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CONVERGENCE OF KOENIGS’
SEQUENCES

Abstract

Let f be an interval map defined on a neighborhood of a fixed point
0 with f'(0) = X where 0 < |A| < 1 and let ¢n(z) = f™(z)/A\". Tt is
shown that if

. ||
flz) = A +O(ylog(y)'-~log”‘l(z,/)(log”(y))“s)

for some € > 0 and nonnegative integer p where y = |log (|z|)|, then the
Koenigs’ sequence {¢n} of f converges uniformly on a neighborhood of
0 to a limit ¢ with ¢(0) = 0 and ¢'(0) = 1. On the other hand, if
f(0) =0 and

flo) =z <A "~ Tog(e) log(— log(x)) -~ Tog” (— log@)))

for sufficiently small z > 0 where 0 < A < 1 and p is a nonnega-
tive integer, then the Koenigs’ sequence of f diverges on a small right-
neighborhood of 0. It is illustrated by examples that when £ = 0 in the
first equation for f given above, the Koenigs’ sequence of f can also
converge to zero on a neighborhood of 0 or converge to a limit ¢ that is
nondifferentiable at 0. It is also shown that when the Koenigs’ sequence
of a map f converges to a limit ¢ that is differentiable at 0, then ¢'(0)
is either 0 or 1.
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1 Introduction

Throughout this paper f™ will denote the n’th iterate of f where f° denotes
the identity map and the real numbers R will be regarded as the underlying
topological space. A neighborhood of 0 € R shall refer to a subinterval of R
having 0 as an interior point. We let 7(0) denote a neighborhood of 0 with
corresponding left-neighborhood defined by n~(0) = n(0) N {z € R|z < 0} and
right-neighborhood 7™ (0) similarly defined.

Suppose f: X — C is an analytic function where X is a neighborhood of
the origin in the complex plane, f(0) = 0, and 0 < |f/(0)| < 1. G. Koenigs
showed that the Schréder equation ¢ o f(z) = A ¢(z) where ) is a scalar, has
a unique local analytic solution ¢ given by

#(z) = lim ¢p(z) = lim 1"(2) )
n—oo n—oo A"
where A = f’(0), ¢(0) =0, and ¢’(0) = 1. The sequence {¢,} is the Koenigs’
sequence of f. If ¢ is an invertible solution of the Schroder equation, then ¢
conjugates f to its linearization A\z: ¢ o f o~ 1(z) = Az. We refer to [1], [2],
[3] for further background and references concerning Koenigs’ sequences and
the Schroder equation.
We consider the Koenigs’ sequence {¢,,} associated with an interval map
f defined on a neighborhood of a stable fixed point 0 with f/(0) = A where
0 < |A] < 1. If the Koenigs’ sequence of f converges on a neighborhood 7(0) of
0, then the limit ¢ satisfies the Schréder equation with f and A on n(0). It is
well-known that if f € C**¢ for some ¢ > 0, then Koenigs’ sequence converges
in C! to a continuously differentiable limit ¢ on a neighborhood of 0 satisfying
#(0) = 0 and ¢/(0) = 1. Furthermore, it is also well-known that f € C* is not
in itself sufficient to guarantee convergence of the Koenigs’ sequence of f. An
example in [2] included below presents such a situation.

Example 1.1. Let

flz) = {x ()‘_ﬁ) if 2 € (0, d]

where 0 < A < 1and 0 < a < e/A=1, Then f’ is strictly increasing and
continuous on [0, a] with f(0) = 0 and f/ (0) = A. The Koenigs’ sequence of
f diverges on (0, al. O

A result of Oscar Lanford III presents general conditions for convergence
of the Koenigs’ sequence of an interval map on a neighborhood of a stable
fixed point.
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Theorem 1.2 (0. E. Lanford III). Let f be defined on a neighborhood of a
fized point O with f'(0) = X where 0 < |A\| < 1. If

flx) =z + O(\x|1+5) for some e > 0,

then the Koenigs’ sequence of f converges uniformly on a neighborhood of 0
to a limit ¢ with ¢(0) =0 and ¢’'(0) =1

By extending Example 1.1 and generalizing Theorem 1.2 we obtain a gen-
eral convergence result for Koenigs’ sequences. The proof hinges on a result
of Oscar Lanford ITI. As an application, examples are obtained which have
Koenigs’ sequences that diverge, converge to 0 on a neighborhood of the fixed
point 0, and converge to a limit that is nondifferentiable at 0. In the final
section of this paper, a “0-1” law for Koenigs’ sequences is presented which
shows that when the Koenigs’ sequence of a map converges to a limit ¢ that
is differentiable at a fixed point 0, then ¢’(0) is either 0 or 1.

