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DARBOUX-INTEGRABILITY AND
UNIFORM CONVERGENCE

Abstract

In 1992, Šikić gives a characterization of Riemann-integrable func-
tions as uniform limits of simple functions. The aim of this article is
to prove an extension to the case of functions defined on a basic space
(X,D, µ) and with values in any Banach space F .

0 Introduction

In the article [6], the author gives a characterization of Riemann-integrable
functions as uniform limits of simple functions; more exactly, he proves the
following assertion:

Theorem (Šikić). The function f : [a, b] 7→ R is Riemann-integrable if and
only if f is the uniform limit of a sequence of functions

fn =
ln∑

i=1

ai,n · 1Ai,n

where Ai,n ∈ A, the algebra of subsets of [a, b] formed by the Lebesgue-measurable
subsets A of [a, b] with Λ(Fr(A)) = 0 , where Fr denotes the boundary and Λ is
the Lebesgue measure.

Note that exercise 116 of § 7 from [2] presents a generalization of this result
to the case of functions with values in a Banach space of finite dimension. The
aim of this article is to prove Theorem 2.5, which gives an extension to the
case of functions defined on a basic space (X,D, µ) and with values in any
Banach space F . We precise that the proofs - most of them are simple - of
the results quoted in this paper are in the thesis [1] .
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1 Preliminaries

1.1 Conventions and Notation

If ai denotes an element of a vector space and Ai a subset of a set, we use the
following conventions:

∑
i∈∅

ai = 0, and
⋃
i∈∅

Ai = ∅. Moreover, the notation
∐

denotes disjoint union.
The Banach spaces we consider are over the field R of real numbers. Let

F be a Banach space with norm || · ||, and P a non-empty subset of F ; we call
diameter of P the quantity diam(P ) = sup

y,z∈P
||y − z||.

1.2 Semi-Ring

Given a set X, a semi-ring D of subsets of X is a family of subsets of X such
that

• ∅ ∈ D ;
• if A,B ∈ D, then A

⋂
B ∈ D ;

• if A,B ∈ D, then A \B = A
⋂
Bc =

n∐
j=1

Cj , where Cj ∈ D, 1 ≤ j ≤ n .

Note that, generally, A \B 6∈ D.

1.3 Finite D-Partition

Given a non-empty set X and D a semi-ring of subsets of X, every finite
family π = {D1, . . . , Dn} of non-empty disjoint elements of D and such that

X =
n∐

j=1

Dj , is called a finite D-partition of X. We write ΠX for the set of all

the finite D-partitions of X.

1.4 Fineness on ΠX

Suppose that π1 is a finite D-partition of X; a finite D-partition π2 of X is
said to be finer than π1, which we note by π2 � π1, if every element of π1 is
the union of elements of π2.

1.5 Remark

Given π1 and π2 any two finite D-partitions of X, there exists a finite D-
partition π of X finer than π1 and π2. Indeed, if π1 = {D1, . . . , Dm} and
π2 = {E1, . . . , En}, it suffices to consider the set of the Di

⋂
Ej which are

non-empty, 1 ≤ i ≤ m, 1 ≤ j ≤ n.



Darboux-Integrability and Uniform Convergence 397

1.6 Lemma

Let X be a non-empty set, D a semi-ring of subsets of X such that there exists
a finite D-partition of X. Then,

A(D) =

{
n∐

i=1

Di : Di ∈ D , 1 ≤ i ≤ n , n ∈ N∗
}

is the algebra (of subsets of X) generated by D.

1.7 Remark

(to be used in the proof of Theorem 2.5)
In the hypothesis of Lemma 1.6, if m ∈ N∗ and D1, . . . , Dm ∈ D\{∅} with

Di

⋂
Dj = ∅ if i 6= j, then there exists π ∈ ΠX such that every Di ∈ π, 1 ≤ i ≤

m. Indeed, ifA =
m∐

i=1

Di = X, then π = {D1, . . . , Dm}.And ifA =
m∐

i=1

Di 6= X,

then Ac ∈ A(D) and Ac 6= ∅, thus there exists Dm+1, . . . , Dn ∈ D \ {∅} such

that Ac =
n∐

i=m+1

Di ; so that π = {D1, . . . , Dn} ∈ ΠX .

