Yves Bolle, Rue du Midi 12, 1196 Gland, Switzerland.
email: yves.bolle@providentia.ch

DARBOUX-INTEGRABILITY AND UNIFORM CONVERGENCE

Abstract

In 1992, Šikić gives a characterization of Riemann-integrable functions as uniform limits of simple functions. The aim of this article is to prove an extension to the case of functions defined on a basic space (X, \mathcal{D}, μ) and with values in any Banach space F.

0 Introduction

In the article [6], the author gives a characterization of Riemann-integrable functions as uniform limits of simple functions; more exactly, he proves the following assertion:

Theorem (Šikić). The function $f:[a, b] \mapsto \mathbb{R}$ is Riemann-integrable if and only if f is the uniform limit of a sequence of functions

$$
f_{n}=\sum_{i=1}^{l_{n}} a_{i, n} \cdot 1_{A_{i, n}}
$$

where $A_{i, n} \in \mathcal{A}$, the algebra of subsets of $[a, b]$ formed by the Lebesgue-measurable subsets A of $[a, b]$ with $\Lambda(\operatorname{Fr}(A))=0$, where Fr denotes the boundary and Λ is the Lebesgue measure.

Note that exercise 116 of $\S 7$ from [2] presents a generalization of this result to the case of functions with values in a Banach space of finite dimension. The aim of this article is to prove Theorem 2.5, which gives an extension to the case of functions defined on a basic space (X, \mathcal{D}, μ) and with values in any Banach space F. We precise that the proofs - most of them are simple - of the results quoted in this paper are in the thesis [1].

[^0]
1 Preliminaries

1.1 Conventions and Notation

If a_{i} denotes an element of a vector space and A_{i} a subset of a set, we use the following conventions: $\sum_{i \in \emptyset} a_{i}=0$, and $\bigcup_{i \in \emptyset} A_{i}=\emptyset$. Moreover, the notation \amalg denotes disjoint union.

The Banach spaces we consider are over the field \mathbb{R} of real numbers. Let F be a Banach space with norm $\|\cdot\|$, and P a non-empty subset of F; we call diameter of P the quantity $\operatorname{diam}(P)=\sup _{y, z \in P}\|y-z\|$.

1.2 Semi-Ring

Given a set X, a semi-ring \mathcal{D} of subsets of X is a family of subsets of X such that

- $\emptyset \in \mathcal{D}$;
- if $A, B \in \mathcal{D}$, then $A \bigcap B \in \mathcal{D}$;
- if $A, B \in \mathcal{D}$, then $A \backslash B=A \bigcap B^{c}=\coprod_{j=1}^{n} C_{j}$, where $C_{j} \in \mathcal{D}, 1 \leq j \leq n$. Note that, generally, $A \backslash B \notin \mathcal{D}$.

1.3 Finite \mathcal{D}-Partition

Given a non-empty set X and \mathcal{D} a semi-ring of subsets of X, every finite family $\pi=\left\{D_{1}, \ldots, D_{n}\right\}$ of non-empty disjoint elements of \mathcal{D} and such that $X=\coprod_{j=1}^{n} D_{j}$, is called a finite \mathcal{D}-partition of X. We write Π_{X} for the set of all the finite \mathcal{D}-partitions of X.

1.4 Fineness on Π_{X}

Suppose that π_{1} is a finite \mathcal{D}-partition of X; a finite \mathcal{D}-partition π_{2} of X is said to be finer than π_{1}, which we note by $\pi_{2} \gg \pi_{1}$, if every element of π_{1} is the union of elements of π_{2}.

1.5 Remark

Given π_{1} and π_{2} any two finite \mathcal{D}-partitions of X, there exists a finite \mathcal{D} partition π of X finer than π_{1} and π_{2}. Indeed, if $\pi_{1}=\left\{D_{1}, \ldots, D_{m}\right\}$ and $\pi_{2}=\left\{E_{1}, \ldots, E_{n}\right\}$, it suffices to consider the set of the $D_{i} \cap E_{j}$ which are non-empty, $1 \leq i \leq m, 1 \leq j \leq n$.

1.6 Lemma

Let X be a non-empty set, \mathcal{D} a semi-ring of subsets of X such that there exists a finite \mathcal{D}-partition of X. Then,

$$
\mathcal{A}(\mathcal{D})=\left\{\coprod_{i=1}^{n} D_{i}: D_{i} \in \mathcal{D}, 1 \leq i \leq n, n \in \mathbb{N}^{*}\right\}
$$

is the algebra (of subsets of X) generated by \mathcal{D}.

1.7 Remark

(to be used in the proof of Theorem 2.5)
In the hypothesis of Lemma 1.6 , if $m \in \mathbb{N}^{*}$ and $D_{1}, \ldots, D_{m} \in \mathcal{D} \backslash\{\emptyset\}$ with $D_{i} \bigcap D_{j}=\emptyset$ if $i \neq j$, then there exists $\pi \in \Pi_{X}$ such that every $D_{i} \in \pi, 1 \leq i \leq$ m. Indeed, if $A=\coprod_{i=1}^{m} D_{i}=X$, then $\pi=\left\{D_{1}, \ldots, D_{m}\right\}$. And if $A=\coprod_{i=1}^{m} D_{i} \neq X$, then $A^{c} \in \mathcal{A}(\mathcal{D})$ and $A^{c} \neq \emptyset$, thus there exists $D_{m+1}, \ldots, D_{n} \in \mathcal{D} \backslash\{\emptyset\}$ such that $A^{c}=\coprod_{i=m+1}^{n} D_{i}$; so that $\pi=\left\{D_{1}, \ldots, D_{n}\right\} \in \Pi_{X}$.