2 Koenigs’ Sequences

A well-known result (see for instance [4] ) will be useful in the sequel. For a
fixed nonnegative integer p the series

e 1
2 Tog (T e e M

converges while the series

. 1
z; klog (k) - - -logP~ ! (k) log? (k) @)

diverges, where kg is chosen to ensure that each term of the series is positive
and log? (k) denotes the p’th composition of log (k). If k is replaced by ak + 3
where a and (8 are positive numbers, then with the aid of the integral test
it can be seen that (1) remains convergent and (2) remains divergent, where
ko is replaced by k{ if necessary. In preparation for the main convergence
result for Koenigs’ sequences, we will now state and prove a result due to
Oscar Lanford III.

Lemma 2.1. Let f be defined on a neighborhood of a fixed point 0 with
£1(0) = X where 0 < |A| < 1. If {¢n(x)/x} converges uniformly to a function
¢(x)/x on a deleted neighborhood of 0, then {¢,(x)} converges uniformly on
a neighborhood of 0 to limit ¢ with ¢(0) =0 and ¢'(0) =1
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PROOF. For each nonnegative integer n we have ¢,,(0) = 0 and ¢,,(0) = 1, and
consequently lim,_.o ¢, (z)/x = 1. Since {¢,(x)/z} converges uniformly on a
deleted neighborhood of 0 to ¢(z)/x, we conclude that ¢(z)/z is a real-valued

function and
lim lim M = lim lim M =1

n—oo r—0 x r—0n—oo x

which completes the proof. O

b

We present a general convergence result for Koenigs’ sequences.

Theorem 2.2. Let f be defined on a neighborhood of a fixed point O with
11(0) = X where 0 < |A\| < 1 and let y = |log (|z|)|. If

||
flz)y=X x+0 ( —
ylog (y) -~ log" ™ (y)(log (y)) 1+

for some € > 0 and nonnegative integer p, then the Koenigs’ sequence of f
converges uniformly on a neighborhood of 0 to a limit ¢ with ¢(0) = 0 and
¢'(0) =1
PROOF. As a consequence of Lemma 2.1, it is enough to show that {¢,(z)/z}
converges uniformly on a deleted neighborhood of 0. Let y = |log (|=|)|, and
let & > 0 be chosen so that 0 < |A| £ < 1. Since f(0) = 0 and f'(0) = A, one
can choose a neighborhood 7(0) so that log™ (y) > 0 on 7(0) \ {0} for each
integer 0 < m < p, and such that the inequality

f(z)
x
holds on 7(0) \ {0}. Let n(0) and M > 0 be additionally chosen so that f

satisfies

A—6< <A+ (3)

f(z) MIA|

v ' = ylog(y) -+ log"~ (y) (log” (y)) '+
for some £ > 0. Letting u, = y(f*(z)) = |log (|f*(z)|)| we see that for each
z € n(0)\ {0},
f(f*(=)) ‘ M .
AfF(x) ug log (ug,) - - - log? ™ (ug ) (log? (us,) )1 +¢
Using the reorganization ¢, (z)/x = Z;S (f(f*(x))/Af*(x)), it follows from
(4) that

z €n(0)\ {0}

(4)

5 )
H(ur)(log” (ux)) 1+

e
<

1
1+ -
x o ( uy log (ug) - - - log?

’ Pn ()
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for each z € n(0) \ {0}. To show that {¢,(z)/z} converges uniformly on
n(0) \ {0}, it is enough to prove that the series

o0

3 : (5)

2 i log (wy) - - log” " (ur) (log” (ug) )+

converges uniformly on 7(0)\{0}. Since f satisfies (3) on 1(0)\{0}, it follows
that | f*(x)/z| < (|A| + 0)¥ for each z € n(0) \ {0} and therefore
up, = Jlog (If*(@)])| = kllog (|]A] +8) | + [log (z[)], = € n(0) \ {0}.

