Yves Bolle, Rue du Midi 12, 1196 Gland, Switzerland. email: yves.bolle@providentia.ch

DARBOUX-INTEGRABILITY AND UNIFORM CONVERGENCE

Abstract

In 1992, Šikić gives a characterization of Riemann-integrable functions as uniform limits of simple functions. The aim of this article is to prove an extension to the case of functions defined on a *basic space* (X, \mathcal{D}, μ) and with values in *any* Banach space F.

0 Introduction

In the article [6], the author gives a characterization of Riemann-integrable functions as uniform limits of simple functions; more exactly, he proves the following assertion:

Theorem (Šikić). The function $f : [a, b] \mapsto \mathbb{R}$ is Riemann-integrable if and only if f is the uniform limit of a sequence of functions

$$f_n = \sum_{i=1}^{l_n} a_{i,n} \cdot \mathbf{1}_{A_{i,n}}$$

where $A_{i,n} \in \mathcal{A}$, the algebra of subsets of [a, b] formed by the Lebesgue-measurable subsets A of [a, b] with $\Lambda(\operatorname{Fr}(A)) = 0$, where Fr denotes the boundary and Λ is the Lebesgue measure.

Note that exercise 116 of §7 from [2] presents a generalization of this result to the case of functions with values in a Banach space of *finite* dimension. The aim of this article is to prove Theorem 2.5, which gives an extension to the case of functions defined on a *basic space* (X, \mathcal{D}, μ) and with values in *any* Banach space F. We precise that the proofs - most of them are simple - of the results quoted in this paper are in the thesis [1].

Key Words: simple functions, Riemann integrable, uniform limit

Mathematical Reviews subject classification: 46G12, 26A42

Received by the editors June 28, 2001

Communicated by: R. Daniel Mauldin

³⁹⁵

1 Preliminaries

1.1 Conventions and Notation

If a_i denotes an element of a vector space and A_i a subset of a set, we use the following conventions: $\sum_{i \in \emptyset} a_i = 0$, and $\bigcup_{i \in \emptyset} A_i = \emptyset$. Moreover, the notation \coprod denotes *disjoint* union.

The Banach spaces we consider are over the field \mathbb{R} of real numbers. Let F be a Banach space with norm $|| \cdot ||$, and P a non-empty subset of F; we call diameter of P the quantity diam $(P) = \sup_{y,z \in P} ||y - z||$.

1.2 Semi-Ring

Given a set X, a *semi-ring* \mathcal{D} of subsets of X is a family of subsets of X such that

- $\emptyset \in \mathcal{D}$;
- if $A, B \in \mathcal{D}$, then $A \cap B \in \mathcal{D}$;

• if
$$A, B \in \mathcal{D}$$
, then $A \setminus B = A \bigcap B^c = \prod_{j=1}^n C_j$, where $C_j \in \mathcal{D}, 1 \le j \le n$.

Note that, generally, $A \setminus B \notin \mathcal{D}$.

1.3 Finite *D*-Partition

Given a non-empty set X and \mathcal{D} a semi-ring of subsets of X, every finite family $\pi = \{D_1, \ldots, D_n\}$ of non-empty disjoint elements of \mathcal{D} and such that $X = \coprod_{j=1}^n D_j$, is called a *finite* \mathcal{D} -partition of X. We write Π_X for the set of all the finite \mathcal{D} -partitions of X.

1.4 Fineness on Π_X

Suppose that π_1 is a finite \mathcal{D} -partition of X; a finite \mathcal{D} -partition π_2 of X is said to be *finer* than π_1 , which we note by $\pi_2 \gg \pi_1$, if every element of π_1 is the union of elements of π_2 .

1.5 Remark

Given π_1 and π_2 any two finite \mathcal{D} -partitions of X, there exists a finite \mathcal{D} -partition π of X finer than π_1 and π_2 . Indeed, if $\pi_1 = \{D_1, \ldots, D_m\}$ and $\pi_2 = \{E_1, \ldots, E_n\}$, it suffices to consider the set of the $D_i \bigcap E_j$ which are non-empty, $1 \le i \le m, 1 \le j \le n$.

1.6 Lemma

Let X be a non-empty set, \mathcal{D} a semi-ring of subsets of X such that there exists a finite \mathcal{D} -partition of X. Then,

$$\mathcal{A}(\mathcal{D}) = \left\{ \prod_{i=1}^{n} D_i : D_i \in \mathcal{D}, 1 \le i \le n, n \in \mathbb{N}^* \right\}$$

is the algebra (of subsets of X) generated by \mathcal{D} .

1.7 Remark

(to be used in the proof of Theorem 2.5)

In the hypothesis of Lemma 1.6, if $m \in \mathbb{N}^*$ and $D_1, \ldots, D_m \in \mathcal{D} \setminus \{\emptyset\}$ with $D_i \bigcap D_j = \emptyset$ if $i \neq j$, then there exists $\pi \in \Pi_X$ such that every $D_i \in \pi, 1 \leq i \leq m$. Indeed, if $A = \coprod_{i=1}^m D_i = X$, then $\pi = \{D_1, \ldots, D_m\}$. And if $A = \coprod_{i=1}^m D_i \neq X$, then $A^c \in \mathcal{A}(\mathcal{D})$ and $A^c \neq \emptyset$, thus there exists $D_{m+1}, \ldots, D_n \in \mathcal{D} \setminus \{\emptyset\}$ such that $A^c = \coprod_{i=m+1}^n D_i$; so that $\pi = \{D_1, \ldots, D_n\} \in \Pi_X$.

