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CONVERGENCE OF KOENIGS’
SEQUENCES

Abstract

Let f be an interval map defined on a neighborhood of a fixed point
0 with f ′(0) = λ where 0 < |λ| < 1 and let φn(x) = fn(x)/λn. It is
shown that if

f(x) = λx + O
„

|x|
y log (y) · · · logp−1(y)(logp(y))1+ε

«
for some ε > 0 and nonnegative integer p where y = |log (|x|)|, then the
Koenigs’ sequence {φn} of f converges uniformly on a neighborhood of
0 to a limit φ with φ(0) = 0 and φ′(0) = 1. On the other hand, if
f(0) = 0 and

f(x) = x

„
λ − 1

log(x) log(− log(x)) · · · logp (− log(x))

«
for sufficiently small x > 0 where 0 < λ < 1 and p is a nonnega-
tive integer, then the Koenigs’ sequence of f diverges on a small right-
neighborhood of 0. It is illustrated by examples that when ε = 0 in the
first equation for f given above, the Koenigs’ sequence of f can also
converge to zero on a neighborhood of 0 or converge to a limit φ that is
nondifferentiable at 0. It is also shown that when the Koenigs’ sequence
of a map f converges to a limit φ that is differentiable at 0, then φ′(0)
is either 0 or 1.
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1 Introduction

Throughout this paper fn will denote the n’th iterate of f where f◦ denotes
the identity map and the real numbers R will be regarded as the underlying
topological space. A neighborhood of 0 ∈ R shall refer to a subinterval of R
having 0 as an interior point. We let η(0) denote a neighborhood of 0 with
corresponding left-neighborhood defined by η−(0) = η(0)∩{x ∈ R|x ≤ 0} and
right-neighborhood η+(0) similarly defined.

Suppose f : X → C is an analytic function where X is a neighborhood of
the origin in the complex plane, f(0) = 0, and 0 < |f ′(0)| < 1. G. Koenigs
showed that the Schröder equation φ ◦ f(z) = λφ(z) where λ is a scalar, has
a unique local analytic solution φ given by

φ(z) = lim
n→∞

φn(z) = lim
n→∞

fn(z)
λn

,

where λ = f ′(0), φ(0) = 0, and φ′(0) = 1. The sequence {φn} is the Koenigs’
sequence of f . If φ is an invertible solution of the Schröder equation, then φ
conjugates f to its linearization λz : φ ◦ f ◦ φ−1(z) = λz . We refer to [1], [2],
[3] for further background and references concerning Koenigs’ sequences and
the Schröder equation.

We consider the Koenigs’ sequence {φn} associated with an interval map
f defined on a neighborhood of a stable fixed point 0 with f ′(0) = λ where
0 < |λ| < 1. If the Koenigs’ sequence of f converges on a neighborhood η(0) of
0, then the limit φ satisfies the Schröder equation with f and λ on η(0). It is
well-known that if f ∈ C1+ε for some ε > 0, then Koenigs’ sequence converges
in C1 to a continuously differentiable limit φ on a neighborhood of 0 satisfying
φ(0) = 0 and φ′(0) = 1. Furthermore, it is also well-known that f ∈ C1 is not
in itself sufficient to guarantee convergence of the Koenigs’ sequence of f . An
example in [2] included below presents such a situation.

Example 1.1. Let

f(x) =

{
x

(
λ− 1

log (x)

)
if x ∈ (0, a]

0 if x = 0,

where 0 < λ < 1 and 0 < a < e1/(λ−1). Then f ′ is strictly increasing and
continuous on [0, a] with f(0) = 0 and f ′+(0) = λ. The Koenigs’ sequence of
f diverges on (0, a].

A result of Oscar Lanford III presents general conditions for convergence
of the Koenigs’ sequence of an interval map on a neighborhood of a stable
fixed point.



Convergence of Koenigs’ Sequences 113

Theorem 1.2 (0. E. Lanford III). Let f be defined on a neighborhood of a
fixed point 0 with f ′(0) = λ where 0 < |λ| < 1. If

f(x) = λx+O(|x|1+ε) for some ε > 0,

then the Koenigs’ sequence of f converges uniformly on a neighborhood of 0
to a limit φ with φ(0) = 0 and φ′(0) = 1.

