Ewa Strońska, Institute of Mathematics, Bydgoszcz Academy, Plac Weyssenhoffa 11, 85-072 Bydgoszcz, Poland.
email: strewa@pro.onet.pl

ON THE SUM OF FUNCTIONS WITH CONDITION $\left(s_{3}\right)$

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies condition $\left(s_{3}\right)$ if for each real $\varepsilon>0$, for each x and for each set $U \ni x$ belonging to the density topology there is an open interval I such that $A(f) \supset I \cap U \neq \emptyset$ and $f(U \cap I) \subset$ $(f(x)-\varepsilon, f(x)+\varepsilon)$, where $A(f)$ denotes the set of all approximate continuity points of f. In this article it is show that the sum of two functions with the condition $\left(s_{3}\right)$ is the sum of two Darboux functions satisfying this condition $\left(s_{3}\right)$ and that every a.e.-continuous function with some special condition is the sum of two functions with condition $\left(s_{3}\right)$.

Let \mathbb{R} be the set of all reals. Denote by μ Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}.

For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $d_{u}(A, x)\left(d_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right)
\end{gathered}
$$

A point x is said to be an outer density point (a density point) of a set A if $d_{l}(A, x)=1$ (if there is a measurable set $B \subset A$ such that $d_{l}(B, x)=1$).

The family

$$
T_{d}=\{A \subset \mathbb{R}: x \in A \Longrightarrow x \text { is a density point of } A\}
$$

[^0]is a topology called the density topology $[1,4]$. The sets $A \in T_{d}$ are Lebesgue measurable ([1]).

Let T_{e} denotes the Euclidean topology in \mathbb{R}. A function $f:\left(\mathbb{R}, T_{d}\right) \rightarrow$ $\left(\mathbb{R}, T_{e}\right)$ continuous at x is called approximately continuity at x ([1]).

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ let $C(f)$ denote the set of all continuity points of f, let $A(f)$ denote the set of all approximate continuity points of f, let $D(f)=\mathbb{R} \backslash C(f)$ denote the set of all discontinuity points of f, and finally let $D_{a p}(f)=\mathbb{R} \backslash A(f)$ denote the set of all approximate discontinuity points of f.

In [2] the following properties are investigated.
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{3}\right)$ [the property $\left(s_{1}\right)$] at a point $x\left(f \in s_{3}(x)\right)\left[f \in s_{1}(x)\right.$ respectively $]$ if for each real $\varepsilon>0$ and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset A(f)$ $[\emptyset \neq I \cap U \subset C(f)$ respectively $]$ and $f(I \cap U) \subset(f(x)-\varepsilon, f(x)+\varepsilon)$.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property $\left(s_{4}\right)$ at a point $x\left(f \in s_{4}(x)\right)$ if for each nonempty open set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U \subset A(f)$.

A function f has the property $\left(s_{3}\right)$ (the property $\left(s_{1}\right)$, the property $\left(s_{4}\right)$ respectively) if $f \in s_{3}(x)\left(f \in s_{1}(x), f \in s_{4}(x)\right.$ respectively) for every point $x \in \mathbb{R}$.

The class of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property $\left(s_{3}\right)$ (with the property $\left(s_{1}\right)$, with the property $s_{4}(x)$ respectively) we denote by \mathcal{S}_{3} (by \mathcal{S}_{1}, by \mathcal{S}_{4} respectively). It is obvious that $\mathcal{S}_{1} \subset \mathcal{S}_{3} \subset \mathcal{S}_{4}$. Some examples of functions from $\mathcal{S}_{3} \backslash \mathcal{S}_{1}, \mathcal{S}_{4} \backslash \mathcal{S}_{3}$ are given in [2].

From the definition of the property $\left(s_{3}\right)$ it follows that if $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies condition $\left(s_{3}\right)$, then the set $D_{a p}(f)$ is nowhere dense and of Lebesgue measure zero. But there are functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\left(s_{3}\right)$ such that $c l\left(D_{a p}(f)\right)$ is of positive measure.
Example 1. Let $C \subset[0,1]$ be a Cantor set of positive measure, $\left(I_{n}\right)$ - an enumeration of all components of the set $[0,1] \backslash C$ such that $I_{n} \neq I_{m}$ for $n \neq m$ and let $J_{n} \subset I_{n}$ be nondegenerate closed intervals $(n, m=1,2, \ldots)$. Then the function

$$
f(x)=\frac{1}{n} \text { for } x \in J_{n}, n=1,2, \ldots, \text { and } f(x)=0 \text { otherwise on } \mathbb{R}
$$

has the property $\left(s_{3}\right)$ but for the set $D_{a p}(f)=D(f)$ and containing the endpoints of $J_{n},(n \geq 1)$ we have $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)\right)>0$.