1.8 Functions \mathcal{D}-Simple

Let \mathcal{D} be a semi-ring of subsets of a set X (such that $\Pi_{X} \neq \emptyset$), and F a Banach space. Consider $V=\mathbb{R}_{+}$or $V=F$, and let

$$
\mathcal{S}_{V}(\mathcal{D})=\left\{\sum_{i=1}^{m} v_{i} \cdot 1_{D_{i}}: v_{i} \in V,\left\{D_{1}, \ldots, D_{m}\right\} \in \Pi_{X}\right\}
$$

where 1_{D} denotes the indicator function of D. The elements of $S_{V}(\mathcal{D})$ are called \mathcal{D}-simple functions with values in V.

1.9 (Jordan) Content

Given X a non-empty set, and \mathcal{D} a semi-ring of subsets of X such that there exists a finite \mathcal{D}-partition of X, we call (Jordan) content, any monotone function of sets μ defined on $\mathcal{A}(\mathcal{D})$ which is finite, positive and additive, that is $\mu: \mathcal{A}(\mathcal{D}) \mapsto \mathbb{R}_{+}, \mu(\emptyset)=0, \mu(A) \leq \mu(B)$ if $A \subset B$, and $\mu\left(\coprod_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} \mu\left(A_{i}\right), n \in \mathbb{N}^{*}$.

1.10 Basic Space

We call basic space any triple (X, \mathcal{D}, μ), where X is a non-empty set provided with a semi-ring \mathcal{D} of subsets of X such that there exists a finite \mathcal{D}-partition of X, and μ is a (Jordan) content defined on $\mathcal{A}(\mathcal{D})$.

1.11 Lemma

Let (X, \mathcal{D}, μ) be a basic space. Then, $\mu\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mu\left(A_{i}\right)$, for every $A_{i} \in$ $\mathcal{A}(\mathcal{D}), 1 \leq i \leq n, n \in \mathbb{N}^{*}$.

1.12 Example

Consider $a<b \in \mathbb{R}$, and $X=[a, b]$; let

$$
\begin{aligned}
\mathcal{D} & =\{[a, b] \bigcap] \alpha, \beta]: \alpha<\beta \in \mathbb{R}\} \\
& =\{[a, \beta]: a \leq \beta \leq b\} \bigcup\{] \alpha, \beta]: a \leq \alpha \leq \beta \leq b\}, \text { with }
\end{aligned}
$$

$\mu([a, \beta])=(\beta-a)$ and $\mu(] \alpha, \beta])=(\beta-\alpha)$. Then, (X, \mathcal{D}, μ) is a basic space.

1.13 Darboux-Integrability

Consider (X, \mathcal{D}, μ) a basic space and F a Banach space. A function $f: X \mapsto F$ is said to be Darboux-integrable, what we will note by \mathfrak{D}-integrable or $\mathfrak{D}-F$ integrable, or $\mathfrak{D}-(X, \mathcal{D}, \mu ; F)$-integrable if there is a risk of confusion, if
(a) $\operatorname{diam}(f(X))<\infty$ (what is equivalent to f bounded);
(b) for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{n}\right\}$ a finite \mathcal{D}-partition of X such that $\sum_{i=1}^{n} \operatorname{diam}\left(f\left(D_{i}\right)\right) \mu\left(D_{i}\right)<\varepsilon$.

1.14 Lemma

The set $\mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu ; F)$ of the $\mathfrak{D}-(X, \mathcal{D}, \mu ; F)$-integrable functions is a vector subspace of $B(X ; F)$, the set of the bounded functions from X to F, and moreover $\mathcal{S}_{F}(\mathcal{D})$ is a subset of $\mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu ; F)$.

The proposition 1.16 below will allow us to give the definition of the Darboux-integral of a Darboux-integrable function.

1.15 Notations and Remarks

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space, and $f: X \mapsto F$ a bounded function. For each $D \in \mathcal{D}$ with $D \neq \emptyset$, let

$$
E_{f}(D)=\{y \in F: \exists a \in \operatorname{Conv}(f(D)) \text { such that }\|y-a\| \leq \operatorname{diam}(f(D))\}
$$

where $\operatorname{Conv}(f(D))$ is the convex hull of $f(D)$, that is,
$\operatorname{Conv}(f(D))=\left\{\sum_{i=1}^{m} \lambda_{i} f\left(x_{i}\right): 0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i}=1, x_{i} \in D, 1 \leq i \leq m, m \in \mathbb{N}^{*}\right\}$.

Note that $f(D) \subset \operatorname{Conv}(f(D)) \subset E_{f}(D)$; moreover, for every $x \in D$, we have $\{y \in F:\|y-f(x)\| \leq \operatorname{diam}(f(D))\} \subset E_{f}(D)$. In addition, we observe that if $f(D)=\{a\}$, then $E_{f}(D)=\{a\}$.

1.16 Proposition

Given (X, \mathcal{D}, μ) a basic space and F a Banach space, a bounded function f : $X \mapsto F$ is \mathfrak{D} - F-integrable if and only if there exists $I \in F$ such that for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{l}\right\}$ a finite \mathcal{D}-partition of X such that
$\left\|\sum_{i=1}^{l} y_{i} \cdot \mu\left(D_{i}\right)-I\right\|<\varepsilon$ for every $y_{i} \in E_{f}\left(D_{i}\right), 1 \leq i \leq l$. Moreover, in that case, I is unique.

1.17 Darboux-Integral

Let $f: X \mapsto F$ be a \mathfrak{D} - F-integrable function. Then, the unique element $I=I(f)$ established in Proposition 1.16 is called the Darboux-integral of f and is noted $\mathfrak{D}-\int_{X} f(x) d \mu(x)$ or $I_{\mathfrak{D}}(f)$ (to simplify the writing).