By extending Example 1.1 and generalizing Theorem 1.2 we obtain a gen-
eral convergence result for Koenigs’ sequences. The proof hinges on a result
of Oscar Lanford III. As an application, examples are obtained which have
Koenigs’ sequences that diverge, converge to 0 on a neighborhood of the fixed
point 0, and converge to a limit that is nondifferentiable at 0. In the final
section of this paper, a “0-1” law for Koenigs’ sequences is presented which
shows that when the Koenigs’ sequence of a map converges to a limit φ that
is differentiable at a fixed point 0, then φ′(0) is either 0 or 1.

2 Koenigs’ Sequences

A well-known result ( see for instance [4] ) will be useful in the sequel. For a
fixed nonnegative integer p the series

∞∑
k=k0

1
k log (k) · · · logp−1(k)(logp (k))1+ε

, ε > 0 (1)

converges while the series

∞∑
k=k0

1
k log (k) · · · logp−1 (k) logp (k)

(2)

diverges, where k0 is chosen to ensure that each term of the series is positive
and logp (k) denotes the p’th composition of log (k). If k is replaced by αk+β
where α and β are positive numbers, then with the aid of the integral test
it can be seen that (1) remains convergent and (2) remains divergent, where
k0 is replaced by k′0 if necessary. In preparation for the main convergence
result for Koenigs’ sequences, we will now state and prove a result due to
Oscar Lanford III.

Lemma 2.1. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1. If {φn(x)/x} converges uniformly to a function
φ(x)/x on a deleted neighborhood of 0, then {φn(x)} converges uniformly on
a neighborhood of 0 to limit φ with φ(0) = 0 and φ′(0) = 1.
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Proof. For each nonnegative integer n we have φn(0) = 0 and φ′n(0) = 1, and
consequently limx→0 φn(x)/x = 1. Since {φn(x)/x} converges uniformly on a
deleted neighborhood of 0 to φ(x)/x, we conclude that φ(x)/x is a real-valued
function and

lim
n→∞

lim
x→0

φn(x)
x

= lim
x→0

lim
n→∞

φn(x)
x

= 1,

which completes the proof.

We present a general convergence result for Koenigs’ sequences.

Theorem 2.2. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1 and let y = |log (|x|)|. If

f(x) = λx+O
(

|x|
y log (y) · · · logp−1(y)(logp(y))1+ε

)
for some ε > 0 and nonnegative integer p, then the Koenigs’ sequence of f
converges uniformly on a neighborhood of 0 to a limit φ with φ(0) = 0 and
φ′(0) = 1.

Proof. As a consequence of Lemma 2.1, it is enough to show that {φn(x)/x}
converges uniformly on a deleted neighborhood of 0. Let y = |log (|x|)|, and
let δ > 0 be chosen so that 0 < |λ| ± δ < 1. Since f(0) = 0 and f ′(0) = λ, one
can choose a neighborhood η(0) so that logm (y) > 0 on η(0) \ {0} for each
integer 0 ≤ m ≤ p, and such that the inequality

λ− δ <
f(x)
x

< λ+ δ (3)

holds on η(0) \ {0}. Let η(0) and M > 0 be additionally chosen so that f
satisfies∣∣∣∣f(x)

x
− λ

∣∣∣∣ ≤ M |λ|
y log (y) · · · logp−1(y)(logp(y))1+ε

, x ∈ η(0) \ {0}

for some ε > 0. Letting uk = y(fk(x)) = |log (|fk(x)|)| we see that for each
x ∈ η(0) \ {0},∣∣∣∣f(fk(x))

λfk(x)

∣∣∣∣ ≤ 1 +
M

uk log (uk) · · · logp−1(uk)(logp(uk))1+ε
. (4)

Using the reorganization φn(x)/x =
∏n−1

k=0

(
f(fk(x))/λfk(x)

)
, it follows from

(4) that ∣∣∣∣φn(x)
x

∣∣∣∣ ≤ n−1∏
k=0

(
1 +

M

uk log (uk) · · · logp−1(uk)(logp (uk))1+ε

)
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for each x ∈ η(0) \ {0}. To show that {φn(x)/x} converges uniformly on
η(0) \ {0}, it is enough to prove that the series

∞∑
k=0

1
uk log (uk) · · · logp−1(uk)(logp(uk))1+ε

(5)

converges uniformly on η(0)\{0}. Since f satisfies (3) on η(0)\{0}, it follows
that |fk(x)/x| ≤ (|λ|+ δ)k for each x ∈ η(0) \ {0} and therefore

uk = |log (|fk(x)|)| ≥ k|log (|λ|+ δ ) |+ |log (|x|)|, x ∈ η(0) \ {0}.

