Pawel Szeptycki, Department of Mathematics, University of Kansas, Lawrence, KS 66045. email: szeptyck@math.ukans.edu

PERCENTILES

Abstract

It is shown that, similarly to the median, percentiles of a random variable can be characterized as minima of suitable functionals.

In our previous work, [1], we studied a functional $\xi_{F}(X)$ which assigns to a random variable X the real variable t at which the expected value $E(F(X-$ $t)$) attains its minimum. Function F was assumed to be convex and even. For specific choices of $F, \xi_{F}(X)$ corresponds to quantities of significance in statistics - if $F(x)=|x|$, then $\xi_{F}(X)$ is the median of X, if $F(x)=|x|^{k}$, $k>1$, then $\xi_{F}(X)$ is the k-th moment of X. In the present note we consider a special case of F which is not even. For this choice of $F=f_{s}$ the resulting functional is a percentile of X.

The r-percentile of a real valued random variable (r.v.) X is defined as any number (or set of numbers) m such that $P(X \leq m) \geq r$ and $P(X \geq m) \geq 1-r$. We denote this percentile by $m_{r}(X)$. For $r=\frac{1}{2}$ this is the median of X. Note that $m_{r}(X)$ may be multivalued.

For a real number $s>0$ let $F_{s}(x)=x$ for $x \geq 0$ and $F_{s}(x)=-s x$ for $x \leq 0$. In particular, $F_{1}(x)=|x|$.

The following theorem is an extension of a well known result about the median.

Theorem 1. For every r.v. X with finite expected value $E(|X|)$ the function $E\left(F_{s}(X-t)\right)$ of the real variable t attains its minimum at $t \in m_{r}(X)$ where $r=\frac{1}{s+1}$.

Proof. Replacing X by $X-m, m \in m_{r}(X)$ we may assume that $0 \in m_{r}(X)$. For $t>0$ we want to show that $E\left(F_{s}(X \pm t)\right)-E\left(F_{s}(X)\right)=E\left(F_{s}(X \pm t)-\right.$ $\left.F_{s}(X)\right)=E\left(\Delta_{ \pm t} F_{s}(X)\right) \geq 0$. Observe that $\Delta_{-t} F_{s}(x)$ equals respectively to st if $x<0$, to $s(t-x)-x \geq-t$ if $0 \leq x \leq t$, and to $-t$ if $x \geq t$. To translate

[^0]this into the desired conclusion, denote by $\mathbf{1}_{S}$ the indicator function of an event S, and write
$$
\Delta_{-t} F_{s}(X)=s t \mathbf{1}_{\{X \leq 0\}}+\mathbf{1}_{\{0<X \leq t\}}(s(t-X)-X)+\mathbf{1}_{\{X>t\}}(-t) \geq s t \mathbf{1}_{\{X \leq 0\}}-t \mathbf{1}_{\{X>0\}}
$$
and
$$
E\left(\Delta_{-t} F_{s}(X)\right) \geq t\left(\frac{s}{s+1}-\frac{s}{s+1}\right)=0
$$

The inequality $E\left(\Delta_{t} F_{s}(X)\right) \geq 0$ is obtained in the same manner by writing $\mathbf{1}=\mathbf{1}_{\{X \leq-t\}}+\mathbf{1}_{\{-t<X<0\}}+\mathbf{1}_{\{X \geq 0\}}$ giving rise to the inequality

$$
E\left(\Delta_{t} F_{s}(X)\right) \geq-\operatorname{st} P(X<0)+t P(X \geq 0) \geq 0
$$

Similarly as in the case of the median, see [1], there is the following converse to Theorem 1.

Theorem 2. If f is a function such that for every two-valued r.v. $X, E(f(X-$ $t)$) attains its minimum at every $t \in m_{r}(X)$, where $r=\frac{1}{s+1}$, then f is of the form $f(x)=\alpha F_{s}(x)+\beta$, where α, β are constants, $\alpha \geq 0$.

Proof. We carry the argument under the assumption that f is continuous and then similarly as in [1] observe that this assumption is a consequence of the hypothesis of the theorem.