1.18 Remark

Given f a \mathfrak{D} - F-integrable function and $\varepsilon_{n} \searrow 0$, if $\pi_{n}=\left\{D_{1, n}, \ldots, D_{l_{n}, n}\right\} \in$ Π_{X} with $\sum_{i=1}^{l_{n}} \operatorname{diam}\left(f\left(D_{i, n}\right)\right) \mu\left(D_{i, n}\right)<\varepsilon_{n}$, then if $x_{i, n} \in D_{i, n}, 1 \leq i \leq l_{n}, n \geq 1$, we obtain

$$
I_{\mathfrak{D}}(f)=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{l_{n}} f\left(x_{i, n}\right) \mu\left(D_{i, n}\right)\right)
$$

1.19 Proposition

Let (X, \mathcal{D}, μ) be a basic space and Θ a topology on X. Suppose that for every $D \in \mathcal{D}$ with $\bar{D} \neq D$ and for every $\delta>0$, there exists $E_{1}, \ldots, E_{K(D, \delta)} \in \mathcal{D} \backslash\{\emptyset\}$ (which depend on D and δ) pairwise disjoint, $E_{k} \subset D, 1 \leq k \leq K(D, \delta)$, with

$$
\sum_{k=1}^{K(D, \delta)} \mu\left(E_{k}\right)<\delta, \text { and } \overline{\left(D \backslash \coprod_{k=1}^{K(D, \delta)} E_{k}\right)} \subset D
$$

Consider a Banach space F and $f: X \mapsto F$ a bounded function. Then, f is \mathfrak{D} -F-integrable if and only if for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{m}\right\} \in$ Π_{X} such that $\sum_{i=1}^{m} \operatorname{diam}\left(f\left(\overline{D_{i}}\right)\right) \mu\left(D_{i}\right)<\varepsilon$.
Moreover, in that case, $I_{\mathfrak{D}}(f)=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{l_{n}} f\left(x_{i, n}\right) \mu\left(D_{i, n}\right)\right)$, where $x_{i, n} \in$ $\overline{D_{i, n}}, 1 \leq i \leq l_{n}$, and $\sum_{i=1}^{l_{n}} \operatorname{diam}\left(f\left(\overline{D_{i, n}}\right)\right) \mu\left(D_{i, n}\right)<\varepsilon_{n} \searrow 0$.

1.20 An Application

Consider the basic space ($X=[a, b], \mathcal{D}, \mu$) of Example 1.12, and X provided with the usual topology.

If $D=[\alpha, \beta]$, then $\bar{D}=D$. If $D=] \alpha, \beta]$ with $\alpha<\beta$, and if $\delta>0$, let $\left.\left.E_{\delta}=\right] \alpha, \gamma_{\delta}\right]$, where $\gamma_{\delta}=\min \left\{\alpha+\frac{\delta}{2} ; \frac{\alpha+\beta}{2}\right\}$; then $\left.\left.\overline{D \backslash E_{\delta}}=\left[\gamma_{\delta}, \beta\right] \subset\right] \alpha, \beta\right]=D$, and moreover $\mu\left(E_{\delta}\right) \leq \frac{\delta}{2}<\delta$.

Consequently, by Proposition 1.19, if $f: X \mapsto F$ is a bounded function with values in a Banach space F, then f is \mathfrak{D} - F-integrable if and only if for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{m}\right\} \in \Pi_{X}$ with $\sum_{i=1}^{m} \operatorname{diam}\left(f\left(\overline{D_{i}}\right)\right) \mu\left(D_{i}\right)<\varepsilon$. In particular, if $F=\mathbb{R}$, then f is \mathfrak{D} - F-integrable if and only if for each $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{m}\right\} \in \Pi_{X}$ such that

$$
\begin{aligned}
\varepsilon & >\sum_{i=1}^{m} \operatorname{diam}\left(f\left(\overline{D_{i}}=\left[\alpha_{i}, \beta_{i}\right]\right)\right) \mu\left(D_{i}\right)=\sum_{i=1}^{m} \sup _{x, y \in\left[\alpha_{i}, \beta_{i}\right]}|f(x)-f(y)|\left(\beta_{i}-\alpha_{i}\right) \\
& =\sum_{i=1}^{m}\left(\sup _{x \in\left[\alpha_{i}, \beta_{i}\right]} f(x)-\inf _{x \in\left[\alpha_{i}, \beta_{i}\right]} f(x)\right)\left(\beta_{i}-\alpha_{i}\right),
\end{aligned}
$$

in other words, f is \mathfrak{D} - \mathbb{R}-integrable if and only if f is Riemann-integrable. Moreover, we have $I_{\mathfrak{D}}(f)=\int_{a}^{b} f(x) d x$.

1.21 Proposition

Consider a basic space (X, \mathcal{D}, μ) and F a Banach space. Then, a bounded function $f: X \mapsto F$ is \mathfrak{D}-F-integrable if and only if there exists a sequence $\left(\pi_{n}=\left\{D_{1, n}, \ldots, D_{k_{n}, n}\right\}\right)_{n \geq 1}$ of finite \mathcal{D}-partitions of X such that $\pi_{n+1} \gg$ $\pi_{n}, n \in \mathbb{N}^{*}$, and such that for every $\varepsilon>0, \lim _{n \rightarrow \infty} \mu\left(A_{n}(f ; \varepsilon)\right)=0$, where $A_{n}(f ; \varepsilon)=\coprod_{j \in J_{n}(\varepsilon)} D_{j, n}$, with $J_{n}(\varepsilon)=\left\{1 \leq j \leq k_{n}: \operatorname{diam}\left(f\left(D_{j, n}\right)\right)>\varepsilon\right\}, n \in$ \mathbb{N}^{*}.

2 Darboux-Integrability and Uniform Convergence

The aim of this paragraph is Theorem 2.5. However we first give some preliminary results. Add that Lemma 2.1 can be proved in a classical way, but Corollary 3.4 gives another proof.

2.1 Lemma

Given a basic space (X, \mathcal{D}, μ) and a Banach space F, let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of \mathfrak{D}-F-integrable functions and f be a function such that f is the uniform limit of the f_{n}. Then, f is \mathfrak{D} - F-integrable.

