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SOME PECULIARITIES OF THE
HENSTOCK AND KURZWEIL INTEGRALS
OF BANACH SPACE-VALUED FUNCTIONS

Abstract

Some examples, due to G. Birkhoff, are used to explore the dif-
ferences and peculiarities of the Henstock and Kurzweil integrals in
abstract spaces. We also include a proof, due to C. S. Hönig, of the
fact that the Bochner-Lebesgue integral is equivalent to the variational
Henstock-McShane integral.

1 Introduction

In 1988, Professor Stefan Schwabik came to Brazil on a visit to Professor
Chaim Samuel Hönig and Professor Luciano Barbanti. On that occasion,
Professor Schwabik gave a series of lectures on generalized ODE’s which moti-
vated Professor Hönig to deal with the Henstock-Kurzweil integration theory
for some years. In 1993, in a course on the subject at the University of São
Paulo, São Paulo, Brazil, Professor Hönig presented some examples borrowed
from [1] in order to clarify the differences and peculiarities of the integrals
defined by Henstock ([12]) and by Kurzweil ([19]) for Banach space-valued
functions. The notes on such examples are contained here. We also include a
proof, due to Hönig ([17]), of the fact that the Bochner-Lebesgue integral is
equivalent to the variational Henstock-McShane integral.

2 Basic Definitions and Terminology

Let [a, b] be a compact interval of the real line R. A division of [a, b] is any finite
set of closed non-overlapping intervals [ti−1, ti] ⊂ [a, b] such that ∪i [ti−1, ti] =
[a, b]. We write (ti) ∈ D[a,b] in this case. When (ti) ∈ D[a,b] and ξi ∈ [ti−1, ti]
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for every i, then (ξi, ti) is a tagged division of [a, b]. By TD[a,b] we mean the
set of all tagged divisions of [a, b].

A gauge of [a, b] is any function δ : [a, b] → ]0,∞[. Given a gauge δ of [a, b],
we say (ξi, ti) ∈ TD[a,b] is δ-fine, if [ti−1, ti] ⊂ {t ∈ [a, b] ; |t− ξi| < δ (ξi)} for
every i.

In what follows X denotes a Banach space.
A function f : [a, b] → X is integrable in the sense of Kurzweil or Kurzweil

integrable (we write f ∈ K ([a, b] , X)) and I = (K)
∫ b

a
f = (K)

∫ b

a
f(t)dt ∈ X

is its integral if given ε > 0, there is a gauge δ of [a, b] such that for every
δ-fine (ξi, ti) ∈ TD[a,b],∥∥∥∥∥(K)

∫ b

a

f −
∑

i

f (ξi) (ti − ti−1)

∥∥∥∥∥ < ε.

As it should be expected, the Kurzweil integral is linear and additive over
non-overlapping intervals. The basic literature on this subject includes [11],
[14], [20], [21], [22], [23], [26].

We use the notation “ ˜ ” to indicate the indefinite integral of a function
f ∈ K ([a, b] , X), that is, f̃ : [a, b] → X is given by f̃ (t) = (K)

∫ t

a
f (s) ds for

all t ∈ [a, b]. We have f̃ ∈ C([a, b], X) (see [6] for instance), where C([a, b], X)
is the Banach space of all continuous functions f : [a, b] → X equipped with
the usual supremum norm, ‖f‖∞.

A function f : [a, b] → X is integrable in the sense of Henstock or Henstock
integrable or even variationally Henstock integrable (we write f ∈ H ([a, b] , X))
if given ε > 0, there is a function F : [a, b] → X and a gauge δ of [a, b] such
that for every δ-fine (ξi, ti) ∈ TD[a,b],∑

i

‖F (ti)− F (ti−1)− f (ξi) (ti − ti−1)‖ < ε.

In this case, we write (H)
∫ t

a
f = F (t)− F (a), t ∈ [a, b].

Let R([a, b], X) be the space of abstract Riemann integrable functions f :
[a, b] → X with integral

∫ b

a
f . It is immediate that

H([a, b], X) ⊂ K([a, b], X) and R([a, b], X) ⊂ K([a, b], X),

and the integrals coincide when they exist.
Two functions g, f ∈ K ([a, b] , X) are called equivalent, whenever g̃(t) =

f̃(t) for all t ∈ [a, b]. When this is the case, K ([a, b] , X)A denotes the space of
all equivalence classes of functions of K ([a, b] , X) endowed with the Alexiewicz
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norm

f ∈ K ([a, b] , X) 7→ ‖f‖A =
∥∥∥f̃∥∥∥

∞
= sup

t∈[a,b]

∥∥∥∥(K)
∫ t

a

f (s) ds

∥∥∥∥ .

In an analogous way, H ([a, b] , X)A denotes the space of all equivalence
classes of functions of H ([a, b] , X) endowed with the Alexiewicz norm.

If g, f ∈ H([a, b], X) are equivalent, then g = f almost everywhere in the
sense of the Lebesgue measure ([7]). On the other hand, we may have f ∈
R([a, b], X)\H([a, b], X) (i.e., f belongs to R([a, b], X) but not to H([a, b], X))
such that f̃ = 0 but f(t) 6= 0 for almost every t ∈ [a, b] (see Example 2.1).
Thus g, f ∈ R([a, b], X) ⊂ K([a, b], X) and f equivalent to g do not imply
g = f almost everywhere.

Let I ⊂ R be an arbitrary set and let E be a normed space. A family
(xi)i∈I of elements of E is summable with sum x ∈ E (we write

∑
i∈I xi = x)

if for every ε > 0, there is a finite subset Fε ⊂ I such that for every finite
subset F ⊂ I with F ⊃ Fε,

‖x−
∑
i∈F

xi‖ < ε.