Let o = |log (|A| +9)|, let B = inf (Jlog (|z|)]) for € n(0) \ {0}, and let
v = ak + (. It follows that 8 > 0 and
1 < 1
uplog(up)- - log” ™ (ur) (log"(ur)) = ~ wylog(vi)- - log” ™ (vr) (log"(vy,)) +
for z € n(0) \ {0}. The above inequality and the discussion surrounding (1)

together with the Weierstrass M-test show that the series in (5) converges
uniformly on 7(0) \ {0}. O

Replacing the series in (1) with a more general series leads to the following
result, which we state without proof.

Theorem 2.3. Let f be defined on a neighborhood of a fized point 0 with
f1(0) = X where 0 < [N < 1. Let f(xz) = Az + zO(u(|log (|=])])) where p
is a continuous, positive and decreasing function defined on [kg,00) for some
positive integer ko. If Zzozko w(k) converges, then the Koenigs’ sequence of f
converges uniformly on a neighborhood of 0 to a limit ¢ with ¢(0) = 0 and
¢'(0) = 1.

Using Theorem 2.2, interval maps that aren’t C1*¢ for any € > 0 can be
formulated which have uniformly convergent Koenigs’ sequence with limit ¢
satisfying ¢(0) = 0 and ¢’(0) = 1. Theorem 2.2 and (2) lead to the following
construction of an interval map that has divergent Koenigs’ sequence.

Example 2.4. Let y = |log (x)|, 0 < A < 1, and let a > 0 be chosen so that
log™ (y) > 0 on (0,a) for each integer 0 < m < p. Let

1 .
o) = x<>\+m> ifz € (0,a)
0 if x = 0.

Then f’ is strictly increasing and continuous on [0,a) with f(0) = 0 and
J4.(0) = A. The Koenigs’ sequence of f diverges on a right-neighborhood of 0.
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PROOF. A simple computation indicates that f! (0) = X and that f’ is strictly
increasing and continuous on [0,a). Let 6 > 0 be chosen so that 0 < A+4§ < 1.
Choose 0 < b < a so that f satisfies (3) on (0,b]. The function h defined by

1 .
h(z) = yTog () log? (y) if x € (0,a)
0 ifx=0,

will be useful for showing that the Koenigs’ sequence of f diverges on (0, b].
Using the standard reorganization, we obtain

¢n(:z:)—:z:<1+h()\x)>...(1+w>.

To show that this sequence diverges, it is enough to show that the series
S ne h(f*(z)) diverges on (0,b]. Since h is positive and strictly increasing
on (0,b], it follows from the definition of f that f*(x) > zA¥ for any positive
integer k. Therefore

log (f¥(x)) > klog () +log (z) and klog(1/)) —log (z) > [log (f*(x))|.

To simplify the notation, let a = log (1/A) and 5 = —log (z). Then a and 3
are positive numbers with ak+3 > |log (f*(x))| and therefore log™ (ak + 3) >
log™ (Jlog (f*(x))|) for each positive integer k and each integer 0 < m < p.
We obtain

1

k T ’
h(f*(z)) > (ak + B) log (ak 4 B) - - -logP~ ! (ak + ) log? (ak + )

and thus, in view of the discussion surrounding (2), the series >, 2, h(f*(z))
diverges on (0, b]. O

3 A “0-1” Law for Koenigs’ Sequences

Consider an interval map f defined on a neighborhood of a fixed point 0
with f/(0) = A where 0 < |A\| < 1. In the previous section, a result of
Oscar Lanford IIT shows that if {¢,(z)/x} converges uniformly to ¢(x)/z on
a deleted neighborhood of 0, then ¢'(0) = 1. We will now show that if ¢ is
differentiable at 0, then ¢’(0) is either 0 or 1. The proof of this result requires
some preliminary work, beginning with a result which explains a connection
between existence of solutions of the Schroder equation and convergence of
Koenigs’ sequences.
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Lemma 3.1. Let f be defined on a neighborhood of a fixed point 0 with
f1(0) = X where 0 < |\ < 1. If the Koenigs’ sequence of f diverges at each
member of a sequence of points {x,} converging to 0, then there does not exist
a function ¢ with ¢(0) =0, ¢'(0) = ¢ # 0, and satisfying ¢(f(x)) = Aé(z) on
a neighborhood of 0.