2.2 Remark

If f is the uniform limit of \mathcal{C}-simple functions, where \mathcal{C} is a semi-ring of subsets of X, then $f(X)$ is totally bounded and then, as F is a Banach space, we deduce that $\overline{f(X)}$ is compact. Indeed, let $\varepsilon>0$; we have $\left\|f-f_{n}\right\|_{\infty}<$ $\varepsilon, n \geq n_{0}=n_{0}(\varepsilon) \in \mathbb{N}^{*}$, where $f_{n}=\sum_{i=1}^{l_{n}} c_{i, n} \cdot 1_{C_{i, n}} \in \mathcal{S}_{F}(\mathcal{C})$. Then, as $\left\{C_{1, n_{0}}, \ldots, C_{l_{n_{0}}, n_{0}}\right\} \in \Pi_{X}$, we have $\overline{f(X)} \subset \bigcup_{i=1}^{l_{n_{0}}} B\left(c_{i, n_{0}}, \varepsilon\right)$.

2.3 Definition of the Algebra \mathcal{B} (of Subsets of X)

Given $B \subset X$ and $\pi=\left\{D_{1}, \ldots, D_{n}\right\}$ a finite \mathcal{D}-partition of X, let

$$
\Delta_{\pi, B}=\left\{1 \leq i \leq n: D_{i} \bigcap B \neq \emptyset \text { and } D_{i} \bigcap B^{c} \neq \emptyset\right\} .
$$

Let $\mathcal{B}=\left\{B \subset X\right.$ such that for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{n}\right\}$ a finite \mathcal{D}-partition of X such that $\left.\sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu\left(D_{i}\right)<\varepsilon\right\}$.

2.4 Lemma

(a) The family \mathcal{B} is an algebra (of subsets of X) containing \mathcal{D}.
(b) If F is a Banach space, then $\overline{\mathcal{S}_{F}(\mathcal{B})}{ }^{\|\cdot\|_{\infty}} \subset \mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu ; F)$.

2.5 Theorem

Given a basic space (X, \mathcal{D}, μ) and a Banach space F, let $f: X \mapsto F$ be a function. Then, $f \in \overline{\mathcal{S}_{F}(\mathcal{B})} \|^{\|}$if and only if $\overline{f(X)}$ is compact and f is $\mathfrak{D}-F$-integrable.

Proof.
Necessity. From (b) of Lemma 2.4, f is \mathfrak{D} - F-integrable; moreover, from Remark 2.2 , we deduce that $\overline{f(X)}$ is compact.

Sufficiency. Suppose that f is \mathfrak{D} - F-integrable; from Proposition 1.21, there exists a sequence $\left(\pi_{n}=\left\{D_{1, n}, \ldots, D_{l_{n}, n}\right\}\right)_{n \geq 1}$ of finite \mathcal{D}-partitions of X such that $\pi_{n+1} \gg \pi_{n}, n \in \mathbb{N}^{*}$, and such that for every $\varepsilon>0, \lim _{n \rightarrow \infty} \mu\left(A_{n}(\varepsilon)\right)=0$, where $A_{n}(\varepsilon)=\coprod_{j \in J_{n}(\varepsilon)} D_{j, n}$, where $J_{n}(\varepsilon)=\left\{1 \leq j \leq l_{n}: \operatorname{diam}\left(f\left(D_{j, n}\right)\right)>\varepsilon\right\}$.

Consider $\varepsilon>0$ and let $B_{\varepsilon}=\bigcap_{n=1}^{\infty} A_{n}(\varepsilon)$. Prove that $B \in \mathcal{B}$ for every $B \subset B_{\varepsilon}$. Now, for each $\eta>0$, there exists $n_{0}=n_{0}(\eta) \in \mathbb{N}^{*}$ such that $\mu\left(A_{n}(\varepsilon)\right)<\eta$ for every $n \geq n_{0}$; consider $A_{n_{0}}(\varepsilon)$.

As $B \subset A_{n_{0}}(\varepsilon)$, we deduce $\Delta_{\pi_{n_{0}}, B} \subset J_{n_{0}}(\varepsilon)$ (because if $D_{j, n_{0}} \cap B \neq \emptyset$, then $D_{j, n_{0}} \bigcap A_{n_{0}}(\varepsilon) \neq \emptyset$, and therefore $\left.D_{j, n_{0}} \subset A_{n_{0}}(\varepsilon)\right)$. It follows that $\sum_{j \in \Delta_{\pi_{n_{0}}, B}} \mu\left(D_{j, n_{0}}\right) \leq \mu\left(A_{n_{0}}(\varepsilon)\right)<\eta$. Thus, as $\eta>0$ is arbitrary, we obtain $B \in \mathcal{B}$ for every $B \subset B_{\varepsilon}$.

Considering first (if necessary) $g=f-f\left(x_{0}\right)$, where $x_{0} \in X$, we can suppose, without loss of generality, that there exists $x \in X$ with $f(x)=0$. As $\overline{f(X)}$ is compact, there exists $a_{1}, \ldots, a_{p} \in F$ such that $f(X) \subset \bigcup_{i=1}^{p} B\left(a_{i} ; \varepsilon\right)=$ $\coprod_{j=1}^{q} V_{j}$, where $q \leq p, V_{j} \neq \emptyset$, and $\|y-z\|<2 \varepsilon$ if $y, z \in V_{j}, 1 \leq j \leq q$, (where $B\left(a_{i} ; \varepsilon\right)$ denotes the open ball of center a_{i} and radius ε). Indeed, let $U_{m}=\bigcup_{i=1}^{m} B\left(a_{i} ; \varepsilon\right), 1 \leq m \leq p$. Then,

$$
\bigcup_{i=1}^{p} B\left(a_{i} ; \varepsilon\right)=U_{1} \coprod \coprod_{m=2}^{p}\left(U_{m} \backslash U_{m-1}\right)
$$

and we have the existence of the V_{j}.
Let $f=f_{1}+f_{2}$, where $f_{1}=f \cdot 1_{B_{\varepsilon}}$ and $f_{2}=f \cdot 1_{B_{\varepsilon} c}$. For every $1 \leq j \leq q$, let $B_{j}=f_{1}^{-1}\left(V_{j}\right)$. There exists (one and only one) $j_{0} \in\{1, \ldots, q\}$ with $0 \in V_{j_{0}}$. So, for every $1 \leq j \leq q$ with $j \neq j_{0}$, we have $B_{j} \subset B_{\varepsilon}$; therefore, $B_{j} \in \mathcal{B}$, $j \neq j_{0}$. As \mathcal{B} is an algebra and from the fact that $X=\coprod_{j=1}^{q} B_{j}$, it follows that $B_{j_{0}} \in \mathcal{B}$.