Let l2(I) be the set of all families (xi)i∈I , xi ∈ R, such that the family(
|xi|2

)
i∈I

is summable. We write

l2(I) =

{
x = (xi)i∈I , xi ∈ R;

∑
i∈I

|xi|2 < ∞

}
.

The expression
〈x, y〉 =

∑
i∈I

xiyi

defines an inner product and l2(I) equipped with the norm

‖x‖2 =

(∑
i∈I

|xi|2
)1/2

is a Hilbert space. Moreover by the Basis Theorem {ei; i ∈ I}, where

ei(j) =
{

1, j = i
0, j 6= i

,

is a complete orthonormal system for l2(I). We refer to the relation

‖x‖2
2 =

∑
i∈I

|〈xi, ei〉|2 =
∑
i∈I

|xi|2, ∀x ∈ l2(I),
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as the Bessel equality.

Example 2.1. Let [a, b] be non-degenerate and X = l2([a, b]) be equipped
with the norm

x 7→ ‖x‖2 =

 ∑
i∈[a,b]

|xi|2
1/2

.

Consider a function f : [a, b] → X given by f(t) = et, t ∈ [a, b]. Given
ε > 0, there exists δ > 0, with δ

1
2 <

ε

(b− a)
1
2
, such that for every

(
δ
2

)
-fine

(ξj , tj) ∈ TD[a,b],∥∥∥∥∥∥
∑

j

f(ξj)(tj − tj−1)− 0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

j

eξj
(tj − tj−1)

∥∥∥∥∥∥
2

=

∑
j

|tj − tj−1|2
 1

2

<

< δ
1
2

∑
j

(tj − tj−1)

 1
2

< ε

where we applied the Bessel equality. Thus f ∈ R([a, b], X) ⊂ K([a, b], X) and
f̃ = 0, since

∫ t

a
f(s)ds = 0 for every t ∈ [a, b].

If f ∈ H([a, b], X), then (H)
∫ t

a
f = 0 for every t ∈ [a, b], since H([a, b], X) ⊂

K([a, b], X) and (H)
∫ t

a
f = (K)

∫ t

a
f =

∫ t

a
f = 0. But∑

i

‖f(ξi)(ti − ti−1)− 0‖2 = b− a

for every (ξi, ti) ∈ TD[a,b]. Hence f 6∈ H([a, b], X).

Let L1([a, b], X) be the space of Bochner-Lebesgue integrable functions
f : [a, b] → X with finite absolute Lebesgue integral, that is, (L)

∫ b

a
‖f‖ < ∞.

We denote by (L)
∫ b

a
f the Bochner-Lebesgue integral of f ∈ L1([a, b], X) (and

also the Lebesgue integral of f ∈ L1([a, b], R)). The inclusion

L1([a, b], X) ⊂ H([a, b], X)

always holds (see [4], [17] or the Appendix).
In particular,

R([a, b], R) ⊂ L1([a, b], R) ⊂ H([a, b], R) = K([a, b], R)
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(see [23], for instance, for a proof of the equality). On the other hand, when X
is a general Banach space it is possible to find a function f : [a, b] → X which is
abstract Riemann integrable but not Bochner-Lebesgue integrable. Both Ex-
amples 2.1 and 3.1 in the sequel show functions f ∈ R([a, b], X) \H([a, b], X)
(i.e., f belongs to R([a, b], X) but not to H([a, b], X)). In particular, such func-
tions belong to R([a, b], X)\L1([a, b], X) and also to K([a, b], X)\H([a, b], X).

When real-valued functions are considered only, the Lebesgue integral is
equivalent to a modified version of the Kurzweil integral. The idea of slightly
modifying Kurzweil’s definition is due to E. J. McShane ([24], [25]). In-
stead of taking δ-fine tagged divisions, McShane considered what we call δ-
fine semi-tagged divisions (ξi, ti) of [a, b], that is (ti) ∈ D[a,b] and [ti−1, ti] ⊂
{t ∈ [a, b] ; |t− ξi| < δ (ξi)} for every i. In this case, we write (ξi, ti) ∈ STD[a,b].
Notice that in the definition of semi-tagged divisions, it is not required that
ξi ∈ [ti−1, ti] for any i. In this manner, McShane’s modification of the Kurzweil
integral gives an elegant characterization of the Lebesgue integral through Rie-
mann sums (see the Appendix).

Let us denote by KMS([a, b], R) the space of real-valued Kurzweil-McShane
integrable functions f : [a, b] → R, that is, f ∈ KMS([a, b], R) is inte-
grable in the sense of Kurzweil with the modification of McShane. Formally,
f ∈ KMS([a, b], R) if and only if there exists I ∈ R such that for every ε > 0,
there is a gauge δ of [a, b] such that∣∣∣∣∣I −∑

i

f (ξi) (ti − ti−1)

∣∣∣∣∣ < ε.

whenever (ξi, ti) ∈ STD[a,b] is δ-fine. This definition can be extended to
Banach space-valued functions.

We have

R([a, b], R) ⊂ L1([a, b], R) = KMS([a, b], R) ⊂ K([a, b], R) = H([a, b], R).

Furthermore, K([a, b], R) \ L1([a, b], R) 6= ∅. The next classical example ex-
hibits an f ∈ K([a, b], R) \ L1([a, b], R).

Example 2.2. Let F (t) = t2 sin(t−2) for t ∈ ]0, 1] and F (0) = 0. Let f = d
dtF .

Because f is Riemann improper integrable, it follows that f ∈ K([a, b], R) =
H([a, b], R), since the Kurzweil and the Henstock integrals contain their im-
proper integrals (see [21], Cauchy Extension). However f 6∈ L1([a, b], R) (see
[28]).