1.8 Functions \mathcal{D} -Simple

Let \mathcal{D} be a semi-ring of subsets of a set X (such that $\Pi_X \neq \emptyset$), and F a Banach space. Consider $V = \mathbb{R}_+$ or V = F, and let

$$\mathcal{S}_V(\mathcal{D}) = \left\{ \sum_{i=1}^m v_i \cdot 1_{D_i} : v_i \in V, \ \{D_1, \dots, D_m\} \in \Pi_X \right\},\$$

where 1_D denotes the indicator function of D. The elements of $S_V(\mathcal{D})$ are called \mathcal{D} -simple functions with values in V.

1.9 (Jordan) Content

Given X a non-empty set, and \mathcal{D} a semi-ring of subsets of X such that there exists a finite \mathcal{D} -partition of X, we call (Jordan) *content*, any monotone function of sets μ defined on $\mathcal{A}(\mathcal{D})$ which is finite, positive and additive, that is $\mu : \mathcal{A}(\mathcal{D}) \mapsto \mathbb{R}_+, \ \mu(\emptyset) = 0, \ \mu(A) \leq \mu(B)$ if $A \subset B$, and $\mu\left(\prod_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i), n \in \mathbb{N}^*.$

1.10 Basic Space

We call *basic space* any triple (X, \mathcal{D}, μ) , where X is a non-empty set provided with a semi-ring \mathcal{D} of subsets of X such that there exists a finite \mathcal{D} -partition of X, and μ is a (Jordan) content defined on $\mathcal{A}(\mathcal{D})$.

1.11 Lemma

Let (X, \mathcal{D}, μ) be a basic space. Then, $\mu \left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mu(A_i)$, for every $A_i \in \mathcal{A}(\mathcal{D})$, $1 \leq i \leq n, n \in \mathbb{N}^*$.

1.12 Example

Consider $a < b \in \mathbb{R}$, and X = [a, b]; let

$$\begin{aligned} \mathcal{D} &= \left\{ \left[a, b \right] \bigcap \left[\alpha, \beta \right] : \alpha < \beta \in \mathbb{R} \right\} \\ &= \left\{ \left[a, \beta \right] : a \le \beta \le b \right\} \bigcup \left\{ \left[\alpha, \beta \right] : a \le \alpha \le \beta \le b \right\}, \text{ with} \end{aligned}$$

 $\mu([a,\beta]) = (\beta - a)$ and $\mu([\alpha,\beta]) = (\beta - \alpha)$. Then, (X, \mathcal{D}, μ) is a basic space.

1.13 Darboux-Integrability

Consider (X, \mathcal{D}, μ) a basic space and F a Banach space. A function $f: X \mapsto F$ is said to be *Darboux-integrable*, what we will note by \mathfrak{D} -integrable or \mathfrak{D} -F-integrable, or \mathfrak{D} - $(X, \mathcal{D}, \mu; F)$ -integrable if there is a risk of confusion, if

- (a) diam $(f(X)) < \infty$ (what is equivalent to f bounded);
- (b) for every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \dots, D_n\}$ a finite \mathcal{D} -partition of X such that $\sum_{i=1}^n \operatorname{diam}(f(D_i))\mu(D_i) < \varepsilon$.

1.14 Lemma

The set $\mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu; F)$ of the \mathfrak{D} - $(X, \mathcal{D}, \mu; F)$ -integrable functions is a vector subspace of B(X; F), the set of the bounded functions from X to F, and moreover $\mathcal{S}_F(\mathcal{D})$ is a subset of $\mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu; F)$.

The proposition 1.16 below will allow us to give the definition of the Darboux-integral of a Darboux-integrable function.

1.15 Notations and Remarks

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space, and $f : X \mapsto F$ a bounded function. For each $D \in \mathcal{D}$ with $D \neq \emptyset$, let

$$E_f(D) = \{ y \in F : \exists a \in \operatorname{Conv}(f(D)) \text{ such that } ||y - a|| \le \operatorname{diam}(f(D)) \} ,$$

where $\operatorname{Conv}(f(D))$ is the convex hull of f(D), that is,

$$\operatorname{Conv}(f(D)) = \left\{ \sum_{i=1}^{m} \lambda_i f(x_i) : 0 \le \lambda_i \le 1, \sum_{i=1}^{m} \lambda_i = 1, x_i \in D, 1 \le i \le m, m \in \mathbb{N}^* \right\}.$$

Note that $f(D) \subset \operatorname{Conv}(f(D)) \subset E_f(D)$; moreover, for every $x \in D$, we have $\{y \in F : ||y - f(x)|| \leq \operatorname{diam}(f(D))\} \subset E_f(D)$. In addition, we observe that if $f(D) = \{a\}$, then $E_f(D) = \{a\}$.

1.16 Proposition

Given (X, \mathcal{D}, μ) a basic space and F a Banach space, a bounded function $f : X \mapsto F$ is \mathfrak{D} -F-integrable if and only if there exists $I \in F$ such that for every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_l\}$ a finite \mathcal{D} -partition of X such that

 $\left|\left|\sum_{i=1}^{l} y_{i} \cdot \mu(D_{i}) - I\right|\right| < \varepsilon \text{ for every } y_{i} \in E_{f}(D_{i}), 1 \leq i \leq l. \text{ Moreover, in that case, } I \text{ is unique.}$

1.17 Darboux-Integral

Let $f : X \mapsto F$ be a \mathfrak{D} -F-integrable function. Then, the unique element I = I(f) established in Proposition 1.16 is called the *Darboux-integral* of f and is noted \mathfrak{D} - $\int_X f(x)d\mu(x)$ or $I_{\mathfrak{D}}(f)$ (to simplify the writing).