1.8 Functions D-Simple

Let D be a semi-ring of subsets of a set X (such that ΠX 6= ∅), and F a
Banach space. Consider V = R+ or V = F, and let

SV (D) =

{
m∑

i=1

vi · 1Di : vi ∈ V, {D1, . . . , Dm} ∈ ΠX

}
,

where 1D denotes the indicator function of D. The elements of SV (D) are
called D-simple functions with values in V.

1.9 (Jordan) Content

Given X a non-empty set, and D a semi-ring of subsets of X such that
there exists a finite D-partition of X, we call (Jordan) content, any mono-
tone function of sets µ defined on A(D) which is finite, positive and ad-
ditive, that is µ : A(D) 7→ R+, µ(∅) = 0, µ(A) ≤ µ(B) if A ⊂ B, and

µ
( n∐

i=1

Ai

)
=

n∑
i=1

µ(Ai), n ∈ N∗.
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1.10 Basic Space

We call basic space any triple (X,D, µ), where X is a non-empty set provided
with a semi-ring D of subsets of X such that there exists a finite D-partition
of X, and µ is a (Jordan) content defined on A(D).

1.11 Lemma

Let (X,D, µ) be a basic space. Then, µ
( n⋃

i=1

Ai

)
≤

n∑
i=1

µ(Ai) , for every Ai ∈

A(D), 1 ≤ i ≤ n, n ∈ N∗.

1.12 Example

Consider a < b ∈ R, and X = [a, b] ; let

D =
{

[a, b]
⋂

]α, β] : α < β ∈ R
}

= { [a, β] : a ≤ β ≤ b}
⋃

{ ]α, β] : a ≤ α ≤ β ≤ b} , with

µ([a, β]) = (β − a) and µ(]α, β]) = (β − α) . Then, (X,D, µ) is a basic space.

1.13 Darboux-Integrability

Consider (X,D, µ) a basic space and F a Banach space. A function f : X 7→ F
is said to be Darboux-integrable, what we will note by D-integrable or D-F -
integrable, or D-(X,D, µ;F )-integrable if there is a risk of confusion, if

(a) diam(f(X)) <∞ (what is equivalent to f bounded);

(b) for every ε > 0, there exists πε = {D1, . . . , Dn} a finite D-partition of

X such that
n∑

i=1

diam(f(Di))µ(Di) < ε.

1.14 Lemma

The set ID(X,D, µ;F ) of the D-(X,D, µ;F )-integrable functions is a vector
subspace of B(X;F ), the set of the bounded functions from X to F, and more-
over SF (D) is a subset of ID(X,D, µ;F ).

The proposition 1.16 below will allow us to give the definition of the
Darboux-integral of a Darboux-integrable function.
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1.15 Notations and Remarks

Let (X,D, µ) be a basic space, F a Banach space, and f : X 7→ F a bounded
function. For each D ∈ D with D 6= ∅, let

Ef (D) = {y ∈ F : ∃a ∈ Conv(f(D)) such that ||y − a|| ≤ diam(f(D))} ,

where Conv(f(D)) is the convex hull of f(D), that is,

Conv(f(D)) =

{
m∑

i=1

λif(xi) : 0 ≤ λi ≤ 1,
m∑

i=1

λi = 1, xi ∈ D, 1 ≤ i ≤ m, m ∈ N∗
}
.

Note that f(D) ⊂ Conv(f(D)) ⊂ Ef (D); moreover, for every x ∈ D, we
have {y ∈ F : ||y − f(x)|| ≤ diam(f(D))} ⊂ Ef (D). In addition, we observe
that if f(D) = {a}, then Ef (D) = {a}.

1.16 Proposition

Given (X,D, µ) a basic space and F a Banach space, a bounded function f :
X 7→ F is D-F -integrable if and only if there exists I ∈ F such that for every
ε > 0, there exists πε = {D1, . . . , Dl} a finite D-partition of X such that∣∣∣∣∣∣ l∑

i=1

yi · µ(Di)− I
∣∣∣∣∣∣ < ε for every yi ∈ Ef (Di), 1 ≤ i ≤ l. Moreover, in

that case, I is unique.

1.17 Darboux-Integral

Let f : X 7→ F be a D-F -integrable function. Then, the unique element
I = I(f) established in Proposition 1.16 is called the Darboux-integral of f
and is noted D-

∫
X
f(x)dµ(x) or ID(f) (to simplify the writing).