Example 2.2 says K([a, b], R) = H([a, b], R) is not an absolute integrable
space. More generally, H([a, b], X) and hence K([a, b], X) are non-absolute
integrable spaces (see Example 3.4 and Lemma 4.3 in the Appendix).
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The generalization of the Riemannian characterization of the Banach space-
valued Lebesgue-type integral, namely the Bochner-Lebesgue integral, is not
straightforward. In fact, Example 3.1 shows that the modification of McShane
applied to the abstract Kurzweil integral can give a more general space than
that of Bochner-Lebesgue. On the other hand, if McShane’s idea is used to
modify the variational definition of Henstock, then we obtain a Riemannian
definition of the Bochner-Lebesgue integral (see [4], [17] or the Appendix).
Thus, if HMS([a, b], X) denotes the space of Henstock-McShane integrable
functions f : [a, b] → X, that is, f ∈ HMS([a, b], X) is integrable in the sense
of Henstock with the modification of McShane, then

HMS([a, b], X) = L1([a, b], X).

In addition,  HMS([a, b], X) ⊂ H([a, b], X),
KMS([a, b], X) ⊂ K([a, b], X) and
RMS([a, b], X) ⊂ R([a, b], X),

where KMS([a, b], X) and RMS([a, b], X) denote, respectively, the spaces of
Kurzweil-McShane and Riemann-McShane integrable functions f : [a, b] → X.

For other interesting results, the reader may want to consult [5].

3 Birkhoff’s Examples

The first example of this section shows a Banach space-valued function which
is integrable in the sense of Riemann-McShane, but not integrable in the vari-
ational sense of Henstock (and neither in the Bochner-Lebesgue sense).

Example 3.1. Let G([a, b], X) be the Banach space, endowed with the usual
supremum norm, ‖·‖∞, of all regulated functions f : [a, b] → X (i.e., f has
discontinuities of the first kind only - see [16], p. 16). Let X = G−([0, 1], R),
where

G−([0, 1], R) = {f ∈ G([0, 1], R); f is left continuous} ,

and consider the function

f : t ∈ [0, 1] 7→ f(t) = 1[t,1] ∈ X,

where 1A denotes the characteristic function of a set A ⊂ [0, 1]. Since f
is a function of weak bounded variation (we write f ∈ BW ([0, 1], X) - see
[16], p. 23) and φ(t) = t, t ∈ [0, 1], is an element of C([0, 1], R), it follows
from [16], Theorem 4.6, p. 24, that the abstract Riemann-Stieltjes integral,
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∫ 1

0
df φ, exists. Moreover, the Riemann-Stieltjes integral,

∫ 1

0
f dφ, exists and

the integration by parts formula∫ 1

0

f(t)dt =
∫ 1

0

f dφ = f(t) · t|10 −
∫ 1

0

df φ

holds (see [16], Theorem 1.3, p. 18). Hence f ∈ R([0, 1], X) ⊂ K([0, 1], X).
The indefinite integral f̃(t) =

∫ t

0
f(r)dr, t ∈ [0, 1], of f is given by f̃(t)(s) =

t ∧ s = inf {t, s}, since(∫ t

0

f(r)dr

)
(s) =

(∫ t

0

1[r,1]dr

)
(s) =

∫ t

0

1[r,1](s)dr =
∫ t∧s

0

dr = t ∧ s.

Hence, f̃ is absolutely continuous. However f̃ is nowhere differentiable as we
will show later. Then the Lebesgue Theorem implies f 6∈ L1([0, 1], X). More
generally, f 6∈ H([0, 1], X) by the Fundamental Theorem of Calculus for the
Henstock integral (see [7]). Or we can prove directly that f 6∈ H([0, 1], X),
since ∥∥∥∥∥f(ξi)(ti − ti−1)−

∫ ti

ti−1

f

∥∥∥∥∥ ≥ 1
2

(ti − ti−1),

for every (ξi, ti) ∈ TD[0,1]. Thus f ∈ R([0, 1], X) \ H([0, 1], X) and, in
particular, f ∈ R([0, 1], X) \ L1([0, 1], X). Moreover, we assert that f ∈
RMS([0, 1], X), that is, f is Riemann-McShane integrable. It is enough to
show that for every ε > 0, there exists δ > 0 such that for every δ-fine
(ξi, ti) ∈ STD[0,1], ∥∥∥∥∥f̃(1)−

∑
i

f(ξi)(ti − ti−1)

∥∥∥∥∥ < ε.

Given ε > 0, let 0 < δ < ε and suppose (ξi, ti) ∈ STD[0,1] is δ-fine. If ξi ≤ s

and ti < ξi + δ, then ti < s + δ which implies
∑
ξi≤s

(ti − ti−1) < s + δ and then

s−
∑
ξi≤s

(ti − ti−1) < δ. (1)

If ξj > s and tj−1 > ξj − δ, then tj−1 > s− δ and therefore
∑
ξj>s

(tj − tj−1) <

1 − (s − δ) =
∑

i

(ti − ti−1) − s + δ. Then 0 ≤
∑
ξi≤s

(ti − ti−1) + δ − s which
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implies
s−

∑
ξi≤s

(ti − ti−1) < δ. (2)

By (1) and (2), we have∥∥∥∥∥f̃(1)−
∑

i

f(ξi)(ti − ti−1)

∥∥∥∥∥
∞

= sup
0≤s≤1

∣∣∣∣∣f̃(1)(s)−
∑

i

f(ξi)(s)(ti − ti−1)

∣∣∣∣∣ =
= sup

0≤s≤1

∣∣∣∣∣∣s−
∑
ξi≤s

(ti − ti−1)

∣∣∣∣∣∣ < δ < ε

and the assertion follows.
Now we give a proof of the fact that f̃ is neither strongly nor weakly

differentiable. We begin by showing that f̃ is not strongly differentiable in the
sense that the limit

lim
ε1→0+, ε2→0+

[
f̃(t + ε2)− f̃(t)