For each $1 \leq j \leq q$, consider $b_{j} \in V_{j}$ and let $\varphi_{\varepsilon}=\sum_{j=1}^{q} b_{j} \cdot 1_{B_{j}}$. We obtain $\varphi_{\varepsilon} \in \mathcal{S}_{F}(\mathcal{B})$ and $\left\|f_{1}-\varphi_{\varepsilon}\right\|_{\infty} \leq 2 \varepsilon$. Consider the case of $f_{2}=f \cdot 1_{B_{\varepsilon} c}$. Observe that $B_{\varepsilon}^{c}=\bigcup_{n=1}^{\infty}\left(A_{n}(\varepsilon)\right)^{c}=\left(A_{1}(\varepsilon)\right)^{c} \amalg \coprod_{n=1}^{\infty}\left(A_{n}(\varepsilon) \backslash A_{n+1}(\varepsilon)\right)$. Now, we have $\left(A_{1}(\varepsilon)\right)^{c}=D_{i_{1}(1), 1} \amalg \cdots \amalg D_{i_{k_{1}}(1), 1}=E_{1} \amalg \cdots \amalg E_{k_{1}}$ with $E_{k}=D_{i_{k}(1), 1} \in \mathcal{D}$ (maybe \emptyset, but only if $\left(A_{1}(\varepsilon)\right)^{c}=\emptyset$), and $\operatorname{diam}\left(f\left(D_{i_{k}(1), 1}\right)\right) \leq \varepsilon\left(1 \leq k \leq k_{1}\right)$; with the convention $\operatorname{diam}(\emptyset)=0$; and for every $n \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
A_{n}(\varepsilon) \backslash A_{n+1}(\varepsilon) & =D_{i_{1}(n+1), n+1} \coprod \cdots \coprod D_{i_{k_{n+1}}(n+1), n+1} \\
& =E_{\left(\sum_{r=1}^{n} k_{r}\right)+1} \coprod \cdots \coprod E_{\left(\sum_{r=1}^{n} k_{r}\right)+k_{n+1}},
\end{aligned}
$$

with $\operatorname{diam}\left(f\left(D_{i_{k}(n+1), n+1}\right)\right) \leq \varepsilon\left(1 \leq k \leq k_{n+1}\right)$; in other words $B_{\varepsilon}^{c}=\coprod_{l=1}^{\infty} E_{l}$ with $E_{l} \in \mathcal{D}$ and $\operatorname{diam}\left(f\left(E_{l}\right)\right) \leq \varepsilon, l \in \mathbb{N}^{*}$. Let $l \in \mathbb{N}^{*} ; E_{l}$ corresponds to a $D_{i_{j(l)}\left(n_{l}\right), n_{l}}$ (which can be \emptyset), for a $n_{l} \in \mathbb{N}^{*}$; if $E_{l}=D_{i_{j(l)}\left(n_{l}\right), n_{l}} \neq \emptyset$, let $\alpha_{l}=f\left(\tilde{x}_{l}\right)$ for $\tilde{x}_{l} \in E_{l}$; if $E_{l}=\emptyset$, let $\alpha_{l}=0$.

Note that $\left\|f \cdot 1_{E_{l}}-\alpha_{l} \cdot 1_{E_{l}}\right\|_{\infty} \leq \operatorname{diam}\left(f\left(E_{l}\right)\right) \leq \varepsilon$. Let $f_{3}=\sum_{l=1}^{\infty} \alpha_{l} \cdot 1_{E_{l}} ;$ so, we have $\left\|f_{2}-f_{3}\right\|_{\infty}=\left\|\sum_{l=1}^{\infty} f \cdot 1_{E_{l}}-\sum_{l=1}^{\infty} \alpha_{l} \cdot 1_{E_{l}}\right\|_{\infty} \leq \varepsilon$. Given $S \subset \mathbb{N}^{*}, S \neq \emptyset$, let $B_{S}=\underset{s \in S}{ } E_{s}$. Prove that $B_{S} \in \mathcal{B}$. If S is finite, then $B_{S} \in \mathcal{B}$ (because \mathcal{B} is an algebra containing \mathcal{D} and $\left.E_{s} \in \mathcal{D}, s \in S\right)$. If S is infinite, write $S=\left\{s_{1}, s_{2}, \ldots\right\}$ with $s_{i}<s_{j}$ if $i<j$.

Let $\eta>0$; there exists $n_{0}=n_{0}(\eta) \in \mathbb{N}^{*}$ such that for every $n \geq n_{0}$, we have $\mu\left(A_{n}(\varepsilon)\right)<\eta$. Now, for each $p \in \mathbb{N}^{*}, E_{s_{p}}=D_{i_{j\left(s_{p}\right)}\left(n_{s_{p}}\right), n_{s_{p}}}$ for a $n_{s_{p}} \in \mathbb{N}^{*}$. Observe that from the "construction" of the E_{l}, if $p_{1}<p_{2}$, then $n_{s_{p_{1}}} \leq n_{s_{p_{2}}}$. Consider $n_{1} \geq \max \left\{n_{0}(\eta), n_{s_{1}}\right\}$ and let $p_{0}=\min \left\{p \in \mathbb{N}^{*}: n_{s_{p}}>n_{1}\right\}$. So, we have $n_{s_{p_{0}}}>n_{1}, p_{0} \geq 2$ (because $n_{s_{1}} \leq n_{1}$), and $n_{s_{p_{0}-1}} \leq n_{1}$. Moreover, $B_{S}={\underset{p=1}{p_{0}-1} E_{s_{p}} \amalg \underset{p=p_{0}}{\infty} E_{s_{p}} .}^{\infty}$