1.18 Remark

Given f a D-F -integrable function and εn ↘ 0, if πn = {D1,n, . . . , Dln,n} ∈

ΠX with
ln∑

i=1

diam(f(Di,n))µ(Di,n) < εn, then if xi,n ∈ Di,n, 1 ≤ i ≤ ln , n ≥ 1,

we obtain

ID(f) = lim
n→∞

(
ln∑

i=1

f(xi,n)µ(Di,n)
)
.
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1.19 Proposition

Let (X,D, µ) be a basic space and Θ a topology on X. Suppose that for every
D ∈ D with D 6= D and for every δ > 0, there exists E1, . . . , EK(D,δ) ∈ D\{∅}
(which depend on D and δ) pairwise disjoint, Ek ⊂ D, 1 ≤ k ≤ K(D, δ), with

K(D,δ)∑
k=1

µ(Ek) < δ, and

D \
K(D,δ)∐

k=1

Ek

 ⊂ D.

Consider a Banach space F and f : X 7→ F a bounded function. Then, f is D-
F -integrable if and only if for every ε > 0, there exists πε = {D1, . . . , Dm} ∈
ΠX such that

m∑
i=1

diam(f(Di))µ(Di) < ε.

Moreover, in that case, ID(f) = lim
n→∞

(
ln∑

i=1

f(xi,n)µ(Di,n)
)
, where xi,n ∈

Di,n, 1 ≤ i ≤ ln, and
ln∑

i=1

diam(f(Di,n))µ(Di,n) < εn ↘ 0.

1.20 An Application

Consider the basic space (X = [a, b],D, µ) of Example 1.12, and X provided
with the usual topology.

If D = [α, β], then D = D. If D = ]α, β] with α < β, and if δ > 0, let
Eδ =]α, γδ], where γδ = min{α+ δ

2 ; α+β
2 } ; then D \ Eδ = [γδ, β] ⊂ ]α, β] = D ,

and moreover µ(Eδ) ≤ δ
2 < δ.

Consequently, by Proposition 1.19, if f : X 7→ F is a bounded function with
values in a Banach space F, then f is D-F -integrable if and only if for every

ε > 0, there exists πε = {D1, . . . , Dm} ∈ ΠX with
m∑

i=1

diam(f(Di))µ(Di) < ε.

In particular, if F = R, then f is D-F -integrable if and only if for each ε > 0,
there exists πε = {D1, . . . , Dm} ∈ ΠX such that

ε >
m∑

i=1

diam(f(Di = [αi, βi]))µ(Di) =
m∑

i=1

sup
x,y ∈ [αi,βi]

|f(x)− f(y)|(βi − αi)

=
m∑

i=1

(
sup

x∈ [αi,βi]

f(x)− inf
x∈ [αi,βi]

f(x)
)
(βi − αi) ,

in other words, f is D-R-integrable if and only if f is Riemann-integrable.

Moreover, we have ID(f) =
b∫

a

f(x)dx.
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1.21 Proposition

Consider a basic space (X,D, µ) and F a Banach space. Then, a bounded
function f : X 7→ F is D-F -integrable if and only if there exists a sequence(
πn = {D1,n, . . . , Dkn,n}

)
n≥1

of finite D-partitions of X such that πn+1 �
πn, n ∈ N∗, and such that for every ε > 0, lim

n→∞
µ(An(f ; ε)) = 0, where

An(f ; ε) =
∐

j∈Jn(ε)

Dj,n, with Jn(ε) = {1 ≤ j ≤ kn : diam(f(Dj,n)) > ε}, n ∈

N∗.

2 Darboux-Integrability and Uniform Convergence

The aim of this paragraph is Theorem 2.5. However we first give some pre-
liminary results. Add that Lemma 2.1 can be proved in a classical way, but
Corollary 3.4 gives another proof.

2.1 Lemma

Given a basic space (X,D, µ) and a Banach space F , let (fn)n≥1 be a sequence
of D-F -integrable functions and f be a function such that f is the uniform limit
of the fn. Then, f is D-F -integrable.

2.2 Remark

If f is the uniform limit of C-simple functions, where C is a semi-ring of subsets
of X, then f(X) is totally bounded and then, as F is a Banach space, we
deduce that f(X) is compact. Indeed, let ε > 0; we have ||f − fn||∞ <

ε, n ≥ n0 = n0(ε) ∈ N∗, where fn =
ln∑

i=1

ci,n · 1Ci,n
∈ SF (C). Then, as

{C1,n0 , . . . , Cln0 ,n0} ∈ ΠX , we have f(X) ⊂
ln0⋃
i=1

B(ci,n0 , ε) .