ε2
− f̃(t + ε1)− f̃(t)

ε1

]
, t ∈ [0, 1[,

does not exist. In an analogous way, it can be proved that the limit

lim
ε1→0−, ε2→0−

[
f̃(t)− f̃(t + ε2)

ε2
− f̃(t)− f̃(t + ε1)

ε1

]
, t ∈ ]0, 1],

does not exist.
For 0 < ε1 < ε2, we have∥∥∥∥∥ f̃(t + ε2)− f̃(t)

ε2
− f̃(t + ε1)− f̃(t)

ε1

∥∥∥∥∥ =

= sup
0≤s≤1

∣∣∣∣ (t + ε2) ∧ s− t ∧ s

ε2
− (t + ε1) ∧ s− t ∧ s

ε1

∣∣∣∣
≥
∣∣∣∣ (t + ε2) ∧ s− t ∧ s

ε2
− (t + ε1) ∧ s− t ∧ s

ε1

∣∣∣∣
s=t+ε1

=
∣∣∣∣ t + ε1 − t

ε2
− t + ε1 − t

ε1

∣∣∣∣ = ∣∣∣∣ε1

ε2
− 1
∣∣∣∣→ 1,

as we suppose, without loss of generality, that ε1 goes faster than ε2 to zero.
Let us show that f̃ is not weakly differentiable in the following sense: if Y

is a Banach space and Y ′ is its topological dual, then g : [a, b] → Y is weakly
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right differentiable at a point t ∈ [a, b[ with weak right derivative denoted by
dσ+g(t)

dt
whenever for every y′ ∈ Y ′,

lim
ε→0+

〈
g(t + ε)− g(t)

ε
, y′
〉

=
〈

dσ+g(t)
dt

, y′
〉

.

Analogously we define the weak left derivative of g at a point t ∈ ]a, b].
Let BV0([0, 1], R) be the Banach space of all functions h : [0, 1] → R

of bounded variation which vanish at t = 0 equipped with the norm given
by the variation of h, V (h). Then BV0([0, 1], R) = G−([0, 1], R)′ (see [16],
Theorem 4.12, p. 26). Besides, for every α ∈ BV0([0, 1], R), the Riemann-
Stieltjes integral,

∫ 1

0
f̃ dα, exists (see [16]), since f̃ is continuous. Given α ∈

BV0([0, 1], R), we will show that

lim
ε→0+

〈
1
ε

[
f̃(t + ε)− f̃(t)

]
, α

〉
= lim

ε→0+

∫ 1

0

1
ε

[
f̃(t + ε)− f̃(t)

]
(s)dα(s)

= [α(1)− α(t+)] ,

where α(t+) denotes the right lateral limit of α at t ∈ [0, 1[. We have

lim
ε→0+

∫ 1

0

1
ε

[
f̃(t + ε)− f̃(t)

]
(s)dα(s) = lim

ε→0+

∫ 1

0

1
ε

[(t + ε) ∧ s− t ∧ s] dα(s)

= lim
ε→0+

∫ t+ε

t

1
ε
(s− t)dα(s) + lim

ε→0+

∫ 1

t+ε

1
ε

[(t + ε)− t] dα(s)

= lim
ε→0+

∫ t+ε

t

1
ε
(s− t)dα(s) + α(1)− α(t+).

But

lim
ε→0+

∫ t+ε

t

1
ε
(s− t)dα(s) = lim

ε→0+

1
ε

[∫ t+ε

t

s dα(s)−
∫ t+ε

t

t dα(s)
]

= lim
ε→0+

1
ε

[
sα(s)|t+ε

t −
∫ t+ε

t

α(s)ds− tα(t + ε) + tα(t)
]

= α(t+)− lim
ε→0+

1
ε

∫ t+ε

t

α(s)ds = 0,
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where we applied the integration by parts formula to obtain the second equal-
ity. Hence,

lim
ε→0+

∫ 1

0

1
ε

[
f̃(t + ε)− f̃(t)

]
(s)dα(s) = α(1)− α(t+).

In a similar way, it can be proved that〈
1
ε

[
f̃(t)− f̃(t− ε)

]
, α

〉
−→ α(t−)− α(1),

as ε → 0+, where α(t−) denotes the left lateral limit of α at t ∈ ]0, 1]. There-
fore, we showed that f̃ is not weakly differentiable.

As we mentioned before, the inclusion L1([a, b], X) ⊂ KMS([a, b], X) al-
ways holds. When X = G−([0, 1], R), for instance, one can find a function f ∈
KMS([a, b], X)\L1([a, b], X) (see Example 3.1). In general, KMS([a, b], X)\
L1([a, b], X) 6= ∅ for X of infinite dimension as we show next.

Proposition 3.1 (Hönig). If X is an infinite dimensional Banach space, then
there exists f ∈ KMS([a, b], X) \ L1([a, b], X).

Proof. Let dim X denote the dimension of X. If dim X = ∞, then the
Theorem of Dvoretsky-Rogers implies there exists a sequence (xn)n∈N in X
which is summable but not absolutely summable. Thus, if we define a function
f : [1,∞] → X by f(t) = xn, whenever n ≤ t < n + 1, then (KMS)

∫ b

a
f =∑

n xn ∈ X if the integral exists (here, (KMS)
∫

denotes the KMS inte-
gral). On the other hand, f 6∈ L1([a, b], X), since (L)

∫ b

a
‖f‖ = ‖x1‖+ ‖x2‖+

‖x3‖ . . . = ∞.
The next example exhibits a function which is integrable in the sense of

Kurzweil but not in Henstock’s sense. It also shows that the Monotone Con-
vergence Theorem, which holds for monotone ordered normed space-valued
Kurzweil integrals ([8]), may not be valid for Henstock integrals.