But, for every $p \geq p_{0} \geq 2$, we can write

$$
\begin{aligned}
E_{s_{p}} & =D_{i_{j\left(s_{p}\right)}\left(n_{s_{p}}\right), n_{s_{p}}} \subset\left(A_{n_{s_{p}}-1}(\varepsilon) \backslash A_{n_{s_{p}}}(\varepsilon)\right) \subset A_{n_{s_{p}}-1}(\varepsilon) \\
& \subset A_{n_{s_{p_{0}}}-1}(\varepsilon) \subset A_{n_{1}}(\varepsilon)
\end{aligned}
$$

It follows $B_{S} \subset \coprod_{p=1}^{p_{0}-1} E_{s_{p}} \amalg A_{n_{1}}(\varepsilon)=: U$.
Note that we really have a disjoint union, because $E_{s_{p}}=D_{i_{j\left(s_{p}\right)}\left(n_{s_{p}}\right), n_{s_{p}}} \subset$ $\left(A_{n_{s_{p}}}(\varepsilon)\right)^{c}$. Now, for every $1 \leq p \leq p_{0}-1$, we have $n_{s_{p}} \leq n_{1}$, and therefore $A_{n_{1}}(\varepsilon) \subset A_{n_{s_{p}}}(\varepsilon) ;$ so that

$$
E_{s_{p}} \bigcap A_{n_{1}}(\varepsilon) \subset\left(\left(A_{n_{s_{p}}}(\varepsilon)\right)^{c} \bigcap A_{n_{1}}(\varepsilon)\right) \subset\left(\left(A_{n_{1}}(\varepsilon)\right)^{c} \bigcap A_{n_{1}}(\varepsilon)\right)=\emptyset
$$

As $A_{n_{1}}(\varepsilon)=\coprod_{j \in J_{n_{1}}(\varepsilon)} D_{j, n_{1}}$, it follows that $U=\coprod_{p=1}^{p_{0}-1} E_{s_{p}} \amalg \underset{j \in J_{n_{1}}(\varepsilon)}{ } D_{j, n_{1}}$.
If $U=\emptyset$, then $B_{S}=\emptyset \in \mathcal{B}$. Suppose $U \neq \emptyset$. From Remark 1.7, there exists $\pi=\left\{C_{1}, \ldots, C_{r}\right\} \in \Pi_{X}$ such that the non-empty elements of \mathcal{D} which constitute U appear among the C_{j}.

Suppose that $C_{j} \bigcap B_{S} \neq \emptyset$ and $C_{j} \bigcap\left(B_{S}\right)^{c} \neq \emptyset$; then, C_{j} cannot be one of the $E_{s_{p}}, 1 \leq p \leq p_{0}-1$, because $E_{s_{p}} \subset B_{S}$. As C_{j} cannot be in U^{c}, the only possibility is that C_{j} is one of the $D_{j, n_{1}}$ for a $j \in J_{n_{1}}(\varepsilon)$. Hence, $\coprod_{j \in \Delta_{\pi, B_{S}}} C_{j} \subset A_{n_{1}}(\varepsilon)$, and so $0 \leq \sum_{j \in \Delta_{\pi, B_{S}}} \mu\left(C_{j}\right) \leq \mu\left(A_{n_{1}}(\varepsilon)\right)<\eta$. It follows that $B_{S} \in \mathcal{B}$ for every $S \subset \mathbb{N}^{*}, S \neq \emptyset$.

Recall that $f_{3}=\sum_{l=1}^{\infty} \alpha_{l} \cdot 1_{E_{l}}$ and $f(X) \subset \coprod_{j=1}^{q} V_{j}$, where $V_{j} \neq \emptyset$ and $\|y-z\|<$ 2ε if $y, z \in V_{j}$, for $1 \leq j \leq q$. We observe that $f_{3}(X) \subset \coprod_{j=1}^{q} V_{j}$ (because $0 \in V_{j_{0}}$ and if $f_{3}(x) \neq 0$, then $\left.f_{3}(x)=\alpha_{l(x)}=f\left(\tilde{x}_{l(x)}\right) \in \coprod_{j=1}^{q} V_{j}\right)$. For every $1 \leq j \leq q$, let $\tilde{B}_{j}=f_{3}^{-1}\left(V_{j}\right)$. Then $\tilde{B}_{j} \in \mathcal{B}, 1 \leq j \leq q$. This is true because $\emptyset \in \mathcal{B}$, and if $j \neq j_{0}$ with $f_{3}^{-1}\left(V_{j}\right) \neq \emptyset$, then $f_{3}^{-1}\left(V_{j}\right)=\coprod_{l: \alpha_{l} \in V_{j}} E_{l} \in \mathcal{B}$ (from what precedes), and finally, we have $f_{3}^{-1}\left(V_{j_{0}}\right)=\coprod_{l: \alpha_{l} \in V_{j_{0}}} E_{l} \amalg\left(\coprod_{l=1}^{\infty} E_{l}\right)^{c} \in \mathcal{B}$.