Let α = |log (|λ|+ δ)|, let β = inf (|log (|x|)|) for x ∈ η(0) \ {0}, and let
vk = αk + β. It follows that β > 0 and

1
uklog(uk)· · ·logp−1(uk)(logp(uk))1+ε

≤ 1
vklog(vk)· · ·logp−1(vk)(logp(vk))1+ε

for x ∈ η(0) \ {0}. The above inequality and the discussion surrounding (1)
together with the Weierstrass M-test show that the series in (5) converges
uniformly on η(0) \ {0}.

Replacing the series in (1) with a more general series leads to the following
result, which we state without proof.

Theorem 2.3. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1. Let f(x) = λx + xO(µ(|log (|x|)|)) where µ
is a continuous, positive and decreasing function defined on [k0,∞) for some
positive integer k0. If

∑∞
k=k0

µ(k) converges, then the Koenigs’ sequence of f
converges uniformly on a neighborhood of 0 to a limit φ with φ(0) = 0 and
φ′(0) = 1.

Using Theorem 2.2, interval maps that aren’t C1+ε for any ε > 0 can be
formulated which have uniformly convergent Koenigs’ sequence with limit φ
satisfying φ(0) = 0 and φ′(0) = 1. Theorem 2.2 and (2) lead to the following
construction of an interval map that has divergent Koenigs’ sequence.

Example 2.4. Let y = |log (x)|, 0 < λ < 1, and let a > 0 be chosen so that
logm (y) > 0 on (0, a) for each integer 0 ≤ m ≤ p. Let

f(x) =

{
x

(
λ+ 1

y log (y)··· logp (y)

)
if x ∈ (0, a)

0 if x = 0.

Then f ′ is strictly increasing and continuous on [0, a) with f(0) = 0 and
f ′+(0) = λ. The Koenigs’ sequence of f diverges on a right-neighborhood of 0.



116 D. J. Dewsnap and P. Fischer

Proof. A simple computation indicates that f ′+(0) = λ and that f ′ is strictly
increasing and continuous on [0, a). Let δ > 0 be chosen so that 0 < λ±δ < 1.
Choose 0 < b < a so that f satisfies (3) on (0, b]. The function h defined by

h(x) =

{
1

y log (y)··· logp (y) if x ∈ (0, a)

0 if x = 0,

will be useful for showing that the Koenigs’ sequence of f diverges on (0, b].
Using the standard reorganization, we obtain

φn(x) = x

(
1 +

h(x)
λ

)
· · ·

(
1 +

h(fn−1(x))
λ

)
.

To show that this sequence diverges, it is enough to show that the series∑∞
k=1 h(f

k(x)) diverges on (0, b]. Since h is positive and strictly increasing
on (0, b], it follows from the definition of f that fk(x) > xλk for any positive
integer k. Therefore

log (fk(x)) > k log (λ) + log (x) and k log (1/λ)− log (x) > |log (fk(x))| .

To simplify the notation, let α = log (1/λ) and β = − log (x). Then α and β
are positive numbers with αk+β > |log (fk(x))| and therefore logm (αk + β) >
logm (|log (fk(x))|) for each positive integer k and each integer 0 ≤ m ≤ p.
We obtain

h(fk(x)) >
1

(αk + β) log (αk + β) · · · logp−1 (αk + β) logp (αk + β)
,

and thus, in view of the discussion surrounding (2), the series
∑∞

k=1 h(f
k(x))

diverges on (0, b].

3 A “0 -1” Law for Koenigs’ Sequences

Consider an interval map f defined on a neighborhood of a fixed point 0
with f ′(0) = λ where 0 < |λ| < 1. In the previous section, a result of
Oscar Lanford III shows that if {φn(x)/x} converges uniformly to φ(x)/x on
a deleted neighborhood of 0, then φ′(0) = 1. We will now show that if φ is
differentiable at 0, then φ′(0) is either 0 or 1. The proof of this result requires
some preliminary work, beginning with a result which explains a connection
between existence of solutions of the Schröder equation and convergence of
Koenigs’ sequences.
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Lemma 3.1. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1. If the Koenigs’ sequence of f diverges at each
member of a sequence of points {xm} converging to 0, then there does not exist
a function φ with φ(0) = 0, φ′(0) = c 6= 0, and satisfying φ(f(x)) = λφ(x) on
a neighborhood of 0.