Example 3.2. Consider the space

Z = l2 (N× N) =

z = (zij)i,j∈N , zij ∈ R;
∞∑

i,j=1

|zij |2 < ∞


equipped with the norm

z 7→ ‖z‖2 =

 ∞∑
i,j=1

|zij |2
1/2
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and the function
f : [0, 1] → Z

given by f =
∑∞

i=1 fi, where fi(t) = 2ieij whenever
j

2i
≤ t <

j

2i
+

1
22i

,

j = 0, 1, 2, . . . , 2i − 1, and fi(t) = 0 otherwise. By eij we mean the doubly
infinite set of orthonormal vectors of Z. We have

f1(t) =

 2e10; 0 ≤ t < 1/4,
2e11; 1/2 ≤ t < 3/4,
0; 1/4 ≤ t < 1/2 or 3/4 ≤ t ≤ 1.

Hence, ∫ 1

0

f1 =
∫ 1

4

0

2e10 +
∫ 3

4

1
2

2e11 =
1
2

e10 +
1
2

e11

and therefore,

‖f1‖A = sup
0≤t≤1

∥∥∥∥∫ t

0

f1

∥∥∥∥
2

=
∥∥∥∥∫ 1

0

f1

∥∥∥∥
2

=
∥∥∥∥1

2
e10 +

1
2

e11

∥∥∥∥
2

=

[(
1
2

)2

+
(

1
2

)2
] 1

2

=
(

1
2

) 1
2

.

Also,

f2(t) =


4e20; 0 ≤ t < 1/16,
4e21; 1/4 ≤ t < 5/16,
4e22; 1/2 ≤ t < 9/16,
4e23; 3/4 ≤ t < 13/16,
0; otherwise.

Then, ∫ 1

0

f2 =
1
4

e20 +
1
4

e21 +
1
4

e22 +
1
4

e23

and

‖f1 + f2‖A = sup
0≤t≤1

∥∥∥∥∫ t

0

(f1 + f2)
∥∥∥∥

2

=
∥∥∥∥∫ 1

0

f1 +
∫ 1

0

f2

∥∥∥∥
2

=

=
∥∥∥∥1

2
e10 +

1
2

e11 +
1
4

e20 +
1
4

e21 +
1
4

e22 +
1
4

e23

∥∥∥∥
2

=
[
1
2

+
1
4

] 1
2

.

By induction, it can be proved that

‖f1 + f2 + . . . + fn‖A =
[
1
2

+
1
22

+ . . . +
1
2n

] 1
2

< 1.
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for every n ∈ N. Thus, if we define gn =
∑n

i=1 fi, for every n ∈ N, then
the sequence (‖gn‖A)n∈N is bounded. Besides, gn(t) ≤ gn+1(t) ≤ f(t) for all
n ∈ N and t ∈ [0, 1]. Hence the Monotone Convergence Theorem (see [8])
implies f ∈ K([0, 1], Z) and

∫ 1

0
gn → (K)

∫ 1

0
f as n →∞.

Since the Monotone Convergence Theorem also holds for the Kurzweil-
McShane integral with obvious adaptations, it follows that f ∈ KMS([0, 1], Z).

On the other hand, although gn ∈ H ([0, 1] , Z) for every n ∈ N, Birkhoff
asserted in [1] that the indefinite integral f̃ of f is nowhere differentiable and,
therefore, f /∈ H ([0, 1] , Z) by the Fundamental Theorem of Calculus for the
Henstock integral (see [7]).

It is known that the space of all equivalence classes of real-valued Kurzweil
(or Henstock) integrable functions, equipped with the Alexiewicz norm, is
non-complete ([2]). More generally, K([a, b], X)A and H([a, b], X)A are non-
complete spaces. However such spaces are ultrabornological ([9]) and, there-
fore, they have good functional analytic properties (see [18] for instance). The
next example shows a Cauchy sequence, in the Alexiewicz norm, of Henstock
integrable functions which is not convergent.

Example 3.3. Consider functions

fn : [0, 1] → l2(N× N), n ∈ N

defined by fn =
∑n

i=1 gi, where gi(t) = eij whenever
j − 1

2i
≤ t <

j

2i
, j =

1, 2, . . . , 2i, and gi(t) = 0 otherwise. We have

g1(t) =

 e11; 0 ≤ t < 1/2,
e12; 1/2 ≤ t < 1,
0; t = 1.

Hence,

‖g1‖A = sup
0≤t≤1

∥∥∥∥∫ t

0

g1

∥∥∥∥
2

=
∥∥∥∥∫ 1

0

g1

∥∥∥∥
2

=
∥∥∥∥1

2
e11 +

1
2

e12

∥∥∥∥
2

=

[(
1
2

)2

+
(

1
2

)2
] 1

2

=
(

1
2

) 1
2

.

Also,

g2(t) =


e21; 0 ≤ t < 1/4,
e22; 1/4 ≤ t < 1/2,
e23; 1/2 ≤ t < 3/4,
e24; 3/4 ≤ t < 1,
0; t = 1.
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Then,∫ 1

0

g2 =
∫ 1

4

0

e21 +
∫ 1

2

1
4

e22 +
∫ 3

4

1
2

e23 +
∫ 1

3
4

e24 =
1
4

(e21 + e22 + e23 + e24) .

and therefore

‖g2‖A = sup
0≤t≤1

∥∥∥∥∫ t

0

g2

∥∥∥∥
2

=
∥∥∥∥∫ 1

0

g2

∥∥∥∥
2

=
(

4
1
42

) 1
2

=
(

1
4

) 1
2

.