1.18 Remark

Given $f \in \mathfrak{D}$ -F-integrable function and $\varepsilon_n \searrow 0$, if $\pi_n = \{D_{1,n}, \ldots, D_{l_n,n}\} \in \Pi_X$ with $\sum_{i=1}^{l_n} \operatorname{diam}(f(D_{i,n}))\mu(D_{i,n}) < \varepsilon_n$, then if $x_{i,n} \in D_{i,n}, 1 \le i \le l_n, n \ge 1$, we obtain

$$I_{\mathfrak{D}}(f) = \lim_{n \to \infty} \left(\sum_{i=1}^{l_n} f(x_{i,n}) \mu(D_{i,n}) \right) \,.$$

1.19 Proposition

Let (X, \mathcal{D}, μ) be a basic space and Θ a topology on X. Suppose that for every $D \in \mathcal{D}$ with $\overline{D} \neq D$ and for every $\delta > 0$, there exists $E_1, \ldots, E_{K(D,\delta)} \in \mathcal{D} \setminus \{\emptyset\}$ (which depend on D and δ) pairwise disjoint, $E_k \subset D$, $1 \leq k \leq K(D, \delta)$, with

$$\sum_{k=1}^{K(D,\delta)} \mu(E_k) < \delta, \text{ and } \overline{\left(D \setminus \prod_{k=1}^{K(D,\delta)} E_k\right)} \subset D.$$

Consider a Banach space F and $f: X \mapsto F$ a bounded function. Then, f is \mathfrak{D} -*F*-integrable if and only if for every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_m\} \in$ Π_X such that $\sum_{i=1}^m \operatorname{diam}(f(\overline{D_i}))\mu(D_i) < \varepsilon$.

Moreover, in that case,
$$I_{\mathfrak{D}}(f) = \lim_{n \to \infty} \left(\sum_{i=1}^{l_n} f(x_{i,n}) \mu(D_{i,n}) \right)$$
, where $x_{i,n} \in \overline{D_{i,n}}$, $1 \le i \le l_n$, and $\sum_{i=1}^{l_n} \operatorname{diam}(f(\overline{D_{i,n}})) \mu(D_{i,n}) < \varepsilon_n \searrow 0$.

1.20 An Application

Consider the basic space $(X = [a, b], \mathcal{D}, \mu)$ of Example 1.12, and X provided with the usual topology.

If $D = [\alpha, \beta]$, then $\overline{D} = D$. If $D =]\alpha, \beta]$ with $\alpha < \beta$, and if $\delta > 0$, let $E_{\delta} =]\alpha, \gamma_{\delta}]$, where $\gamma_{\delta} = \min\{\alpha + \frac{\delta}{2}; \frac{\alpha+\beta}{2}\}$; then $\overline{D \setminus E_{\delta}} = [\gamma_{\delta}, \beta] \subset]\alpha, \beta] = D$, and moreover $\mu(E_{\delta}) \leq \frac{\delta}{2} < \delta$. Consequently, by Proposition 1.19, if $f: X \mapsto F$ is a bounded function with

Consequently, by Proposition 1.19, if $f: X \mapsto F$ is a bounded function with values in a Banach space F, then f is \mathfrak{D} -F-integrable if and only if for every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_m\} \in \Pi_X$ with $\sum_{i=1}^m \operatorname{diam}(f(\overline{D_i}))\mu(D_i) < \varepsilon$. In particular, if $F = \mathbb{R}$, then f is \mathfrak{D} -F-integrable if and only if for each $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_m\} \in \Pi_X$ such that

$$\varepsilon > \sum_{i=1}^{m} \operatorname{diam}(f(\overline{D_i} = [\alpha_i, \beta_i])) \mu(D_i) = \sum_{i=1}^{m} \sup_{x, y \in [\alpha_i, \beta_i]} |f(x) - f(y)| (\beta_i - \alpha_i)$$
$$= \sum_{i=1}^{m} \left(\sup_{x \in [\alpha_i, \beta_i]} f(x) - \inf_{x \in [\alpha_i, \beta_i]} f(x) \right) (\beta_i - \alpha_i),$$

in other words, f is \mathfrak{D} - \mathbb{R} -integrable if and only if f is Riemann-integrable. Moreover, we have $I_{\mathfrak{D}}(f) = \int_{a}^{b} f(x) dx$.

1.21 Proposition

Consider a basic space (X, \mathcal{D}, μ) and F a Banach space. Then, a bounded function $f: X \mapsto F$ is \mathfrak{D} -F-integrable if and only if there exists a sequence $\left(\pi_n = \{D_{1,n}, \ldots, D_{k_n,n}\}\right)_{n\geq 1}$ of finite \mathcal{D} -partitions of X such that $\pi_{n+1} \gg \pi_n$, $n \in \mathbb{N}^*$, and such that for every $\varepsilon > 0$, $\lim_{n\to\infty} \mu(A_n(f;\varepsilon)) = 0$, where $A_n(f;\varepsilon) = \prod_{j\in J_n(\varepsilon)} D_{j,n}$, with $J_n(\varepsilon) = \{1 \leq j \leq k_n : \operatorname{diam}(f(D_{j,n})) > \varepsilon\}$, $n \in \mathbb{N}^*$.

