}(x)$ the oscillation $\operatorname{osc}_{J_{2, k}(x)} g_{1}<a_{1}$ and $\operatorname{osc}_{J_{2, k}(x)} h_{1}<a_{1}$. Since the set $A_{2} \cap P_{2, k}$ is compact there are points $x_{1}, x_{2}, \ldots, x_{j(k)}$ such that $A_{2} \cap P_{2, k} \subset$ $J_{2, k}\left(x_{1}\right) \cup \ldots \cup J_{2, k}\left(x_{j(k)}\right)$. Without loss of the generality we can assume that the above intervals $J_{2, k}\left(x_{j}\right), j \leq j(k)$, are pairwise disjoint. For each pair of positive integers (i, j) such that $A_{2} \cap K_{1, i, j} \neq \emptyset$ we find an open set $U\left(K_{1, i, j}\right) \subset$ $\operatorname{int}\left(K_{1, i, j}\right)$ such that $A_{2} \cap K_{1, i, j} \subset U\left(K_{1, i, j}\right)$ and

$$
\frac{\mu\left(\operatorname{cl}\left(U\left(K_{1, i, j}\right)\right)\right)}{\mu\left(K_{1, i, j}\right)}<\frac{1}{4^{1+i+j}}
$$

If for some integers i_{1}, j_{1}, j_{2} the intersection $A_{2} \cap \operatorname{int}\left(K_{1, i_{1}, j_{1}}\right) \cap J_{2, k}\left(x_{j_{2}}\right) \neq \emptyset$ then, by Lemma 1, we find pairwise disjoint nondegenerate closed intervals

$$
K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right) \subset U\left(K_{1, i_{1}, j_{1}}\right) \cap J_{2, k}\left(x_{j_{2}}\right)
$$

with the endpoints belonging to $C(f)$ such that for every positive integer i and every point $x \in A_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}$ the upper density

$$
D_{u}\left(\bigcup_{j=1}^{\infty} K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right), x\right)=1
$$

and for every positive real r the set of all pairs (i, j) for which

$$
\operatorname{dist}\left(A_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}, K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right)>r
$$

is empty or finite. In every interval $\operatorname{int}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right)$ we find a closed interval $I_{2, i, j}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right.$ such that for every integer i and for every point $x \in A_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}$ the upper density

$$
\begin{equation*}
D_{u}\left(\bigcup_{j=1}^{\infty} I_{2, i, j}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right), x\right)=1 \tag{4}
\end{equation*}
$$

For each positive integer $j \leq j(k)$ let $\left(w_{i}\left(x_{j}\right)\right)$ be an enumeration of all rationals in $\left(y_{j}-\frac{a_{1}}{2}, y_{j}+\frac{a_{1}}{2}\right)$, where y_{j} is the center of the interval

$$
\left[\inf _{A_{2} \cap J_{2, k}\left(x_{j}\right)} g_{1}, \sup _{A_{2} \cap J_{2, k}\left(x_{j}\right)} g_{1}\right],
$$

and let $\left(u_{i}\left(x_{j}\right)\right)$ be an enumeration of all rationals in $\left(z_{j}-\frac{a_{1}}{2}, z_{j}+\frac{a_{1}}{2}\right)$, where z_{j} is the center of the interval $\left[\inf _{A_{2} \cap J_{2, k}\left(x_{j}\right)} h_{1}, \sup _{A_{2} \cap J_{2, k}\left(x_{j}\right)} h_{1}\right]$. Put
$g_{2}(x)= \begin{cases}w_{i}\left(x_{j_{2}}\right) & \text { for } x \in I_{2,2 i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right), \\ & j_{2} \leq j(k), \quad i, j=1,2, \ldots \\ f(x)-h_{2}(x) & \text { for } x \in I_{2,2 i-1, j}\left(K_{1, i_{1}, j_{1}} J_{2, k}\left(x_{j_{2}}\right)\right) \\ & j_{2} \leq j(k), \quad i, j=1,2, \ldots, \\ g_{1}(x) & \text { for } x \in K_{1, i_{1}, j_{1} \backslash} \bigcup_{j_{2} \leq j(k)} \bigcup_{i, j=1}^{\infty} K_{2, i, j}\left(K_{1, i_{1}, j_{1},}, J_{2, k}\left(x_{j_{2}}\right)\right),\end{cases}$
and
$h_{2}(x)= \begin{cases}f(x)-g_{2}(x) & \text { for } x \in I_{2,2 i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right), \\ & j_{2} \leq j(k), \quad i, j=1,2, \ldots \\ u_{i}\left(x_{j_{2}}\right) & \text { for } x \in I_{2,2 i-1, j}\left(K_{1, i_{1}, j_{1}} J_{2, k}\left(x_{j_{2}}\right)\right) \\ & j_{2} \leq j(k), \quad i, j=1,2, \ldots, \\ h_{1}(x) & \text { for } x \in K_{1, i_{1}, j_{1} \backslash}^{\bigcup_{j_{2} \leq j(k)}} \bigcup_{i, j=1}^{\infty} K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right),\end{cases}$
and assume that the function g_{2} is linear and $h_{2}=f-g_{2}$ on the components of the sets $K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right) \backslash I_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)$.