By induction, one can show that

‖gi‖A =

∥∥∥∥∥∥
2i∑

j=1

∫ j

2i

j−1
2i

eij

∥∥∥∥∥∥
2

=

[
2i

(
1
2i

)2
] 1

2

=
1
2

i
2
,

for every i ∈ N. Then

‖fn − fm‖A =

∥∥∥∥∥
m∑

i=n+1

gi

∥∥∥∥∥
A

≤
m∑

i=n+1

1
2

i
2

which goes to zero for sufficiently large n, m ∈ N, with n > m. Thus (fn)n∈N
is a ‖ · ‖A-Cauchy sequence.

On the other hand,

‖fn(t)‖2 = ‖g1(t) + g2(t) + . . . + gn(t)‖2 =
√

n,

for every t ∈ [0, 1]. Hence there is no function f(t) ∈ l2(N×N), t ∈ [0, 1], such
that limn→∞ ‖fn − f‖A = 0.

The next example presents a Banach space-valued function which is both
Henstock and Kurzweil-McShane integrable but is not absolutely integrable.

Example 3.4. Let f : [0, 1] → l2(N) be given by f(t) =
2i

i
ei, whenever

1
2i
≤ t <

1
2i−1

, i = 1, 2, . . . . Then

∫ 1
2i−1

1
2i

2i

i
ei dt =

1
i

ei

which is summable in l2(N). Since the Henstock integral contains its im-
proper integrals (and the same applies to the Kurzweil integral), we have
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f ∈ H([0, 1], l2(N)). However, f 6∈ L1([0, 1], l2(N)) because the sequence(
1
i ei

)
i∈N is not summable in L1([0, 1], l2(N)). By the Monotone Convergence

Theorem for the Kurzweil-McShane integral (which follows the ideas of [8] with
obvious adaptations), f ∈ KMS([0, 1], l2(N)). But f 6∈ RMS([0, 1], l2(N)),
since f is not bounded.

The example that follows shows a function of the unit square to l2(N×N)
not satisfying the Fubini Theorem.

Example 3.5. Consider the function f : [0, 1] × [0, 1] → l2(N × N) given by
f(s, t) = 2igi(t) on 2−i ≤ s < 2−i+1, i = 1, 2, 3, . . ., and f(s, t) = 0 where not

otherwise defined, where gi(t) = eij whenever
j − 1

2i
≤ t <

j

2i
, j = 1, 2, . . . , 2i,

and gi(t) = 0 otherwise. Then, f(s, t) is integrable over [0, 1]× [0, 1] with

∫ ∫
[0,1]×[0,1]

f(s, t)ds dt =
∞∑

i=1

2i∑
j=1

1
2i

eij .

The integral with respect to s on a single line t = constant exists, but the
integral with respect to t on a single line s = constant does not because∫ 1

0

f(s, t)dt = 2e1j1 + 4e2j2 + 8e3j3 + . . .

for some j1, j2, j3, . . ..

The next example presents a function f : [0, 1] → l2(N) such that ‖f(t)‖2 =
1 for every t ∈ [0, 1], but ‖f‖A < ε for a given ε > 0.

Example 3.6. Let ε > 0, n ∈ N and f : [0, 1] → l2(N) be defined by f(t) = en,
whenever k−1

n2 ≤ t < k
n2 , k = 1, 2, . . . , n2, and f(t) = 0 otherwise. Hence

‖f‖A =
∥∥∥∥ (K)

∫ 1

0

f(t)dt

∥∥∥∥
2

=

∥∥∥∥∥∥
n2∑

k=1

∫ k
n2

k−1
n2

en dt

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n2∑

k=1

1
n2

ek

∥∥∥∥∥∥
2

=
(

1
n4

· n2

) 1
2

=
1
n

.

Then taking n > 1
ε , we have ‖f‖A < ε.

Example 3.7 in the sequel is a Birkhoff-type example due to Hönig. It
gives a sequence of functions fn : [0, 1] → l2(N) such that supn ‖fn‖A < ∞
but ‖fn(t)‖2 ↑ ∞, for every t ∈ [a, b].
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Example 3.7. Let 1D denote the characteristic function of a set D ⊂ [0, 1].
We define a sequence of functions fn : [0, 1] → l2(N), n ∈ N, as follows:
fn =

∑n
i=1 gi, where

gi =
2i−1∑
j=1

1[ j−1
2i−1 , j

2i−1 ]e2i−1+j−1, i = 1, 2, . . . .

Then supn→∞ ‖fn‖A < ∞ and, for every t ∈ [a, b] and every n ∈ N, ‖fn(t)‖2 <
‖fn+1(t)‖2 and ‖fn(t)‖2 →∞.

4 Appendix

The integrals introduced by J. Kurzweil ([19]) and independently by R. Hen-
stock ([12]) in the late fifties give a Riemannian definition of the Denjoy-Perron
integral which encompasses the Newton, Riemann and Lebesgue integrals. In
1969, McShane showed that a small change in this definition leads to the
Lebesgue integral.

The Kurzweil and Henstock integrals can be immediately extended to Ba-
nach space-valued functions. The extension of the McShane integral made by
Gordon, [10], gives a more general integral than that of Bochner-Lebesgue.
But the variational Henstock-McShane definition for functions defined on a
compact interval of the real line and taking values in a Banach space gives
precisely the Bochner-Lebesgue integral. This fact was proved by Congxin
and Xiabo ([4]) and independently by Hönig ([17]). Later, Di Piazza and
Musal generalized this result ([5]).

Because reference [17] is unavailable to the majority of the mathematicians,
we include its results in this Appendix. Unlike the proof of Congxin and
Xiabo ([4]), which is based on the Frechet differentiability of the Bochner-
Lebesgue integral, the idea of Hönig ([17]) to proof the equivalence of the
Bochner-Lebesgue and the Henstock-McShane integrals uses the fact that the
indefinite integral of Henstock-McShane and absolutely Henstock integrable
functions are of bounded variation. In this manner, the proof in ([17]) seems
to be more simple.