In [2] it is shown that a function f having property $\left(s_{3}\right)$ is almost everywhere continuous; i.e., $\mu(D(f))=0$. Since there are approximately continuous functions f such that $\mu(D(f))>0([1])$, approximate continuity does not imply the property $\left(s_{3}\right)$.

Part I. In the paper [3] Z. Grande proved that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is the sum of two functions $g, h \in \mathcal{S}_{1}$, then there are two Darboux functions ϕ and ψ with property $\left(s_{1}\right)$ such that $f=\phi+\psi$. In this part, by using Grande's method from the proof of theorem 1 in [3], I will prove a similar theorem for the functions with condition $\left(s_{3}\right)$.

It is well known, that the class \mathcal{D} of Darboux functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is not closed under certain operations and that every function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be represented as the sum of Darboux functions ([1]). Observe too, that the sum of two functions satisfying condition $\left(s_{3}\right)$ can be without this property.

Example 2. The functions

$$
\begin{aligned}
& f(x)=0 \text { for } x \leq 0 \text { and } f(x)=1 \text { for } x>0 \\
& g(x)=1 \text { for } x<0 \text { and } g(x)=0 \text { for } x \geq 0
\end{aligned}
$$

are continuous at $x \neq 0$ and unilaterally continuous at $x=0$. So, they satisfy condition $\left(s_{1}\right)$ (and $\left(s_{3}\right)$ also), but the sum

$$
(f+g)(x)= \begin{cases}0 & \text { for } x=0 \\ 1 & \text { for } x \neq 0\end{cases}
$$

does not satisfy condition $\left(s_{3}\right)$.
Remark 1. There are approximately continuous functions $f \in \mathcal{S}_{3} \backslash \mathcal{S}_{1}$.
For example, there are functions f approximately continuous everywhere and almost everywhere continuous with dense set $D(f)$.

Remark 2. There are functions $f \in \mathcal{S}_{1}$ which are not approximately continuous.

For example, the functions f, g from Example 2 are such.
Theorem 1. If a function f is the sum of two functions $g, h \in \mathcal{S}_{3}$, then there are two functions $\phi, \psi \in \mathcal{S}_{3} \cap \mathcal{D}$ such that $f=\phi+\psi$.

Proof. Let $E=\operatorname{cl}\left(D_{a p}(g) \cup D_{a p}(h)\right)$ and $D=\operatorname{cl}(D(g) \cup D(h))$. It is known that $D_{a p}(g) \subset D(g), D_{a p}(h) \subset D(h)$; so $D \supset E$. Moreover the set E is nowhere dense in \mathbb{R}.

If $D=\emptyset$, then we can define $\phi=g$ and $\psi=h$ and the proof is done. So we suppose that $D \neq \emptyset$. We will consider two cases:

$$
\mathbf{I} \cdot \mu(D)=0 \text { and } \mathbf{I I} \cdot \mu(D)>0
$$

Case I. Let $\mu(D)=0$. In this case let $\left(a^{k}, b^{k}\right)_{k=1}^{\infty}$ be a sequence of all components of the complement $\mathbb{R} \backslash D$ such that $\left(a^{k}, b^{k}\right) \cap\left(a^{j}, b^{j}\right)=\emptyset$ for $k \neq j$. If, for a fixed $k \in \mathbb{N}$, where \mathbb{N} denotes the set of all positive integers, the interval $\left(a^{k}, b^{k}\right)$ is a bounded component of the complement $\mathbb{R} \backslash D$, we find two monotone sequences of points

$$
a^{k}<\cdots<a_{n+1}^{k}<a_{n}^{k}<\cdots a_{1}^{k}<b_{1}^{k}<\cdots<b_{n}^{k}<b_{n+1}^{k}<\cdots<b^{k}
$$

such that $\lim _{n \rightarrow \infty} a_{n}^{k}=a^{k}$ and $\lim _{n \rightarrow \infty} b_{n}^{k}=b^{k}$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n+1}^{k}-b_{n}^{k}}{b^{k}-b_{n}^{k}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{k}-a_{n+1}^{k}}{a_{n}^{k}-a^{k}}=0 \tag{1}
\end{equation*}
$$