Similarly, modifying the values of g_{1} and h_{1} on respectively constructed closed intervals we define the functions g_{2} and h_{2} on components $L_{2, m}$ of the set $P_{2, k} \backslash A_{1} \backslash \bigcup_{i, j=1}^{\infty} K_{1, i, j}$ for which $L_{2, m} \cap A_{2} \neq \emptyset$. Put $g_{2}(x)=g_{1}(x)$ and $h_{2}(x)=h_{1}(x)$ otherwise on \mathbb{R}. Observe that if the function f is continuous
at a point x, then from the constructions of g_{1} and g_{2} follows that $x \in \mathbb{R} \backslash A_{2}$, and g_{1} and g_{2} are continuous at x. Consequently the functions h_{1} and h_{2} as the differences of functions continuous at x are also continuous at this point. So $C(f) \subset C\left(g_{2}\right) \cap C\left(h_{2}\right)$. Observe that

$$
\left|g_{2}-g_{1}\right| \leq a_{1}, \quad\left|h_{2}-h_{1}\right| \leq a_{1} \text { and } g_{2}+h_{2}=f
$$

We will show that $g_{2}, h_{2} \in s_{1}(x)$ for $x \in A_{2}$. For this fix a point $x \in A_{2}$, a set $U \ni x$ belonging to T_{d} and a real $r>0$.

If $x \in A_{1}$, then we find a rational $w_{1, k}$ with $\left|g_{1}(x)-w_{1, k}\right|<r$. Since

$$
D_{u}\left(\bigcup_{j=1}^{\infty} I_{1,2 k, j}, x\right)=1 \text { and } \frac{\mu\left(\mathrm{cl}\left(U\left(K_{1,2 k, j}\right)\right)\right)}{\mu\left(K_{1,2 k, j}\right)}<\frac{1}{4^{1+2 k+j}}
$$

we obtain

$$
D_{u}\left(\left(g_{1}\right)^{-1}\left(w_{1, k}\right) \cap \bigcup_{j=1}^{\infty} I_{1,2 k, j}, x\right)=1
$$

and consequently there is an integer m and an open interval $I \subset I_{1,2 k, m} \backslash$ $\operatorname{cl}\left(U\left(K_{1,2 k, m}\right)\right)$ such that $\emptyset \neq I \cap U$. But $g_{2}(u)=w_{1, k}$ for $u \in I \cap U$; so $I \cap U \subset$ $C\left(g_{2}\right)$. Moreover for $u \in I \cap U$ we have $\left|g_{2}(u)-g_{2}(x)\right|=\left|w_{1, k}-g_{2}(x)\right|<r$. So $g_{2} \in s_{1}(x)$ for $x \in A_{1}$. Similarly we show that $h_{2} \in s_{1}(x)$ for $x \in A_{1}$.

Using (4) by similar reasoning we can show that $g_{2}, h_{2} \in s_{1}(x)$ for $x \in$ $A_{2} \backslash A_{1}$. Let $\left(K_{2, i, j}\right)$ be a double sequence of all closed intervals on which we have modified the functions g_{1} and h_{1} for the obtaining of g_{2} and h_{2}. Similarly in $n^{\text {th }}$ step we change the functions g_{n-1} and h_{n-1} on respectively taken closed intervals $K_{n, 2 i, j}$ and $K_{n, 2 i-1, j}$ and define functions g_{n} and h_{n} such that g_{n} (and resp. h_{n}) has constant rational values on respective closed intervals $I_{n, 2 i, j} \subset \operatorname{int}\left(K_{n, 2 i, j}\right)\left(\right.$ resp. on $\left.I_{n, 2 i-1, j}\right), C(f) \subset C\left(g_{n}\right) \cap C\left(h_{n}\right), g_{n}, h_{n} \in$ $s_{1}(x)$ for $x \in A_{n}$,

$$
\left|g_{n}-g_{n-1}\right| \leq a_{n-1}, \quad\left|h_{n}-h_{n-1}\right| \leq a_{n-1}, \quad \text { and } g_{n}+h_{n}=f
$$