We say that a function f : [a, b] → X is Bochner-Lebesgue integrable (we
write f ∈ L1([a, b], X), if there exists a sequence (fn)n∈N of simple functions,
fn : [a, b] → X, n ∈ N, such that

(i) fn → f almost everywhere (i.e., limn→∞ ‖fn(t)− f(t)‖ = 0 for almost
every t ∈ [a, b]), and

(ii) limn,m→∞ (L)
∫ b

a
‖fn(t)− fm(t)‖ dt = 0.
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We define (L)
∫ b

a
f(t)dt = limn→∞ (L)

∫ b

a
fn(t)dt and ‖f‖1 = (L)

∫ b

a
‖f(t)‖ dt.

The space of all equivalence classes of Bochner-Lebesgue integrable functions,
equipped with the norm ‖f‖1, is complete.

We say that f : [a, b] → X is measurable, whenever there is a sequence of
simple functions fn : [a, b] → X such that fn → f almost everywhere. When
this is the case,

f ∈ L1([a, b], X) if and only if (L)
∫ b

a

‖f(t)‖ dt < ∞ (3)

(see [29]).
Our next goal is to show that the integrals of Bochner-Lebesgue and

Henstock-McShane coincide, that is, L1([a, b], X) = HMS([a, b], X). In this
manner, we will prove that the inclusions L1([a, b], X) ⊂ HMS([a, b], X) and
HMS([a, b], X) ⊂ L1([a, b], X) hold and we will show that the integrals coin-
cide when defined.

We let (KMS)
∫ b

a
f denote the integral of a function f ∈ KMS([a, b], X).

Lemma 4.1. Given a sequence (fn)n∈N in KMS([a, b], X) and a function
f : [a, b] → X, suppose there exists limn→∞ (L)

∫ b

a
‖fn(t)− f(t)‖ dt = 0. Then

f ∈ KMS([a, b], X) and

lim
n→∞

(KMS)
∫ b

a

fn(t)dt = (KMS)
∫ b

a

f(t)dt.

Proof. Given ε > 0, take nε such that for m,n ≥ nε,

(KMS)
∫ b

a

‖fn(t)− fm(t)‖ dt < ε

and take a gauge δ of [a, b] such that for every δ-fine (ξi, ti) ∈ STD[a,b],∑
i

‖fnε
(ξi)− f(ξi)‖ (ti − ti−1) < ε. (4)

The limit I = limn→∞ (KMS)
∫ b

a
fn(t)dt exists, since for m,n ≥ nε,∥∥∥∥∥(KMS)

∫ b

a

fn(t)dt− (KMS)
∫ b

a

fm(t)dt

∥∥∥∥∥ ≤
≤ (KMS)

∫ b

a

‖fn(t)− f(t)‖ dt + (KMS)
∫ b

a

‖f(t)− fm(t)‖ dt ≤ 2ε.
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Hence, if In = (KMS)
∫ b

a
fn(t)dt, then∥∥∥∥∥∑

i

f(ξi)(ti − ti−1)− I

∥∥∥∥∥ ≤
∥∥∥∥∥∑

i

[f(ξi)− fnε
(ξi)] (ti − ti−1)

∥∥∥∥∥+

+

∥∥∥∥∥∑
i

fnε
(ξi)(ti − ti−1)− Inε

∥∥∥∥∥+ ‖Inε
− I‖ ≤

≤
∑

i

‖f(ξi)− fnε
(ξi)‖ (ti− ti−1)+

∥∥∥∥∥∑
i

fnε
(ξi)(ti − ti−1)− Inε

∥∥∥∥∥+‖Inε
− I‖ .

(5)
Then the first summand in (5) is smaller than ε by (4), the third summand
is smaller than ε by the definition of nε and, if we refine the gauge δ we may
suppose, by the definition of Inε , that the second summand is smaller than ε
and the proof is complete.

We show next that Lemma 4.1 remains valid if we replace KMS by HMS.

Lemma 4.2. Consider a sequence (fn)n∈N in HMS([a, b], X) and let f :
[a, b] → X. If limn (L)

∫ b

a
‖fn(t)− f(t)‖ dt = 0, then f ∈ HMS([a, b], X) and

lim
n

(KMS)
∫ b

a

fn(t)dt = (KMS)
∫ b

a

f(t)dt.

Proof. By Lemma 4.1, f ∈ KMS([a, b], X) and we have the convergence of
the integrals. It remains to prove that f ∈ HMS([a, b], X), that is, for every
ε > 0 there exists a gauge δ of [a, b] such that for every δ-fine (ξi, ti) ∈ STD[a,b],

∑
i

∥∥∥∥∥(KMS)
∫ ti

ti−1

f(t)dt− f(ξi)(ti − ti−1)

∥∥∥∥∥ ≤ ε.

But, ∑
i

∥∥∥∥∥(KMS)
∫ ti

ti−1

f(t)dt− f(ξi)(ti − ti−1)

∥∥∥∥∥ ≤
≤
∑

i

∥∥∥∥∥(KMS)
∫ ti

ti−1

[f(t)− fn(t)] dt

∥∥∥∥∥+

+
∑

i

∥∥∥∥∥(KMS)
∫ ti

ti−1

fn(t)dt− fn(ξi)(ti − ti−1)

∥∥∥∥∥+
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+
∑

i

‖fn(ξi)− f(ξi)‖ (ti − ti−1). (6)

Because
∫ b

a
‖fn(t)− f(t)‖ dt → 0, there exists nε > 0 such that the first

summand in (6) is smaller than ε/3 for all n ≥ nε. Choose an n ≥ nε.
Then we can take δ such that the third summand is smaller than ε/3, since it
approaches

∫ b

a
‖fn(t)− f(t)‖ dt. Also, because fn ∈ HMS([a, b], X), we may

refine δ so that the second summand becomes smaller than ε/3 and we finished
the proof.