Proof. Suppose the Koenigs’ sequence of f diverges at each member of a
sequence of points {xm} converging to 0. Assume to obtain a contradiction
that there exists a function φ such that φ(0) = 0, φ′(0) = c 6= 0, and φ(f(x)) =
λφ(x) on a neighborhood of 0. Let η(0) be a neighborhood of 0 which is
contained in the basin of attraction of 0 such that f(x) 6= 0 when x 6= 0 and
φ(f(x)) = λφ(x) for each x ∈ η(0). Let m be chosen so large that xm ∈ η(0).
It follows that φ(xm) 6= 0 and one has the relationship

φ(fn(xm))
fn(xm)

=
λn

fn(xm)
φ(xm), n = 0, 1, 2, . . . . (6)

The left side of (6) converges to c 6= 0 while the right side either converges to
0 or diverges, which is a contradiction.

Proposition 3.2. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1. If there exists a function φ with φ′(0) = 1
satisfying the Schröder equation φ(f(x)) = λφ(x) on a neighborhood of 0,
then φ(0) = 0 and φ is the limit of the Koenigs’ sequence of f .

Proof. One has to show that if there exists a function φ with φ′(0) = 1
satisfying φ(f(x)) = λφ(x) for each x in a neighborhood of 0, then φ is the
limit function of the Koenigs’ sequence of f on some neighborhood of 0. Since
φ(f(0)) = φ(0) = λφ(0), then φ(0) = 0. Clearly fn(0) = 0 for each n ≥ 0,
and therefore fn(0)/λn n→ φ(0) = 0. Following the argument of the previous
lemma, we can see from (6) that φ(x)λn/fn(x) n→ 1 must hold for each nonzero
x in a neighborhood of 0. Hence, in this neighborhood φ must be the limit of
the Koenigs’ sequence of f .

Next, we consider the case when the limit of the Koenigs’ sequence of an
interval map has vanishing derivative at a fixed point.

Proposition 3.3. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1 and let f have convergent Koenigs’ sequence on a
neighborhood of 0 with limit φ. If φ′(0) = 0, then φ = 0 on a neighborhood of
0.

Proof. Let f have convergent Koenigs’ sequence on η(0) with f nonzero on
η(0) \ {0}. The limit φ of the Koenigs’ sequence of f satisfies the Schröder
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equation with f and λ on η(0). Since the left side of (6) converges to 0 for
xm = x ∈ η(0), and |λn/fn(x)| converges to either a nonzero finite value or to
infinity, it follows that φ = 0 on η(0).

Corollary 3.4. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1. If there is a function φ with φ′(0) = 0 satisfying
the Schröder equation with f and λ on a neighborhood of 0, then φ is not
the limit of the Koenigs’ sequence of f on any neighborhood of 0 unless the
Koenigs’ sequence of f converges to 0 on some neighborhood of 0.

A “ 0 - 1” law for Koenigs’ sequences is obtained as a consequence of Propo-
sition 3.2.

Theorem 3.5. Let f be defined on a neighborhood of a fixed point 0 with
f ′(0) = λ where 0 < |λ| < 1 and let f have convergent Koenigs’ sequence on
a neighborhood of 0 with limit φ. If φ is differentiable at 0, then φ′(0) = 1
unless φ = 0 on some neighborhood of 0.

Proof. Assume to obtain a contradiction that φ, which is the limit of the
Koenigs’ sequence of f and which is not identically 0 on any neighborhood
of 0, satisfies φ(0) = 0 and φ′(0) = c where c is different from 0 or 1. Let
ψ(x) = φ(x)/c. Proposition 3.2 indicates that the Koenigs’ sequence of f
converges to ψ, which is a contradiction.

We now present an example of a continuously differentiable map which has
Koenigs’ sequence converging to 0 on a neighborhood of a stable fixed point,
thus showing that the statement of Theorem 3.5 is the best possible.

Example 3.6. Let

f(x) =

{
x

(
λ+ 1

log(|x|)

)
if 0 < |x| < e−1/λ

0 if x = 0,

where 0 < λ < 1. If 0 < a < e−1/λ is chosen so that f is strictly increasing
on (0, a) and f(x) > xλ/2 for x ∈ (0, a), then f ′ is continuous and positive on
[−a, a] with f ′ strictly increasing on [−a, 0] and strictly decreasing on [0, a].
The Koenigs’ sequence of f converges to 0 on [−a, a].
Proof. Differentiating f , it can be seen that f ′ is continuous and positive on
[−a, a] with f ′ strictly increasing on [−a, 0] and strictly decreasing on [0, a].
Since f is an odd function and λ > 0, it is sufficient to prove that the Koenigs’
sequence of f converges to 0 on [0, a]. Clearly φ(0) = 0. By reorganization,
the Koenigs’ sequence of f for x ∈ (0, a] can be written as

φn(x) = x

(
1 +

1
λ log (x)

)(
1 +

1
λ log (f(x))

)
. . .