Moreover, we have $X=\coprod_{j=1}^{q} \tilde{B}_{j}$. For each $1 \leq j \leq q$, let $\tilde{b}_{j} \in V_{j}$ and consider $\psi_{\varepsilon}=\sum_{j=1}^{q} \tilde{b}_{j} \cdot 1_{\tilde{B}_{j}} \in \mathcal{S}_{F}(\mathcal{B})$. So, we have $\left\|f_{3}-\psi_{\varepsilon}\right\|_{\infty} \leq 2 \varepsilon$. Let
$\xi_{\varepsilon}=\varphi_{\varepsilon}+\psi_{\varepsilon} \in \mathcal{S}_{F}(\mathcal{B}) ;$ we can write

$$
\begin{aligned}
\left\|f-\xi_{\varepsilon}\right\|_{\infty} & =\left\|f-\varphi_{\varepsilon}-\psi_{\varepsilon}\right\|_{\infty}=\left\|f_{1}+f_{2}-\varphi_{\varepsilon}-\psi_{\varepsilon}\right\|_{\infty} \\
& \leq\left\|f_{1}-\varphi_{\varepsilon}\right\|_{\infty}+\left\|f_{2}-f_{3}\right\|_{\infty}+\left\|f_{3}-\psi_{\varepsilon}\right\|_{\infty} \leq 5 \varepsilon .
\end{aligned}
$$

As $\varepsilon>0$ is arbitrary, we deduce that f is the uniform limit of functions of $\mathcal{S}_{F}(\mathcal{B})$.

2.6 Remarks

(1) If \mathcal{C} is an algebra of subsets of X such that for every $C \in \mathcal{C}$, the function $\varphi=a \cdot 1_{C}$ is $\mathfrak{D}-F$-integrable for an $a \in F \backslash\{0\}$ (F is supposed to be non-reduced to $\{0\}$), then $\mathcal{C} \subset \mathcal{B}$. (Indeed, for every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{n}\right\}$ a finite \mathcal{D}-partition of X verifying

$$
\varepsilon \cdot\|a\|>\sum_{i=1}^{n} \operatorname{diam}\left(\varphi\left(D_{i}\right)\right) \cdot \mu\left(D_{i}\right)=\sum_{i \in \Delta_{\pi_{\varepsilon}, C}}\|a\| \cdot \mu\left(D_{i}\right)
$$

therefore $\sum_{i \in \Delta_{\pi_{\varepsilon}, C}} \mu\left(D_{i}\right)<\varepsilon$. It follows that $C \in \mathcal{B}$, and then we have the assertion.)
(2) Note that \mathcal{B} is independent of F. As a matter of fact, \mathcal{B} depends only on (X, \mathcal{D}, μ).

The following corollary corresponds to exercise 116 from $\S 7$ of [2] adapted to the case of a basic space.

2.7 Corollary

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space of finite dimension and $f: X \mapsto F a$ (bounded) function. Then, f is \mathfrak{D}-F-integrable if and only if $f \in \overline{\mathcal{S}(\mathcal{B})}{ }^{\|\cdot\|_{\infty}}$
Proof. As $\overline{f(X)}$ is compact, the result follows from Theorem 2.5.

2.8 Examples

(1) Consider $X=[a, b]$ with

$$
\mathcal{D}=\{[a, \beta]: a \leq \beta \leq b\} \bigcup\{] \alpha, \beta]: a \leq \alpha \leq \beta \leq b\},
$$

$\mu([a, \beta])=(\beta-a), \mu(] \alpha, \beta])=(\beta-\alpha)$, where X is provided with the usual topology Θ, and let $F=\mathbb{R}$.

With reference to [6], let $\mathcal{B}=\mathcal{A}$, the algebra of subsets A of $[a, b]$ such that $\Lambda(\operatorname{Fr}(A))=0$, where Λ denotes the Lebesgue measure, which is complete.

Let $B \in \mathcal{B}$. For every $\varepsilon>0$, there exists $\pi_{\varepsilon}=\left\{D_{1}, \ldots, D_{l}\right\} \in \Pi_{X}$ such that $\sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu\left(D_{i}\right)<\varepsilon$. Considering if necessary $\{a\}$ and $\left.] a, \beta\right]$, we can suppose that $D_{1}=\{a\}$ and for $\left.\left.2 \leq i \leq l, D_{i}=\right] \alpha_{i}=\beta_{i-1}, \beta_{i}\right]$ with $\beta_{i-1}<\beta_{i}$ and $\alpha_{2}=a$. Suppose that $x \in \operatorname{Fr}(B)$. There exists $1 \leq i_{x} \leq l$ such that $x \in D_{i_{x}}$. If $x \in] \alpha_{i_{x}}, \beta_{i_{x}}\left[\right.$, then $i_{x} \in \Delta_{\pi_{\varepsilon}, B}$, so that $\operatorname{Fr}(B) \subset\left(\underset{i \in \Delta_{\pi_{\varepsilon}, B}}{\coprod} D_{i}\right) \cup\left\{a ; \beta_{i}: 2 \leq\right.$ $i \leq l\}$. We deduce $0 \leq \Lambda(\operatorname{Fr}(B)) \leq \sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu\left(D_{i}\right)+\Lambda\left(\left\{a ; \beta_{i}: 2 \leq i \leq l\right\}\right)<$ $\varepsilon+0=\varepsilon$, for every $\varepsilon>0$. Consequently, $\Lambda(\operatorname{Fr}(B))=0$. We conclude $B \in \mathcal{A}$. It follows $\mathcal{B} \subset \mathcal{A}$.

But, for every $A \in \mathcal{A}$, the function $f=1_{A}:[a, b] \mapsto \mathbb{R}$ is Riemannintegrable by the article [6]; therefore, f is \mathfrak{D} - \mathbb{R}-integrable, as we have seen in Application 1.20. From the remark (1) of 2.6 , we obtain $A \in \mathcal{B}$. It follows $\mathcal{A} \subset \mathcal{B}$, and finally $\mathcal{B}=\mathcal{A}$.
(2) Consider $X=\mathbb{N}, \mathcal{D}=\mathcal{A}(\mathcal{D})=\left\{D \subset X: D\right.$ or D^{c} is finite $\}$, $\mu(D)=0$ if D is finite, and $\mu(D)=1$ if D^{c} is finite. Let $E \subset X$ such that E and E^{c} are infinite. Then, given $D \in \mathcal{D}$ with D^{c} finite, we deduce that $D \cap E \neq \emptyset$ and $D \cap E^{c} \neq \emptyset$. So, as $\mu(D)=1, E$ cannot be an element of \mathcal{B}. We conclude from the definition of \mathcal{D} that $\mathcal{B}=\mathcal{D}$.