2 Darboux-Integrability and Uniform Convergence

The aim of this paragraph is Theorem 2.5. However we first give some preliminary results. Add that Lemma 2.1 can be proved in a classical way, but Corollary 3.4 gives another proof.

2.1 Lemma

Given a basic space (X, \mathcal{D}, μ) and a Banach space F, let $(f_n)_{n\geq 1}$ be a sequence of \mathfrak{D} -F-integrable functions and f be a function such that f is the uniform limit of the f_n . Then, f is \mathfrak{D} -F-integrable.

2.2 Remark

If f is the uniform limit of \mathcal{C} -simple functions, where \mathcal{C} is a semi-ring of subsets of X, then f(X) is totally bounded and then, as F is a Banach space, we deduce that $\overline{f(X)}$ is compact. Indeed, let $\varepsilon > 0$; we have $||f - f_n||_{\infty} < \varepsilon$, $n \ge n_0 = n_0(\varepsilon) \in \mathbb{N}^*$, where $f_n = \sum_{i=1}^{l_n} c_{i,n} \cdot 1_{C_{i,n}} \in \mathcal{S}_F(\mathcal{C})$. Then, as $\{C_{1,n_0}, \ldots, C_{l_{n_0},n_0}\} \in \Pi_X$, we have $\overline{f(X)} \subset \bigcup_{i=1}^{l_{n_0}} B(c_{i,n_0},\varepsilon)$.

2.3 Definition of the Algebra \mathcal{B} (of Subsets of X)

Given $B \subset X$ and $\pi = \{D_1, \ldots, D_n\}$ a finite \mathcal{D} -partition of X, let

$$\Delta_{\pi,B} = \left\{ 1 \le i \le n : D_i \bigcap B \ne \emptyset \text{ and } D_i \bigcap B^c \ne \emptyset \right\}.$$

Let $\mathcal{B} = \left\{ B \subset X \text{ such that for every } \varepsilon > 0, \text{ there exists } \pi_{\varepsilon} = \{D_1, \dots, D_n\} \text{ a finite } \mathcal{D}\text{-partition of } X \text{ such that } \sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu(D_i) < \varepsilon \right\}.$

2.4 Lemma

- (a) The family \mathcal{B} is an algebra (of subsets of X) containing \mathcal{D} .
- (b) If F is a Banach space, then $\overline{\mathcal{S}_F(\mathcal{B})}^{||\cdot||_{\infty}} \subset \mathcal{I}_{\mathfrak{D}}(X, \mathcal{D}, \mu; F)$.

2.5 Theorem

Given a basic space (X, \mathcal{D}, μ) and a Banach space F, let $f : X \mapsto F$ be a function. Then, $f \in \overline{\mathcal{S}_F(\mathcal{B})}^{||\cdot||_{\infty}}$ if and only if $\overline{f(X)}$ is compact and f is \mathfrak{D} -F-integrable.

Proof.

Necessity. From (b) of Lemma 2.4, f is \mathfrak{D} -*F*-integrable; moreover, from Remark 2.2, we deduce that $\overline{f(X)}$ is compact.

Sufficiency. Suppose that f is \mathfrak{D} -F-integrable; from Proposition 1.21, there exists a sequence $\left(\pi_n = \{D_{1,n}, \ldots, D_{l_n,n}\}\right)_{n \ge 1}$ of finite \mathcal{D} -partitions of X such that $\pi_{n+1} \gg \pi_n, n \in \mathbb{N}^*$, and such that for every $\varepsilon > 0$, $\lim_{n \to \infty} \mu(A_n(\varepsilon)) = 0$, where $A_n(\varepsilon) = \prod_{j \in J_n(\varepsilon)} D_{j,n}$, where $J_n(\varepsilon) = \{1 \le j \le l_n : \operatorname{diam}(f(D_{j,n})) > \varepsilon\}$.

Consider $\varepsilon > 0$ and let $B_{\varepsilon} = \bigcap_{n=1}^{\infty} A_n(\varepsilon)$. Prove that $B \in \mathcal{B}$ for every $B \subset B_{\varepsilon}$. Now, for each $\eta > 0$, there exists $n_0 = n_0(\eta) \in \mathbb{N}^*$ such that $\mu(A_n(\varepsilon)) < \eta$ for every $n \ge n_0$; consider $A_{n_0}(\varepsilon)$.

As $B \subset A_{n_0}(\varepsilon)$, we deduce $\Delta_{\pi_{n_0},B} \subset J_{n_0}(\varepsilon)$ (because if $D_{j,n_0} \bigcap B \neq \emptyset$, then $D_{j,n_0} \bigcap A_{n_0}(\varepsilon) \neq \emptyset$, and therefore $D_{j,n_0} \subset A_{n_0}(\varepsilon)$). It follows that $\sum_{j \in \Delta_{\pi_{n_0},B}} \mu(D_{j,n_0}) \leq \mu(A_{n_0}(\varepsilon)) < \eta$. Thus, as $\eta > 0$ is arbitrary, we obtain $B \in \mathcal{B}$ for every $B \subset B_{\varepsilon}$.