(
1 +

1
λ log (fn−1(x))

)
.
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In order to show that {φn(x)} converges to 0 on (0, a], it is sufficient to show
that the sequence {1/φn(x)} diverges to infinity on (0, a]. We have

1
φn(x)

=
1
x

(
1− 1

λ log (x) + 1

)
. . .

(
1− 1

λ log (fn−1(x)) + 1

)
,

which diverges for x ∈ (0, a] if the series
∑∞

k=0 1/| log (fk(x)) + 1/λ | diverges.
It follows from the definition of f and the choice of a > 0 that f(x) > x(λ/2)
and therefore fk(x) > x(λ/2)k for each x ∈ (0, a]. Then

k log
(

2
λ

)
− log (x)− 1

λ > − log (fk(x))− 1
λ

, x ∈ (0, a],

and therefore

1
k log

(
2
λ

)
− log (x)− 1

λ

<
1

− log (fk(x))− 1
λ

, x ∈ (0, a],

which proves the statement.

Lemma 2.1 indicates that in the previous example {φn(x)/x} converges
pointwise, but not uniformly, on a deleted neighborhood of 0; yet, as we will
now show, {φn(x)} converges uniformly on a neighborhood of 0.

Proposition 3.7. Let f be defined and continuous on a neighborhood of a
fixed point 0 with f ′(0) = λ where 0 < |λ| < 1 and let f have convergent
Koenigs’ sequence {φn(x)} on a neighborhood of 0 with limit φ. If φ′(0) = 0
and if {φn(x)} is monotone on a neighborhood of 0, then {φn(x)} converges
uniformly on a neighborhood of 0.

Proof. Proposition 3.3 indicates that the limit function is continuous on
a neighborhood of 0. The sequence is monotone and each member of the se-
quence is continuous on a neighborhood of 0; hence, we conclude by a theorem
of Dini ( see for example Theorem 7.13 of [5] ) that the convergence is uniform
on a neighborhood of 0.

In fact, bimonotonicity of the Koenigs’ sequence of an interval map f is
sufficient. For the case when λ > 0, Proposition 5.5 in [2] provides sufficient
conditions for monotonicity of the Koenigs’ sequence of an interval map f .
The preceding results yield the construction of a map which has convergent
Koenigs’ sequence with limit φ that is nondifferentiable at the fixed point 0.

Example 3.8. Let 0 < λ < 1, 0 < a < e−1/λ and recursively define the
sequence {an}∞n=0 by letting a0 = a, and an = an−1(λ − 1/|log (an−1)|2) for
each n ≥ 1. Let b ∈ (a1, a0) and recursively define the sequence {bn}∞n=0 by
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letting b0 = b, and bn = bn−1(λ − 1/|log (bn−1)|) for each n ≥ 1, where b is
chosen so that bi 6= aj for any integers i, j ≥ 0. Let ε(x) be a differentiable
function defined on (0, a] such that ε(an) = 1 and ε(bn) = 0 for each n ≥ 0,
and 0 ≤ ε(x) ≤ 1 for each x ∈ (0, a]. Let

f(x) =

{
x

(
λ− 1

| log (x)|1+ε(x)

)
if x ∈ (0, a]

0 if x = 0.

Then f is differentiable on [0, a] with f(0) = 0 and f ′+(0) = λ. The Koenigs’
sequence of f converges on [0, a] to a limit φ with φ(0) = 0 and 0 ≤ φ(x) < x
for each x ∈ (0, a], but φ′+(0) doesn’t exist.

Proof. It follows from Theorem 2.2 and (6) that

φn(fk(a)) n→ φ(fk(a)) = λkφ(a) > 0 and thus
φ(fk(a))
fk(a)

k→ 1 . (7)

The proof of Example 3.6 shows that

φn(fk(b)) n→ φ(fk(b)) = 0, k ≥ 0 . (8)

From the definition of f and since f(x) < λx and 0 ≤ ε(x) ≤ 1 on (0, a], then
0 < φn+1(x) < φn(x) for each x ∈ (0, a] and n ≥ 0, and therefore the Koenigs’
sequence of f converges to a real-valued function φ(x) with 0 ≤ φ(x)/x < 1
for each x ∈ (0, a]. These facts together with (7) and (8) prove the assertion
that φ′+(0) doesn’t exist.
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