2.3 Definition of the Algebra B (of Subsets of X)

Given B ⊂ X and π = {D1, . . . , Dn} a finite D-partition of X, let

∆π,B =
{

1 ≤ i ≤ n : Di

⋂
B 6= ∅ and Di

⋂
Bc 6= ∅

}
.

Let B =
{
B ⊂ X such that for every ε > 0, there exists πε = {D1, . . . , Dn} a

finite D-partition of X such that
∑

i∈∆πε,B

µ(Di) < ε
}
.
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2.4 Lemma

(a) The family B is an algebra (of subsets of X) containing D.
(b) If F is a Banach space, then SF (B)

||·||∞ ⊂ ID(X,D, µ;F ).

2.5 Theorem

Given a basic space (X,D, µ) and a Banach space F, let f : X 7→ F be a

function. Then, f ∈ SF (B)
||·||∞

if and only if f(X) is compact and f is
D-F -integrable.

Proof.
Necessity. From (b) of Lemma 2.4, f is D-F -integrable; moreover, from

Remark 2.2, we deduce that f(X) is compact.

Sufficiency. Suppose that f is D-F -integrable; from Proposition 1.21, there
exists a sequence

(
πn = {D1,n, . . . , Dln,n}

)
n≥1

of finite D-partitions of X such

that πn+1 � πn, n ∈ N∗, and such that for every ε > 0, lim
n→∞

µ(An(ε)) = 0,

where An(ε) =
∐

j∈Jn(ε)

Dj,n , where Jn(ε) = {1 ≤ j ≤ ln : diam(f(Dj,n)) > ε}.

Consider ε > 0 and let Bε =
∞⋂

n=1
An(ε). Prove that B ∈ B for every

B ⊂ Bε. Now, for each η > 0, there exists n0 = n0(η) ∈ N∗ such that
µ(An(ε)) < η for every n ≥ n0; consider An0(ε).

As B ⊂ An0(ε), we deduce ∆πn0 ,B ⊂ Jn0(ε) (because if Dj,n0

⋂
B 6= ∅,

then Dj,n0

⋂
An0(ε) 6= ∅, and therefore Dj,n0 ⊂ An0(ε)). It follows that∑

j∈∆πn0,B

µ(Dj,n0) ≤ µ(An0(ε)) < η. Thus, as η > 0 is arbitrary, we obtain

B ∈ B for every B ⊂ Bε.
Considering first (if necessary) g = f − f(x0), where x0 ∈ X, we can

suppose, without loss of generality, that there exists x ∈ X with f(x) = 0. As

f(X) is compact, there exists a1, . . . , ap ∈ F such that f(X) ⊂
p⋃

i=1

B(ai; ε) =
q∐

j=1

Vj , where q ≤ p, Vj 6= ∅, and ||y − z|| < 2ε if y, z ∈ Vj , 1 ≤ j ≤ q,

(where B(ai; ε) denotes the open ball of center ai and radius ε). Indeed, let

Um =
m⋃

i=1

B(ai; ε), 1 ≤ m ≤ p. Then,

p⋃
i=1

B(ai; ε) = U1

∐ p∐
m=2

(Um \ Um−1) ,
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and we have the existence of the Vj .

Let f = f1+f2, where f1 = f ·1Bε and f2 = f ·1Bε
c . For every 1 ≤ j ≤ q, let

Bj = f−1
1 (Vj). There exists (one and only one) j0 ∈ {1, . . . , q} with 0 ∈ Vj0 .

So, for every 1 ≤ j ≤ q with j 6= j0, we have Bj ⊂ Bε; therefore, Bj ∈ B,

j 6= j0. As B is an algebra and from the fact that X =
q∐

j=1

Bj , it follows that

Bj0 ∈ B.

For each 1 ≤ j ≤ q, consider bj ∈ Vj and let ϕε =
q∑

j=1

bj · 1Bj
. We obtain

ϕε ∈ SF (B) and ||f1−ϕε||∞ ≤ 2ε. Consider the case of f2 = f ·1Bε
c . Observe

that Bc
ε =

∞⋃
n=1

(An(ε))c = (A1(ε))c
∐ ∞∐

n=1

(
An(ε)\An+1(ε)

)
. Now, we have

(A1(ε))c = Di1(1),1

∐
. . .