Considering first (if necessary) $g = f - f(x_0)$, where $x_0 \in X$, we can suppose, without loss of generality, that there exists $x \in X$ with f(x) = 0. As $\overline{f(X)}$ is compact, there exists $a_1, \ldots, a_p \in F$ such that $f(X) \subset \bigcup_{i=1}^p B(a_i; \varepsilon) =$ $\prod_{j=1}^q V_j$, where $q \leq p, V_j \neq \emptyset$, and $||y - z|| < 2\varepsilon$ if $y, z \in V_j, 1 \leq j \leq q$, (where $B(a_i; \varepsilon)$ denotes the open ball of center a_i and radius ε). Indeed, let $U_m = \bigcup_{i=1}^m B(a_i; \varepsilon), 1 \leq m \leq p$. Then,

$$\bigcup_{i=1}^{p} B(a_i;\varepsilon) = U_1 \coprod \prod_{m=2}^{p} (U_m \setminus U_{m-1})$$

and we have the existence of the V_j .

Let $f = f_1 + f_2$, where $f_1 = f \cdot 1_{B_{\varepsilon}}$ and $f_2 = f \cdot 1_{B_{\varepsilon}}$. For every $1 \leq j \leq q$, let $B_j = f_1^{-1}(V_j)$. There exists (one and only one) $j_0 \in \{1, \ldots, q\}$ with $0 \in V_{j_0}$. So, for every $1 \leq j \leq q$ with $j \neq j_0$, we have $B_j \subset B_{\varepsilon}$; therefore, $B_j \in \mathcal{B}$, $j \neq j_0$. As \mathcal{B} is an algebra and from the fact that $X = \prod_{j=1}^{q} B_j$, it follows that $B_{j_0} \in \mathcal{B}$.

For each $1 \leq j \leq q$, consider $b_j \in V_j$ and let $\varphi_{\varepsilon} = \sum_{j=1}^q b_j \cdot 1_{B_j}$. We obtain $\varphi_{\varepsilon} \in \mathcal{S}_F(\mathcal{B})$ and $||f_1 - \varphi_{\varepsilon}||_{\infty} \leq 2\varepsilon$. Consider the case of $f_2 = f \cdot 1_{B_{\varepsilon}^c}$. Observe that $B_{\varepsilon}^c = \bigcup_{n=1}^{\infty} (A_n(\varepsilon))^c = (A_1(\varepsilon))^c \coprod \prod_{n=1}^{\infty} \left(A_n(\varepsilon) \setminus A_{n+1}(\varepsilon)\right)$. Now, we have $(A_1(\varepsilon))^c = D_{i_1(1),1} \coprod \dots \coprod D_{i_{k_1}(1),1} = E_1 \coprod \dots \coprod E_{k_1}$ with $E_k = D_{i_k(1),1} \in \mathcal{D}$ (maybe \emptyset , but only if $(A_1(\varepsilon))^c = \emptyset$), and diam $(f(D_{i_k(1),1})) \leq \varepsilon$ $(1 \leq k \leq k_1)$; with the convention diam $(\emptyset) = 0$; and for every $n \in \mathbb{N}^*$, we have

$$A_{n}(\varepsilon) \setminus A_{n+1}(\varepsilon) = D_{i_{1}(n+1),n+1} \coprod \cdots \coprod D_{i_{k_{n+1}}(n+1),n+1}$$
$$= E_{\left(\sum_{r=1}^{n} k_{r}\right)+1} \coprod \cdots \coprod E_{\left(\sum_{r=1}^{n} k_{r}\right)+k_{n+1}},$$

with diam $(f(D_{i_k(n+1),n+1})) \leq \varepsilon$ $(1 \leq k \leq k_{n+1})$; in other words $B_{\varepsilon}^c = \prod_{l=1}^{\infty} E_l$ with $E_l \in \mathcal{D}$ and diam $(f(E_l)) \leq \varepsilon$, $l \in \mathbb{N}^*$. Let $l \in \mathbb{N}^*$; E_l corresponds to a $D_{i_{j(l)}(n_l),n_l}$ (which can be \emptyset), for a $n_l \in \mathbb{N}^*$; if $E_l = D_{i_{j(l)}(n_l),n_l} \neq \emptyset$, let $\alpha_l = f(\tilde{x}_l)$ for $\tilde{x}_l \in E_l$; if $E_l = \emptyset$, let $\alpha_l = 0$.

Note that $||f \cdot 1_{E_l} - \alpha_l \cdot 1_{E_l}||_{\infty} \leq \operatorname{diam}(f(E_l)) \leq \varepsilon$. Let $f_3 = \sum_{l=1}^{\infty} \alpha_l \cdot 1_{E_l}$; so, we have $||f_2 - f_3||_{\infty} = \left|\left|\sum_{l=1}^{\infty} f \cdot 1_{E_l} - \sum_{l=1}^{\infty} \alpha_l \cdot 1_{E_l}\right|\right|_{\infty} \leq \varepsilon$. Given $S \subset \mathbb{N}^*, S \neq \emptyset$, let $B_S = \coprod_{s \in S} E_s$. Prove that $B_S \in \mathcal{B}$. If S is finite, then $B_S \in \mathcal{B}$ (because \mathcal{B} is an algebra containing \mathcal{D} and $E_s \in \mathcal{D}, s \in S$). If S is infinite, write $S = \{s_1, s_2, \ldots\}$ with $s_i < s_i$ if i < j.