Replacing $f(x)$ by $f(x)-f(0)$ we may assume that $f(0)=0$. Let X be a two-valued r.v., $P(X=a)=p, P(X=b)=q=1-p$, and $a<b$. It is easily checked that the r-percentile of $X, m_{r}(X)=a$ if $p>r, m_{r}(X)=b$ if $p<r$ and $m_{r}(X)=[a, b]$ when $p=r$ (in this case m_{r} is multivalued). For this choice of p, that is, $p=\frac{1}{s+1}$ and $q=\frac{s}{s+1}$, the hypothesis on f can now be stated as follows:

For all real $t, a, b, \tau, a<b, 0 \leq \tau \leq 1$, we have

$$
\begin{gathered}
\left.\frac{1}{s+1} f(a-t)+\frac{s}{s+1} f(b-t) \geq \frac{1}{1+s} f(a-(\tau a+(1-\tau) b))+\frac{s}{s+1} f(b-(\tau a+(1-\tau) b))\right) \\
=\frac{1}{s+1} f((1-\tau)(a-b))+\frac{s}{s+1} f(\tau(b-a))
\end{gathered}
$$

With $t=a$ and $\tau=0$ we get $\frac{s}{s+1} f(b-a) \geq \frac{1}{s+1} f(a-b)$, i.e., $f(-x) \leq s f(x)$ for $x \geq 0$. Similarly, with $t=b$ and $\tau=1$ we get the reverse inequality, to conclude that $f(-x)=s f(x)$ for $x \geq 0$. Now we complete the argument by showing that for $x>0 f(x)=\alpha x$. To this effect observe that $f(a-t)+s f(b-t)$ is minimized by every $t=\tau a+(1-\tau) b, 0 \leq \tau \leq 1$. It follows that as a function
of $\tau \in[0,1], f((1-\tau)(a-b))+s f(\tau(b-a))=s(f((1-\tau)(b-a))+s f(\tau(b-a))$ is constant and equals $s f(b-a)$. Letting $t=0$ and $a=b$ we get $f(b) \geq f(0)=0$ for all b. Also, letting $\tau(b-a)=x,(1-\tau)(b-a)=y$ this implies that $f(x+y)=f(x)+f(y)$ for $0 \leq x, y \leq b-a$. Equivalently, $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ which using continuity implies that f is positive homogenous (note that this is the only place where the continuity of f is used). Letting $b-a \rightarrow \infty$ yields the conclusion.

We now finish the proof by showing that the hypotheses of the theorem imply that f is continuous at any $x>0$. This is done in a similar way as in the proof of Lemma 4 in [1], where instead of being additive f is subadditive. First we notice that for $0 \leq x \leq M, M>0$, we have $0 \leq f(x)=f(M)+f(M-x) \leq$ $f(M)$ and f is bounded on any finite interval in $[0, \infty)$. Let $x>0$. Then both $\lim \sup _{y \rightarrow x} f(y)=L$ and $\liminf y \rightarrow x f(y)=l$ exist at x and are finite. For $\epsilon>0$ we write $f(x)=f\left(\frac{x+\epsilon+x-\epsilon}{2}\right)=\frac{f(x+\epsilon)+f(x-\epsilon)}{2}$ implying by taking the $\limsup _{\epsilon \rightarrow 0}$ that $f(x) \leq L$. With $x_{n} \rightarrow x$ such that $f\left(x_{n}\right) \rightarrow l$ we have $l \leq \liminf f\left(\frac{x+x_{n}}{2}\right)=\frac{f(x)+l}{2}$, hence $f(x) \geq l$. Next we choose $x_{n} \rightarrow x$, $y_{n} \rightarrow x$ such that $f\left(\frac{x_{n}+y_{n}}{2}\right) \rightarrow L$ and $f\left(x_{n}\right) \rightarrow l$ to conclude that $L \leq \frac{l+L}{2}$ so that $L \leq l$. Hence $l=f(x)=L$ and f is continuous at x . The proof is complete.

References

[1] Jan Mycielski, Pawel Szeptycki, Minimizing moments, Real Anal. Exchange, this issue.

[^0]: Key Words: convexity, moments
 Mathematical Reviews subject classification: 26A51, 60A99
 Received by the editors September 23, 2002
 Communicated by: Krzysztof Chris Ciesielski