∐
Dik1 (1),1 = E1

∐
. . .

∐
Ek1 with Ek = Dik(1),1 ∈ D

(maybe ∅, but only if (A1(ε))c = ∅), and diam(f(Dik(1),1)) ≤ ε (1 ≤ k ≤ k1);
with the convention diam(∅) = 0 ; and for every n ∈ N∗, we have

An(ε)\An+1(ε) = Di1(n+1),n+1

∐
. . .

∐
Dikn+1 (n+1),n+1

= E( nP
r=1

kr

)
+1

∐
. . .

∐
E( nP

r=1
kr

)
+kn+1

,

with diam(f(Dik(n+1),n+1)) ≤ ε (1 ≤ k ≤ kn+1); in other words Bc
ε =

∞∐
l=1

El

with El ∈ D and diam(f(El)) ≤ ε, l ∈ N∗. Let l ∈ N∗; El corresponds
to a Dij(l)(nl),nl

(which can be ∅), for a nl ∈ N∗; if El = Dij(l)(nl),nl
6= ∅, let

αl = f(x̃l) for x̃l ∈ El; if El = ∅, let αl = 0.

Note that ||f ·1El
−αl ·1El

||∞ ≤ diam(f(El)) ≤ ε. Let f3 =
∞∑

l=1

αl ·1El
; so,

we have ||f2−f3||∞ =
∣∣∣∣∣∣ ∞∑

l=1

f ·1El
−

∞∑
l=1

αl ·1El

∣∣∣∣∣∣
∞
≤ ε. Given S ⊂ N∗, S 6= ∅, let

BS =
∐

s∈S

Es. Prove that BS ∈ B. If S is finite, then BS ∈ B (because B is an

algebra containing D and Es ∈ D, s ∈ S). If S is infinite, write S = {s1, s2, . . .}
with si < sj if i < j.

Let η > 0; there exists n0 = n0(η) ∈ N∗ such that for every n ≥ n0, we have
µ(An(ε)) < η. Now, for each p ∈ N∗, Esp

= Dij(sp)(nsp ),nsp
for a nsp

∈ N∗.
Observe that from the “construction” of the El, if p1 < p2, then nsp1

≤ nsp2
.

Consider n1 ≥ max{n0(η), ns1} and let p0 = min{p ∈ N∗ : nsp > n1}. So,
we have nsp0

> n1, p0 ≥ 2 (because ns1 ≤ n1), and nsp0−1 ≤ n1. Moreover,

BS =
p0−1∐
p=1

Esp

∐ ∞∐
p=p0

Esp .
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But, for every p ≥ p0 ≥ 2, we can write

Esp
= Dij(sp)(nsp ),nsp

⊂
(
Ansp−1(ε)\Ansp

(ε)
)
⊂ Ansp−1(ε)

⊂ Ansp0
−1(ε) ⊂ An1(ε).

It follows BS ⊂
p0−1∐
p=1

Esp

∐
An1(ε) =: U.

Note that we really have a disjoint union, because Esp = Dij(sp)(nsp ),nsp
⊂

(Ansp
(ε))c. Now, for every 1 ≤ p ≤ p0 − 1, we have nsp ≤ n1, and therefore

An1(ε) ⊂ Ansp
(ε); so that

Esp

⋂
An1(ε) ⊂

(
(Ansp

(ε))c
⋂
An1(ε)

)
⊂

(
(An1(ε))

c
⋂
An1(ε)

)
= ∅.

As An1(ε) =
∐

j∈Jn1 (ε)

Dj,n1 , it follows that U =
p0−1∐
p=1

Esp

∐ ∐
j∈Jn1 (ε)

Dj,n1 .

If U = ∅, then BS = ∅ ∈ B. Suppose U 6= ∅. From Remark 1.7, there
exists π = {C1, . . . , Cr} ∈ ΠX such that the non-empty elements of D which
constitute U appear among the Cj .