Let $\eta > 0$; there exists $n_0 = n_0(\eta) \in \mathbb{N}^*$ such that for every $n \ge n_0$, we have $\mu(A_n(\varepsilon)) < \eta$. Now, for each $p \in \mathbb{N}^*$, $E_{s_p} = D_{i_{j(s_p)}(n_{s_p}), n_{s_p}}$ for a $n_{s_p} \in \mathbb{N}^*$. Observe that from the "construction" of the E_l , if $p_1 < p_2$, then $n_{s_{p_1}} \le n_{s_{p_2}}$. Consider $n_1 \ge \max\{n_0(\eta), n_{s_1}\}$ and let $p_0 = \min\{p \in \mathbb{N}^* : n_{s_p} > n_1\}$. So, we have $n_{s_{p_0}} > n_1$, $p_0 \ge 2$ (because $n_{s_1} \le n_1$), and $n_{s_{p_0-1}} \le n_1$. Moreover, $B_S = \prod_{p=1}^{p_0-1} E_{s_p} \coprod \prod_{p=p_0}^{\infty} E_{s_p}$. But, for every $p \ge p_0 \ge 2$, we can write

$$\begin{split} E_{s_p} &= D_{i_{j(s_p)}(n_{s_p}), n_{s_p}} \subset \left(A_{n_{s_p}-1}(\varepsilon) \backslash A_{n_{s_p}}(\varepsilon)\right) \subset A_{n_{s_p}-1}(\varepsilon) \\ &\subset A_{n_{s_{p_0}}-1}(\varepsilon) \subset A_{n_1}(\varepsilon). \end{split}$$

It follows $B_S \subset \prod_{p=1}^{p_0-1} E_{s_p} \coprod A_{n_1}(\varepsilon) =: U.$

Note that we really have a disjoint union, because $E_{s_p} = D_{i_{j(s_p)}(n_{s_p}), n_{s_p}} \subset (A_{n_{s_p}}(\varepsilon))^c$. Now, for every $1 \leq p \leq p_0 - 1$, we have $n_{s_p} \leq n_1$, and therefore $A_{n_1}(\varepsilon) \subset A_{n_{s_p}}(\varepsilon)$; so that

$$E_{s_p} \bigcap A_{n_1}(\varepsilon) \subset \left((A_{n_{s_p}}(\varepsilon))^c \bigcap A_{n_1}(\varepsilon) \right) \subset \left((A_{n_1}(\varepsilon))^c \bigcap A_{n_1}(\varepsilon) \right) = \emptyset.$$

As $A_{n_1}(\varepsilon) = \coprod_{j \in J_{n_1}(\varepsilon)} D_{j,n_1}$, it follows that $U = \coprod_{p=1}^{p_0-1} E_{s_p} \coprod \coprod_{j \in J_{n_1}(\varepsilon)} D_{j,n_1}$.

If $U = \emptyset$, then $B_S = \emptyset \in \mathcal{B}$. Suppose $U \neq \emptyset$. From Remark 1.7, there exists $\pi = \{C_1, \ldots, C_r\} \in \Pi_X$ such that the non-empty elements of \mathcal{D} which constitute U appear among the C_j .

Suppose that $C_j \cap B_S \neq \emptyset$ and $C_j \cap (B_S)^c \neq \emptyset$; then, C_j cannot be one of the E_{s_p} , $1 \leq p \leq p_0 - 1$, because $E_{s_p} \subset B_S$. As C_j cannot be in U^c , the only possibility is that C_j is one of the D_{j,n_1} for a $j \in J_{n_1}(\varepsilon)$. Hence, $\prod_{j \in \Delta_{\pi,B_S}} C_j \subset A_{n_1}(\varepsilon)$, and so $0 \leq \sum_{j \in \Delta_{\pi,B_S}} \mu(C_j) \leq \mu(A_{n_1}(\varepsilon)) < \eta$. It follows that $B_S \in \mathcal{B}$ for every $S \subset \mathbb{N}^*, S \neq \emptyset$.

Recall that $f_3 = \sum_{l=1}^{\infty} \alpha_l \cdot 1_{E_l}$ and $f(X) \subset \prod_{j=1}^{q} V_j$, where $V_j \neq \emptyset$ and ||y-z|| < 0

 $2\varepsilon \text{ if } y, z \in V_j, \text{ for } 1 \leq j \leq q. \text{ We observe that } f_3(X) \subset \prod_{j=1}^q V_j \text{ (because } 0 \in V_{j_0} \text{ and if } f_3(x) \neq 0, \text{ then } f_3(x) = \alpha_{l(x)} = f(\tilde{x}_{l(x)}) \in \prod_{j=1}^q V_j). \text{ For every } 1 \leq j \leq q, \text{ let } \tilde{B}_j = f_3^{-1}(V_j). \text{ Then } \tilde{B}_j \in \mathcal{B}, 1 \leq j \leq q. \text{ This is true because } \emptyset \in \mathcal{B}, \text{ and if } j \neq j_0 \text{ with } f_3^{-1}(V_j) \neq \emptyset, \text{ then } f_3^{-1}(V_j) = \prod_{l:\alpha_l \in V_j} E_l \in \mathcal{B} \text{ (from what precedes), and finally, we have } f_3^{-1}(V_{j_0}) = \prod_{l:\alpha_l \in V_{j_0}} E_l \prod \left(\prod_{l=1}^\infty E_l\right)^c \in \mathcal{B}.$ Moreover, we have $X = \prod_{j=1}^q \tilde{B}_j.$ For each $1 \leq j \leq q$, let $\tilde{b}_j \in V_j$ and

consider $\psi_{\varepsilon} = \sum_{j=1}^{q} \tilde{b}_j \cdot 1_{\tilde{B}_j} \in S_F(\mathcal{B})$. So, we have $||f_3 - \psi_{\varepsilon}||_{\infty} \leq 2\varepsilon$. Let

 $\xi_{\varepsilon} = \varphi_{\varepsilon} + \psi_{\varepsilon} \in \mathcal{S}_F(\mathcal{B});$ we can write

$$\begin{split} ||f - \xi_{\varepsilon}||_{\infty} &= ||f - \varphi_{\varepsilon} - \psi_{\varepsilon}||_{\infty} = ||f_1 + f_2 - \varphi_{\varepsilon} - \psi_{\varepsilon}||_{\infty} \\ &\leq ||f_1 - \varphi_{\varepsilon}||_{\infty} + ||f_2 - f_3||_{\infty} + ||f_3 - \psi_{\varepsilon}||_{\infty} \leq 5\varepsilon \end{split}$$

As $\varepsilon > 0$ is arbitrary, we deduce that f is the uniform limit of functions of $\mathcal{S}_F(\mathcal{B})$.