3 Darboux-Integrability and Semi-Norm \| $\left\|\|_{\mu}\right.$

In this paragraph, we only cite some results which are related to the Darbouxintegrability and a semi-norm defined on $B(X, F)$. This semi-norm allows, especially, to consider the sequences of \mathfrak{D} - F-integrable functions, and also to characterize the \mathfrak{D} - F-integrable functions by the \mathcal{D}-simple functions.

3.1 Definition

Given a basic space (X, \mathcal{D}, μ) and F a Banach space, for every function $f \in$ $B(X ; F)$, let

$$
\|f\|_{\mu}=\inf _{\substack{\gamma \in \mathcal{S}_{\mathbb{R}_{+}}(\mathcal{D}) \\ \text { and } \gamma \geq\|f\|}} I_{\mathfrak{D}}(\gamma),
$$

where $I_{\mathfrak{D}}(\gamma)=\sum_{i=1}^{n} r_{i} \cdot \mu\left(D_{i}\right)\left(\right.$ if $\left.\gamma=\sum_{i=1}^{n} r_{i} \cdot 1_{D_{i}}\right)$, and $\gamma \geq\|f\|$ means $\gamma(x) \geq$ $\|f(x)\|, x \in X$.

We note that this definition extends to the case of a basic space a notion (of superior Riemann-integral) introduced in [5].

3.2 Lemma

(a) $\|\cdot\|_{\mu}$ is a semi-norm on $B(X ; F)$.

Moreover, $\|f\|_{\mu} \leq\|f\|_{\infty} \cdot \mu(X)$ for every $f \in B(X ; F)$.
(b) For every $f \in \mathcal{S}_{F}(\mathcal{D}),\|f\|_{\mu}=I_{\mathfrak{D}}(\|f\|)$.
(c) Let $f: X \mapsto F$ be a bounded function such that $\|f\|: X \mapsto \mathbb{R}$ is $\mathfrak{D}-\mathbb{R}$-integrable. Then, $\|f\|_{\mu}=I_{\mathfrak{D}}(\|f\|)$.

3.3 Proposition

Let (X, \mathcal{D}, μ) be a basic space and F a Banach space. Consider $\left(f_{n}\right)_{n \geq 1}$ a sequence of \mathfrak{D} - F-integrable functions, $f_{n}: X \mapsto F$, and let $f \in B(X ; F)$.

Suppose that $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\mu}=0$. Then, f is \mathfrak{D}-F-integrable and $I_{\mathfrak{D}}(f)=$ $\lim _{n \rightarrow \infty} I_{\mathfrak{D}}\left(f_{n}\right)$.

3.4 Corollary

Let $f_{n}: X \mapsto F(n \geq 1)$ be a sequence of \mathfrak{D} - F-integrable functions and $f \in B(X ; F)$ such that $f_{n} \xrightarrow[n \rightarrow \infty]{ } f$ uniformly. Then, f is \mathfrak{D} - F-integrable and $I_{\mathfrak{D}}(f)=\lim _{n \rightarrow \infty} I_{\mathfrak{D}}\left(f_{n}\right)$.

3.5 Proposition

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space, and $f \in B(X ; F)$. Then, f is \mathfrak{D}-F-integrable if and only if $f \in \overline{\mathcal{S}}_{F}(\mathcal{D}) \|^{\|\cdot\|_{\mu}}$,
that is, there exists a sequence $\left(f_{n}\right)_{n \geq 1}$ of functions of $\mathcal{S}_{F}(\mathcal{D})$ with $\lim _{n \rightarrow \infty} \| f-$ $f_{n} \|_{\mu}=0$.

Remark: From Proposition 3.3, we have $I_{\mathfrak{D}}(f)=\lim _{n \rightarrow \infty} I_{\mathfrak{D}}\left(f_{n}\right)$.

3.6 Remarks

(1) Precise however that, even if the notations and the approach used are different, the essential of Proposition 3.5 is in exercise 99 of $\S 7$ of [2].
(2) Note that if the function f is defined on \mathcal{D} instead of X, it is possible to consider an interesting type of integral (similar, but different, to those presented in [1]) as it is suggested by the article [3], where the author establishes, under the continuum hypothesis, an integral representation of the second dual of $C([0,1])$. Add that in [4], the author extends the integral representation in a more general context and in relation with the axioms of the set theory.

ACKNOWLEDGEMENTS

I especially want to thank Professor Srishti D. Chatterji for the reading of a first version, for his advice, his remarks, and for the time he devoted to me. I also thank the referee for the examination, and Professor R. Daniel Mauldin for his consideration and his remarks.

References

[1] Y. Bolle, Intégrales de Riemann dans les espaces abstraits, Thèse 2107 (2000), Ecole Polytechnique Fédérale de Lausanne, 1999.
[2] H. Günzler, Integration, Bibliographisches Institut, Mannheim/Wien/ Zürich, 1985.
[3] R. D. Mauldin, A representation theorem for the second dual of $C[0,1]$, Studia Mathematica, T. XLVI (1973), 197-200.
[4] R. D. Mauldin, Some Effects of Set-Theoretical Assumptions in Measure Theory, Advances In Mathematics, 27 (1978), 45-62.
[5] L. Schwartz, Cours d'Analyse, Vol. 1, Chapitre 4, Hermann, Paris, 1981.
[6] H. Šikić, Riemann Integral vs. Lebesgue Integral, Real Analysis Exchange, $17(2)$ (1991-92), 622-632.

[^0]: Key Words: simple functions, Riemann integrable, uniform limit
 Mathematical Reviews subject classification: 46G12, 26A42
 Received by the editors June 28, 2001
 Communicated by: R. Daniel Mauldin