PROOF. Suppose the Koenigs’ sequence of f diverges at each member of a
sequence of points {z,,} converging to 0. Assume to obtain a contradiction
that there exists a function ¢ such that ¢(0) = 0, ¢'(0) = ¢ # 0, and ¢(f(x)) =
Ap(z) on a neighborhood of 0. Let 1(0) be a neighborhood of 0 which is
contained in the basin of attraction of 0 such that f(z) # 0 when = # 0 and
d(f(z)) = Ap(x) for each = € n(0). Let m be chosen so large that x,, € n(0).
It follows that ¢(x,,) # 0 and one has the relationship

G @) X
f(zm) [ (zm)

The left side of (6) converges to ¢ # 0 while the right side either converges to
0 or diverges, which is a contradiction. O

(), n=0,1,2,.... (6)

Proposition 3.2. Let f be defined on a neighborhood of a fixed point O with
1/(0) =X where 0 < |A| < 1. If there exists a function ¢ with ¢'(0) = 1
satisfying the Schroder equation ¢(f(x)) = Aé(x) on a neighborhood of 0,
then ¢(0) = 0 and ¢ is the limit of the Koenigs’ sequence of f.

PROOF. One has to show that if there exists a function ¢ with ¢'(0) = 1
satisfying ¢(f(x)) = Ap(x) for each = in a neighborhood of 0, then ¢ is the
limit function of the Koenigs’ sequence of f on some neighborhood of 0. Since
#(f(0)) = #(0) = Ap(0), then ¢(0) = 0. Clearly f™(0) = 0 for each n > 0,
and therefore f™(0)/A™ 2 ¢(0) = 0. Following the argument of the previous
lemma, we can see from (6) that ¢(2)\"/f"(x) = 1 must hold for each nonzero
x in a neighborhood of 0. Hence, in this neighborhood ¢ must be the limit of
the Koenigs’ sequence of f. O

Next, we consider the case when the limit of the Koenigs’ sequence of an
interval map has vanishing derivative at a fixed point.

Proposition 3.3. Let f be defined on a neighborhood of a fixed point O with
F1(0) = X where 0 < |A| <1 and let f have convergent Koenigs’ sequence on a
neighborhood of 0 with limit ¢. If ¢'(0) = 0, then ¢ =0 on a neighborhood of
0.

PROOF. Let f have convergent Koenigs’ sequence on 7(0) with f nonzero on
7(0) \ {0}. The limit ¢ of the Koenigs’ sequence of f satisfies the Schroder
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equation with f and A on 7(0). Since the left side of (6) converges to 0 for
T = x € n(0), and |A"/f™(z)| converges to either a nonzero finite value or to
infinity, it follows that ¢ = 0 on 7(0). O

Corollary 3.4. Let f be defined on a neighborhood of a fixed point 0 with
f1(0) = X where 0 < |A| < 1. If there is a function ¢ with ¢'(0) = 0 satisfying
the Schréoder equation with f and A on a neighborhood of 0, then ¢ is not
the limit of the Koenigs’ sequence of f on any neighborhood of 0 unless the
Koenigs’ sequence of f converges to 0 on some neighborhood of 0.

A “0-1” law for Koenigs’ sequences is obtained as a consequence of Propo-
sition 3.2.

Theorem 3.5. Let f be defined on a neighborhood of a fixed point O with
f/(0) = X\ where 0 < |A| < 1 and let f have convergent Koenigs’ sequence on
a neighborhood of 0 with limit ¢. If ¢ is differentiable at 0, then ¢'(0) = 1
unless ¢ =0 on some neighborhood of 0.

PROOF. Assume to obtain a contradiction that ¢, which is the limit of the
Koenigs’ sequence of f and which is not identically 0 on any neighborhood
of 0, satisfies #(0) = 0 and ¢'(0) = ¢ where ¢ is different from 0 or 1. Let
Y(xz) = ¢(x)/c. Proposition 3.2 indicates that the Koenigs’ sequence of f
converges to ¥, which is a contradiction. O

We now present an example of a continuously differentiable map which has
Koenigs’ sequence converging to 0 on a neighborhood of a stable fixed point,
thus showing that the statement of Theorem 3.5 is the best possible.

Example 3.6. Let

@) = x()\—i—m) if 0 < |2 < e /A
0 ifx =0,

where 0 < A < 1. If 0 < a < e~/ is chosen so that f is strictly increasing
on (0,a) and f(z) > xzA/2 for x € (0,a), then f’ is continuous and positive on
[—a,a] with f’ strictly increasing on [—a,0] and strictly decreasing on [0, a].
The Koenigs’ sequence of f converges to 0 on [—a, al.