2.6 Remarks

(1) If \mathcal{C} is an algebra of subsets of X such that for every $C \in \mathcal{C}$, the function $\varphi = a \cdot 1_C$ is \mathfrak{D} -F-integrable for an $a \in F \setminus \{0\}$ (F is supposed to be non-reduced to $\{0\}$), then $\mathcal{C} \subset \mathcal{B}$. (Indeed, for every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_n\}$ a finite \mathcal{D} -partition of X verifying

$$\varepsilon \cdot ||a|| > \sum_{i=1}^{n} \operatorname{diam}(\varphi(D_i)) \cdot \mu(D_i) = \sum_{i \in \Delta_{\pi_{\varepsilon}, C}} ||a|| \cdot \mu(D_i)$$

therefore $\sum_{i \in \Delta_{\pi_{\varepsilon},C}} \mu(D_i) < \varepsilon$. It follows that $C \in \mathcal{B}$, and then we have the

assertion.)

(2) Note that \mathcal{B} is independent of F. As a matter of fact, \mathcal{B} depends only on (X, \mathcal{D}, μ) .

The following corollary corresponds to exercise 116 from $\S7$ of [2] adapted to the case of a basic space.

2.7 Corollary

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space of finite dimension and $f: X \mapsto F$ a (bounded) function. Then, f is \mathfrak{D} -F-integrable if and only if $f \in \overline{\mathcal{S}(\mathcal{B})}^{||\cdot||_{\infty}}$.

PROOF. As $\overline{f(X)}$ is compact, the result follows from Theorem 2.5.

2.8 Examples

(1) Consider X = [a, b] with

$$\mathcal{D} = \{ [a, \beta] : a \le \beta \le b \} \bigcup \{]\alpha, \beta] : a \le \alpha \le \beta \le b \} ,$$

 $\mu([a,\beta]) = (\beta - a), \ \mu(]\alpha,\beta]) = (\beta - \alpha), \text{ where } X \text{ is provided with the usual topology } \Theta, \text{ and let } F = \mathbb{R}.$

With reference to [6], let $\mathcal{B} = \mathcal{A}$, the algebra of subsets A of [a, b] such that $\Lambda(\operatorname{Fr}(A)) = 0$, where Λ denotes the Lebesgue measure, which is complete.

Let $B \in \mathcal{B}$. For every $\varepsilon > 0$, there exists $\pi_{\varepsilon} = \{D_1, \ldots, D_l\} \in \Pi_X$ such that $\sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu(D_i) < \varepsilon$. Considering if necessary $\{a\}$ and $]a, \beta]$, we can suppose that $D_1 = \{a\}$ and for $2 \leq i \leq l$, $D_i =]\alpha_i = \beta_{i-1}, \beta_i]$ with $\beta_{i-1} < \beta_i$ and $\alpha_2 = a$. Suppose that $x \in \operatorname{Fr}(B)$. There exists $1 \leq i_x \leq l$ such that $x \in D_{i_x}$. If $x \in]\alpha_{i_x}, \beta_{i_x}[$, then $i_x \in \Delta_{\pi_{\varepsilon}, B}$, so that $\operatorname{Fr}(B) \subset \left(\coprod_{i \in \Delta_{\pi_{\varepsilon}, B}} D_i \right) \bigcup \{a; \beta_i : 2 \leq i \leq l\}$. We deduce $0 \leq \Lambda(\operatorname{Fr}(B)) \leq \sum_{i \in \Delta_{\pi_{\varepsilon}, B}} \mu(D_i) + \Lambda(\{a; \beta_i : 2 \leq i \leq l\}) < \varepsilon + 0 = \varepsilon$, for every $\varepsilon > 0$. Consequently, $\Lambda(\operatorname{Fr}(B)) = 0$. We conclude $B \in \mathcal{A}$. It follows $\mathcal{B} \subset \mathcal{A}$.

But, for every $A \in \mathcal{A}$, the function $f = 1_A : [a, b] \mapsto \mathbb{R}$ is Riemannintegrable by the article [6]; therefore, f is \mathfrak{D} - \mathbb{R} -integrable, as we have seen in Application 1.20. From the remark (1) of 2.6, we obtain $A \in \mathcal{B}$. It follows $\mathcal{A} \subset \mathcal{B}$, and finally $\mathcal{B} = \mathcal{A}$.

(2) Consider $X = \mathbb{N}$, $\mathcal{D} = \mathcal{A}(\mathcal{D}) = \{D \subset X : D \text{ or } D^c \text{ is finite}\},$ $\mu(D) = 0$ if D is finite, and $\mu(D) = 1$ if D^c is finite. Let $E \subset X$ such that E and E^c are infinite. Then, given $D \in \mathcal{D}$ with D^c finite, we deduce that $D \cap E \neq \emptyset$ and $D \cap E^c \neq \emptyset$. So, as $\mu(D) = 1$, E cannot be an element of \mathcal{B} . We conclude from the definition of \mathcal{D} that $\mathcal{B} = \mathcal{D}$.