Suppose that Cj

⋂
BS 6= ∅ and Cj

⋂
(BS)c 6= ∅ ; then, Cj cannot be one

of the Esp
, 1 ≤ p ≤ p0 − 1, because Esp

⊂ BS . As Cj cannot be in U c,
the only possibility is that Cj is one of the Dj,n1 for a j ∈ Jn1(ε). Hence,∐
j∈∆π,BS

Cj ⊂ An1(ε) , and so 0 ≤
∑

j∈∆π,BS

µ(Cj) ≤ µ(An1(ε)) < η. It follows

that BS ∈ B for every S ⊂ N∗, S 6= ∅.
Recall that f3 =

∞∑
l=1

αl·1El
and f(X) ⊂

q∐
j=1

Vj , where Vj 6= ∅ and ||y−z|| <

2ε if y, z ∈ Vj , for 1 ≤ j ≤ q . We observe that f3(X) ⊂
q∐

j=1

Vj (because

0 ∈ Vj0 and if f3(x) 6= 0, then f3(x) = αl(x) = f(x̃l(x)) ∈
q∐

j=1

Vj). For every

1 ≤ j ≤ q, let B̃j = f−1
3 (Vj). Then B̃j ∈ B, 1 ≤ j ≤ q. This is true because

∅ ∈ B, and if j 6= j0 with f−1
3 (Vj) 6= ∅, then f−1

3 (Vj) =
∐

l:αl∈Vj

El ∈ B (from

what precedes), and finally, we have f−1
3 (Vj0) =

∐
l:αl∈Vj0

El

∐ ( ∞∐
l=1

El

)c

∈ B.

Moreover, we have X =
q∐

j=1

B̃j . For each 1 ≤ j ≤ q, let b̃j ∈ Vj and

consider ψε =
q∑

j=1

b̃j · 1B̃j
∈ SF (B). So, we have ||f3 − ψε||∞ ≤ 2ε. Let
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ξε = ϕε + ψε ∈ SF (B); we can write

||f − ξε||∞ = ||f − ϕε − ψε||∞ = ||f1 + f2 − ϕε − ψε||∞
≤ ||f1 − ϕε||∞ + ||f2 − f3||∞ + ||f3 − ψε||∞ ≤ 5ε .

As ε > 0 is arbitrary, we deduce that f is the uniform limit of functions of
SF (B).

2.6 Remarks

(1) If C is an algebra of subsets of X such that for every C ∈ C, the function
ϕ = a·1C is D-F -integrable for an a ∈ F\{0} (F is supposed to be non-reduced
to {0}), then C ⊂ B. (Indeed, for every ε > 0, there exists πε = {D1, . . . , Dn}
a finite D-partition of X verifying

ε · ||a|| >
n∑

i=1

diam(ϕ(Di)) · µ(Di) =
∑

i∈∆πε,C

||a|| · µ(Di),

therefore
∑

i∈∆πε,C

µ(Di) < ε. It follows that C ∈ B, and then we have the

assertion.)
(2) Note that B is independent of F. As a matter of fact, B depends

only on (X,D, µ).
The following corollary corresponds to exercise 116 from § 7 of [2] adapted

to the case of a basic space.

2.7 Corollary

Let (X,D, µ) be a basic space, F a Banach space of finite dimension and
f : X 7→ F a (bounded) function. Then, f is D-F -integrable if and only if

f ∈ S(B)
||·||∞

.
Proof. As f(X) is compact, the result follows from Theorem 2.5.

2.8 Examples

(1) Consider X = [a, b] with

D = { [a, β] : a ≤ β ≤ b}
⋃

{ ]α, β] : a ≤ α ≤ β ≤ b} ,

µ([a, β]) = (β − a) , µ(]α, β]) = (β − α) , where X is provided with the usual
topology Θ, and let F = R.

With reference to [6], let B = A, the algebra of subsets A of [a, b] such that
Λ(Fr(A)) = 0, where Λ denotes the Lebesgue measure, which is complete.
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Let B ∈ B. For every ε > 0, there exists πε = {D1, . . . , Dl} ∈ ΠX such
that

∑
i∈∆πε,B

µ(Di) < ε. Considering if necessary {a} and ]a, β], we can suppose

that D1 = {a} and for 2 ≤ i ≤ l, Di =]αi = βi−1, βi] with βi−1 < βi and
α2 = a. Suppose that x ∈ Fr(B). There exists 1 ≤ ix ≤ l such that x ∈ Dix

. If
x ∈ ]αix

, βix
[ , then ix ∈ ∆πε,B , so that Fr(B) ⊂

( ∐
i∈∆πε,B

Di

) ⋃
{a; βi : 2 ≤

i ≤ l}. We deduce 0 ≤ Λ(Fr(B)) ≤
∑

i∈∆πε,B

µ(Di) + Λ({a; βi : 2 ≤ i ≤ l}) <

ε+ 0 = ε, for every ε > 0. Consequently, Λ(Fr(B)) = 0. We conclude B ∈ A.
It follows B ⊂ A.