Proor. Differentiating f, it can be seen that f’ is continuous and positive on
[—a,a] with f’ strictly increasing on [—a,0] and strictly decreasing on [0, a].
Since f is an odd function and A > 0, it is sufficient to prove that the Koenigs’
sequence of f converges to 0 on [0,a]. Clearly ¢(0) = 0. By reorganization,
the Koenigs’ sequence of f for x € (0, a] can be written as

() :””(” /\lo;(w))<1+ Aloggﬂx))) (” M)
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In order to show that {¢,(x)} converges to 0 on (0,a], it is sufficient to show
that the sequence {1/¢,(x)} diverges to infinity on (0, a]. We have

5 - i(“ﬂg&m) (l‘ Alog(fn11<x>>+1>’

which diverges for = € (0,a] if the series Y_p2, 1/|log (f*(x)) + 1/A| diverges.
It follows from the definition of f and the choice of a > 0 that f(x) > z()\/2)
and therefore f*(z) > z(\/2)* for each x € (0,a]. Then

klog (%) —log (z) — % > —log(fk(m)) — % v x € (0,al,
and therefore

1
klog (%) —log (x) — % < —log (f*(x)) —

which proves the statement. O

» x € (0,a],

>|=

Lemma 2.1 indicates that in the previous example {¢,(z)/z} converges
pointwise, but not uniformly, on a deleted neighborhood of 0; yet, as we will
now show, {¢,(z)} converges uniformly on a neighborhood of 0.

Proposition 3.7. Let f be defined and continuous on a meighborhood of a
fized point 0 with f'(0) = X\ where 0 < |A| < 1 and let f have convergent
Koenigs’ sequence {¢,(x)} on a neighborhood of 0 with limit ¢. If ¢'(0) =0
and if {¢n(z)} is monotone on a neighborhood of 0, then {¢,(x)} converges
uniformly on a neighborhood of 0.

PROOF. Proposition 3.3 indicates that the limit function is continuous on
a neighborhood of 0. The sequence is monotone and each member of the se-
quence is continuous on a neighborhood of 0; hence, we conclude by a theorem
of Dini (see for example Theorem 7.13 of [5] ) that the convergence is uniform
on a neighborhood of 0. O

In fact, bimonotonicity of the Koenigs’ sequence of an interval map f is
sufficient. For the case when A > 0, Proposition 5.5 in [2] provides sufficient
conditions for monotonicity of the Koenigs’ sequence of an interval map f.
The preceding results yield the construction of a map which has convergent
Koenigs’ sequence with limit ¢ that is nondifferentiable at the fixed point 0.

Example 3.8. Let 0 < A < 1, 0 < a < e %/* and recursively define the
sequence {a, }5°, by letting ag = a, and a,, = an_1(A — 1/|log (a,—1)|?) for
each m > 1. Let b € (a1, ap) and recursively define the sequence {b,}52, by
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letting by = b, and b, = b,—1(A — 1/|log (b,—_1)|) for each n > 1, where b is
chosen so that b; # a; for any integers i, j > 0. Let ¢(z) be a differentiable
function defined on (0, a] such that e(a,,) = 1 and e(b,) = 0 for each n > 0,
and 0 < e(z) < 1 for each z € (0,a]. Let

1 .
toy - {7 O~ ) e 0.
0 if x =0.

Then f is differentiable on [0,a] with f(0) = 0 and f} (0) = X\. The Koenigs’
sequence of f converges on [0,a] to a limit ¢ with ¢(0) =0 and 0 < ¢(z) < x
for each z € (0,a], but ¢’ (0) doesn’t exist.

PROOF. It follows from Theorem 2.2 and (6) that

k(g
bn(f*(a)) = 6(f*(a)) = \fp(a) > 0 and thus (b(fk((a))) LYY (7)

The proof of Example 3.6 shows that
Gn(fH(B)) = ¢(f5(b) =0, k>0, (8)

From the definition of f and since f(z) < Az and 0 < e(x) <1 on (0, al], then
0 < ppt1(z) < ¢n(z) for each x € (0,a] and n > 0, and therefore the Koenigs’
sequence of f converges to a real-valued function ¢(x) with 0 < ¢(z)/z < 1
for each « € (0,a]. These facts together with (7) and (8) prove the assertion
that ¢’ (0) doesn’t exist. O
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