3 Darboux-Integrability and Semi-Norm $|| \cdot ||_{\mu}$

In this paragraph, we only cite some results which are related to the Darbouxintegrability and a semi-norm defined on B(X, F). This semi-norm allows, especially, to consider the sequences of \mathfrak{D} -*F*-integrable functions, and also to characterize the \mathfrak{D} -*F*-integrable functions by the \mathcal{D} -simple functions.

3.1 Definition

Given a basic space (X, \mathcal{D}, μ) and F a Banach space, for every function $f \in B(X; F)$, let

$$||f||_{\mu} = \inf_{\substack{\gamma \in S_{\mathbb{R}_{+}}(\mathcal{D}) \\ \text{and } \gamma \ge ||f||}} I_{\mathfrak{D}}(\gamma) \, .$$

where $I_{\mathfrak{D}}(\gamma) = \sum_{i=1}^{n} r_i \cdot \mu(D_i)$ (if $\gamma = \sum_{i=1}^{n} r_i \cdot 1_{D_i}$), and $\gamma \ge ||f||$ means $\gamma(x) \ge ||f(x)||, x \in X$.

We note that this definition extends to the case of a basic space a notion (of superior Riemann-integral) introduced in [5].

3.2 Lemma

(a) $|| \cdot ||_{\mu}$ is a semi-norm on B(X; F).

Moreover, $||f||_{\mu} \leq ||f||_{\infty} \cdot \mu(X)$ for every $f \in B(X; F)$.

(b) For every $f \in \mathcal{S}_F(\mathcal{D}), ||f||_{\mu} = I_{\mathfrak{D}}(||f||).$

(c) Let $f : X \mapsto F$ be a bounded function such that $||f|| : X \mapsto \mathbb{R}$ is \mathfrak{D} - \mathbb{R} -integrable. Then, $||f||_{\mu} = I_{\mathfrak{D}}(||f||)$.

3.3 Proposition

Let (X, \mathcal{D}, μ) be a basic space and F a Banach space. Consider $(f_n)_{n\geq 1}$ a sequence of \mathfrak{D} -F-integrable functions, $f_n : X \mapsto F$, and let $f \in B(X; F)$.

Suppose that $\lim_{n\to\infty} ||f-f_n||_{\mu} = 0$. Then, f is \mathfrak{D} -F-integrable and $I_{\mathfrak{D}}(f) =$ $\lim_{n\to\infty} I_{\mathfrak{D}}(f_n).$

3.4 Corollary

Let $f_n : X \mapsto F$ $(n \ge 1)$ be a sequence of \mathfrak{D} -F-integrable functions and $f \in B(X;F)$ such that $f_n \xrightarrow[n \to \infty]{} f$ uniformly. Then, f is \mathfrak{D} -F-integrable and $I_{\mathfrak{D}}(f) = \lim_{n \to \infty} I_{\mathfrak{D}}(f_n).$

3.5Proposition

Let (X, \mathcal{D}, μ) be a basic space, F a Banach space, and $f \in B(X; F)$. Then, f is \mathfrak{D} -F-integrable if and only if $f \in \overline{\mathcal{S}_F(\mathcal{D})}^{||\cdot||_{\mu}}$, that is, there exists a sequence $(f_n)_{n\geq 1}$ of functions of $\mathcal{S}_F(\mathcal{D})$ with $\lim_{n\to\infty} ||f-$

 $f_n||_{\mu} = 0.$

Remark: From Proposition 3.3, we have $I_{\mathfrak{D}}(f) = \lim_{n \to \infty} I_{\mathfrak{D}}(f_n)$.

3.6 Remarks

(1) Precise however that, even if the notations and the approach used are different, the essential of Proposition 3.5 is in exercise 99 of $\S7$ of [2].

(2) Note that if the function f is defined on \mathcal{D} instead of X, it is possible to consider an interesting type of integral (similar, but different, to those presented in [1]) as it is suggested by the article [3], where the author establishes, under the continuum hypothesis, an *integral* representation of the second dual of C([0,1]). Add that in [4], the author extends the integral representation in a more general context and in relation with the axioms of the set theory.

ACKNOWLEDGEMENTS

I especially want to thank Professor Srishti D. Chatterji for the reading of a first version, for his advice, his remarks, and for the time he devoted to me. I also thank the referee for the examination, and Professor R. Daniel Mauldin for his consideration and his remarks.

References

- Y. Bolle, Intégrales de Riemann dans les espaces abstraits, Thèse 2107 (2000), Ecole Polytechnique Fédérale de Lausanne, 1999.
- [2] H. Günzler, Integration, Bibliographisches Institut, Mannheim/Wien/ Zürich, 1985.
- [3] R. D. Mauldin, A representation theorem for the second dual of C[0, 1], Studia Mathematica, T. XLVI (1973), 197–200.
- [4] R. D. Mauldin, Some Effects of Set-Theoretical Assumptions in Measure Theory, Advances In Mathematics, 27 (1978), 45–62.
- [5] L. Schwartz, Cours d'Analyse, Vol. 1, Chapitre 4, Hermann, Paris, 1981.
- [6] H. Šikić, Riemann Integral vs. Lebesgue Integral, Real Analysis Exchange, 17(2) (1991-92), 622–632.