But, for every A ∈ A, the function f = 1A : [a, b] 7→ R is Riemann-
integrable by the article [6]; therefore, f is D-R-integrable, as we have seen
in Application 1.20. From the remark (1) of 2.6, we obtain A ∈ B. It follows
A ⊂ B , and finally B = A.

(2) Consider X = N, D = A(D) = {D ⊂ X : D or Dc is finite},
µ(D) = 0 if D is finite, and µ(D) = 1 if Dc is finite. Let E ⊂ X such that
E and Ec are infinite. Then, given D ∈ D with Dc finite, we deduce that
D ∩ E 6= ∅ and D ∩ Ec 6= ∅ . So, as µ(D) = 1, E cannot be an element of B .
We conclude from the definition of D that B = D.

3 Darboux-Integrability and Semi-Norm || · ||µ

In this paragraph, we only cite some results which are related to the Darboux-
integrability and a semi-norm defined on B(X,F ). This semi-norm allows,
especially, to consider the sequences of D-F -integrable functions, and also to
characterize the D-F -integrable functions by the D-simple functions.

3.1 Definition

Given a basic space (X,D, µ) and F a Banach space, for every function f ∈
B(X;F ), let

||f ||µ = inf
γ ∈SR+

(D)

and γ≥ ||f||

ID(γ) ,

where ID(γ) =
n∑

i=1

ri · µ(Di) (if γ =
n∑

i=1

ri · 1Di
), and γ ≥ ||f || means γ(x) ≥

||f(x)||, x ∈ X.
We note that this definition extends to the case of a basic space a notion

(of superior Riemann-integral) introduced in [5].
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3.2 Lemma

(a) || · ||µ is a semi-norm on B(X;F ).
Moreover, ||f ||µ ≤ ||f ||∞ · µ(X) for every f ∈ B(X;F ).
(b) For every f ∈ SF (D), ||f ||µ = ID(||f ||).
(c) Let f : X 7→ F be a bounded function such that ||f || : X 7→ R is

D-R-integrable. Then, ||f ||µ = ID(||f ||).

3.3 Proposition

Let (X,D, µ) be a basic space and F a Banach space. Consider (fn)n≥1 a
sequence of D-F -integrable functions, fn : X 7→ F , and let f ∈ B(X;F ).

Suppose that lim
n→∞

||f − fn||µ = 0. Then, f is D-F -integrable and ID(f) =

lim
n→∞

ID(fn).

3.4 Corollary

Let fn : X 7→ F (n ≥ 1) be a sequence of D-F -integrable functions and
f ∈ B(X;F ) such that fn −−−→

n→∞
f uniformly. Then, f is D-F -integrable and

ID(f) = lim
n→∞

ID(fn).

3.5 Proposition

Let (X,D, µ) be a basic space, F a Banach space, and f ∈ B(X;F ). Then,

f is D-F -integrable if and only if f ∈ SF (D)
||·||µ

,
that is, there exists a sequence (fn)n≥1 of functions of SF (D) with lim

n→∞
||f−

fn||µ = 0.
Remark: From Proposition 3.3, we have ID(f) = lim

n→∞
ID(fn).

3.6 Remarks

(1) Precise however that, even if the notations and the approach used are
different, the essential of Proposition 3.5 is in exercise 99 of § 7 of [2].

(2) Note that if the function f is defined on D instead of X, it is possible
to consider an interesting type of integral (similar, but different, to those pre-
sented in [1]) as it is suggested by the article [3], where the author establishes,
under the continuum hypothesis, an integral representation of the second dual
of C([0, 1]). Add that in [4], the author extends the integral representation in
a more general context and in relation with the axioms of the set theory.
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(2000), Ecole Polytechnique Fédérale de Lausanne, 1999.

[2] H. Günzler, Integration, Bibliographisches Institut, Mannheim/Wien/
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