Moreover, we suppose that for every triple $\left(k, i_{1}, j_{1}\right)$, where $k<n$ and $i_{1}, j_{1}=$ $1,2, \ldots$, the inequality

$$
\begin{equation*}
\frac{\mu\left(K_{k, i_{1}, j_{1}} \backslash \bigcup_{i, j=1}^{\infty} K_{n, i, j}\right)}{\mu\left(K_{k, i_{1}, j_{1}}\right)}>1-\frac{1}{4^{n+i+j}} \tag{5}
\end{equation*}
$$

is true. Let $g=\lim _{n \rightarrow \infty} g_{n}$ and $h=\lim _{n \rightarrow \infty} h_{n}$. Evidently, $g+h=f$. Since the above convergence is uniform, $C(f) \subset C(g) \cap C(h)$, and consequently the functions g, h have property $\left(s_{2}\right)$. We will prove that the functions g, h have
property $\left(s_{1}\right)$. For this, fix a positive real r, a point $x \in \mathbb{R}$ and a set $U \in T_{d}$ containing x. If $x \in C(f)$, then g is continuous at x and there is a positive real s such that $|g(t)-g(x)|<r$ for $t \in(x-s, x+s)$. But g has property $\left(s_{2}\right)$, there are an open interval $J \subset(x-s, x+s)$ such that $C(g) \supset J \cap U \neq \emptyset$. Since $|g(t)-g(x)|<r$ for $t \in J \cap U$, we obtain $g \in s_{1}(x)$. Similarly we can prove that $h \in s_{1}(x)$.

In the case where x is a discontinuity point of g the point x is also a discontinuity point of f and there is a positive integer n such that $x \in A_{n} \backslash$ A_{n-1} (we assume that $A_{0}=\emptyset$). Let $k>n$ be a positive integer such that $\sum_{i=k+1}^{\infty} a_{i}<\frac{r}{3}$. There is a rational value w of the function g_{n} such that $\left|g_{n}(x)-w\right|<\frac{r}{3}$ and $D_{u}\left(\left(g_{n}\right)^{-1}(w), x\right)=1$. By condition (5) the upper density

$$
D_{u}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m>n} \bigcup_{l, j=1}^{\infty} K_{m, l, j}, x\right)=1
$$

So

$$
D_{u}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}, x\right)=1
$$

and by the construction of g_{n} and $K_{m, l, j}$ also

$$
D_{u}\left(\operatorname{int}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right), x\right)=1
$$

Since $x \in U \in T_{d}$, we have

$$
D_{u}\left(U \cap \operatorname{int}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right), x\right)=1
$$

Consequently, there is an open interval

$$
I \subset \operatorname{int}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right) \backslash A_{k}
$$

such that $I \cap U \neq \emptyset$. Evidently, $\emptyset \neq I \cap U \subset C(f) \subset C(g)$. For $t \in I \cap U$ we obtain $g_{n}(t)=g_{k}(t)$ and

$$
|g(t)-g(x)|=\left|g(t)-g_{k}(t)+w-g_{n}(x)\right| \leq \sum_{i=k+1}^{\infty} a_{i}+\frac{r}{3}<\frac{2 r}{3}<r
$$

So $g \in s_{1}(x)$. The proof that $h \in s_{1}(x)$ is analogous.
Up to now we have supposed that the set $D(f)$ is bounded. Now we consider the general case. Since the closure $\operatorname{cl}(D(f))$ is a nowhere dense set, there are points $x_{k} \in \mathbb{R} \backslash \operatorname{cl}(D(f)), k=0,1,-1,2,-2, \ldots$ such that

$$
\lim _{k \rightarrow-\infty} x_{k}=-\infty, \quad \lim _{k \rightarrow \infty} x_{k}=\infty, \text { and } x_{k}<x_{k+1} \text { for all integers } k
$$

Then $\mathbb{R}=\bigcup_{k=-\infty}^{\infty}\left[x_{k}, x_{k+1}\right]$. Every restricted function $f_{k}=f /\left[x_{k}, x_{k+1}\right]$ is the sum of two functions $g_{k}, h_{k}:\left[x_{k}, x_{k+1}\right] \rightarrow \mathbb{R}$ having property $\left(s_{1}\right)$ and continuous at the points x_{k} and x_{k+1}. Let

$$
g(x)= \begin{cases}g_{k}(x)-\left(a_{1}+\cdots+a_{k}\right) & \text { for } x \in\left[x_{k}, x_{k+1}\right] \\ g_{0}(x) & \text { for } x \in[0,1] \\ g_{k}(x)+\left(a_{0}+a_{-1}+\cdots+a_{k+1}\right) & \text { for } x \in\left[x_{k}, x_{k+1}\right]\end{cases}
$$

where $a_{k}=g_{k}(k)-g_{k-1}(k)$ for $k=0,-1,1,-2,2, \ldots$, and $h(x)=f(x)-$ $g(x)$ for $x \in \mathbb{R}$. Observe that the functions g, h have property (s_{1}) and $f=g+h$.

Acknowledgment I am grateful to the Referee for the trouble he has taken to correct my paper.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[2] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch., 24, No. 1 (1998-1999), 171-184.
[3] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Density topology, condition (s_{1}), condition (s_{2}), continuity.
 Mathematical Reviews subject classification: 26A05, 26A15
 Received by the editors October 21, 2001