Lemma 4.3. L1([a, b], X) ⊂ KMS([a, b], X).

For a proof of Lemma 4.3, see Theorem 16 in [10] for instance.
Now we are able to prove the inclusion

Theorem 4.1. L1([a, b], X) ⊂ HMS([a, b], X).

Proof. By Lemma 4.3, L1([a, b], X) ⊂ KMS([a, b], X). Then, following the
steps of the proof of Lemma 4.3 and using Lemma 4.2, we obtain the result.

Let BV ([a, b], X) denote the space of all functions f : [a, b] → X of
bounded variation. We show next that the indefinite integral of any func-
tion of HMS([a, b], X) belongs to BV ([a, b], X).

Lemma 4.4. If f ∈ HMS([a, b], X), then f̃ ∈ BV ([a, b], X).

Proof. It is enough to show that every ξ ∈ [a, b] has a neighborhood where
f̃ is of bounded variation. By hypothesis, given ε > 0, there exists a gauge δ
of [a, b] such that for every δ-fine semi-tagged division d = (ξi, ti) of [a, b],∑

i

∥∥∥f̃(ti)− f̃(ti−1)− f(ξi)(ti − ti−1)
∥∥∥ < ε. (7)

Since g = f almost everywhere implies g ∈ HMS([a, b], X) and g̃ = f̃ (this
fact follows by straightforward adaptation of [11], Theorem 9.10 for Banach
space-valued functions; see also [7]), we may change f on a set of measure
zero and its indefinite integral does not change. We suppose, therefore, that
f(ξ) = 0.

Let s0 < s1 < . . . < sm be any division of [ξ − δ(ξ), ξ + δ(ξ)]. If we take
ξj = ξ for j = 1, 2, . . . ,m, then (ξj , sj) is a δ-fine semi-tagged division of
[ξ − δ(ξ), ξ + δ(ξ)] and therefore from (7) and fact that f(ξj) = f(ξ) = 0 for
all j, we have

m∑
j=1

∥∥∥f̃(sj)− f̃(sj−1)
∥∥∥ ≤ ε

and the proof is complete.
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Lemma 4.5. Suppose f ∈ H([a, b], X). The following properties are equiva-
lent:

(i) f is absolutely integrable;

(ii) f̃ ∈ BV ([a, b], X).

Proof. (i) ⇒ (ii). Suppose f is absolutely integrable. Since the variation of
f̃ , V (f̃), is given by

V (f̃) = sup

{∑
i

∥∥∥f̃(ti)− f̃(ti−1)
∥∥∥ ; (ti) ∈ D[a,b]

}
we have ∑

i

∥∥∥f̃(ti)− f̃(ti−1)
∥∥∥ =

∑
i

∥∥∥∥∥(K)
∫ ti

ti−1

f(t)dt

∥∥∥∥∥ ≤
≤
∑

i

(K)
∫ ti

ti−1

‖f(t)‖ dt = (K)
∫ b

a

‖f(t)‖ dt.

(ii) ⇒ (i). Suppose f̃ ∈ BV ([a, b], X). We will prove that the integral
(K)

∫ b

a
‖f(t)‖ dt exists and (K)

∫ b

a
‖f(t)‖ dt = V (f̃). Given ε > 0, we need

to find a gauge δ of [a, b] such that∣∣∣∣∣∑
i

‖f(ξi)‖ (ti − ti−1)− V (f̃)

∣∣∣∣∣ < ε,

whenever (ξi, ti) ∈ TD[a,b] is δ-fine. But∣∣∣∣∣∑
i

‖f(ξi)‖ (ti − ti−1)− V (f̃)

∣∣∣∣∣ ≤

≤
∑

i

∣∣∣∣∣‖f(ξi)‖ (ti − ti−1)−

∥∥∥∥∥(K)
∫ ti

ti−1

f(t)dt

∥∥∥∥∥
∣∣∣∣∣+

+

∣∣∣∣∣∑
i

∥∥∥∥∥(K)
∫ ti

ti−1

f(t)dt

∥∥∥∥∥− V (f̃)

∣∣∣∣∣
≤
∑

i

∥∥∥∥∥f(ξi)(ti − ti−1)− (K)
∫ ti

ti−1

f(t)dt

∥∥∥∥∥+

∣∣∣∣∣∑
i

∥∥∥f̃(ti)− f̃(ti−1)
∥∥∥− V (f̃)

∣∣∣∣∣ .
(8)
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By the definition of V (f̃), we may take (ti) ∈ D[a,b] such that the last summand
in (8) is smaller than ε/2. Because f ∈ H([a, b], X), we may take a gauge δ
such that for every δ-fine (ξi, ti) ∈ TD[a,b], the first summand in (8) is also
smaller than ε/2 (and we may suppose that the points chosen for the second
summand are the points of the δ-fine tagged division (ξi, ti)).

The next result follows from the fact that HMS([a, b], X) ⊂ H([a, b], X)
and Lemmas 4.4 and 4.5.

Corollary 4.1. All functions of HMS([a, b], X) are absolutely integrable.

Lemma 4.6. All functions of H([a, b], X) are measurable.

For a proof of Lemma 4.6, see Theorem 9 in [3] for instance.
Finally, we can prove the inclusion

Theorem 4.2. HMS([a, b], X) ⊂ L1([a, b], X).

Proof. The result follows from the facts that all functions of H([a, b], X)
and hence of HMS([a, b], X) are measurable (Lemma 4.6) and all functions of
HMS([a, b], X) are absolutely integrable (Corollary 4.1) (see [29]).
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