In each interval $\left(a_{n+1}^{k}, a_{n}^{k}\right)\left(\left(b_{n}^{k}, b_{n+1}^{k}\right)\right)$ we find disjoint nondegenerate closed intervals $I_{n, i}^{k} \subset\left(a_{n+1}^{k}, a_{n}^{k}\right)\left(J_{n, i}^{k} \subset\left(b_{n}^{k}, b_{n+1}^{k}\right)\right)$ for $i=1,2$ such that

$$
\begin{equation*}
\frac{l\left(I_{n, i}^{k}\right)}{a_{n}^{k}-a_{n+1}^{k}}<\frac{1}{2^{n+k}},\left(\frac{l\left(J_{n, i}^{k}\right)}{b_{n+1}^{k}-b_{n}^{k}}<\frac{1}{2^{n+k}}\right) \tag{2}
\end{equation*}
$$

for $i=1,2$, where $l(H)$ denotes the length of the interval H, and

$$
\begin{equation*}
\frac{\mu\left(\bigcup_{i=1}^{2} \bigcup_{n=1}^{\infty}\left(I_{n, i}^{k} \cup J_{n, i}^{k}\right)\right)}{b^{k}-a^{k}}<\frac{1}{2^{k}} \tag{3}
\end{equation*}
$$

If $\left(a^{s}, b^{s}\right)$ is an unbounded component of the complement $\mathbb{R} \backslash D$; i.e., $a^{s}=-\infty$ or $b^{s}=\infty$, we find two sequences only, $\left(J_{n, i}^{s}\right)(i=1,2)$ or respectively $\left(I_{n, i}^{s}\right)$ ($i=1,2$), satisfying the above conditions (1), (2).

For a fixed k, for $i=1,2$ and for $n \geq 1$ let $g_{n, i}^{k}: I_{n, i}^{k} \rightarrow \mathbb{R}$ and $h_{n, i}^{k}: J_{n, i}^{k} \rightarrow$ \mathbb{R} be continuous functions such that $g_{n, i}^{k}(x)=0$ if x is an endpoint of $I_{n, i}^{k}$, $h_{n, i}^{k}(y)=0$ if y is an endpoint of $J_{n, i}^{k}$ and
$\left(g+g_{n, 1}^{k}\right)\left(I_{n, 1}^{k}\right) \cap\left(h+h_{n, 1}^{k}\right)\left(J_{n, 1}^{k}\right) \cap\left(g+h_{n, 2}^{k}\right)\left(J_{n, 2}^{k}\right) \cap\left(h+g_{n, 2}^{k}\right)\left(I_{n, 2}^{k}\right) \supset[-n, n]$.
If $\left(a^{k}, b^{k}\right)$ is a bounded component of the complement $\mathbb{R} \backslash D$, then we put (for fixed k)

$$
g^{k}(x)= \begin{cases}g(x)+g_{n, 1}^{k}(x) & \text { for } x \in I_{n, 1}^{k}, n \geq 1 \\ g(x)+h_{n, 2}^{k}(x) & \text { for } x \in J_{n, 2}^{k}, n \geq 1 \\ g(x)-h_{n, 1}^{k}(x) & \text { for } x \in J_{n, 1}^{k}, n \geq 1 \\ g(x)-g_{n, 2}^{k}(x) & \text { for } x \in I_{n, 2}^{k}, n \geq 1 \\ g(x) & \text { otherwise on }\left(a^{k}, b^{k}\right)\end{cases}
$$

and

$$
h^{k}(x)= \begin{cases}h(x)+h_{n, 1}^{k}(x) & \text { for } x \in J_{n, 1}^{k}, n \geq 1 \\ h(x)+g_{n, 2}^{k}(x) & \text { for } x \in I_{n, 2}^{k}, n \geq 1 \\ h(x)-g_{n, 1}^{k}(x) & \text { for } x \in I_{n, 1}^{k}, n \geq 1 \\ h(x)-h_{n, 2}^{k}(x) & \text { for } x \in J_{n, 2}^{k}, n \geq 1 \\ h(x) & \text { otherwise on }\left(a^{k}, b^{k}\right) .\end{cases}
$$

Similarly we define the functions g^{s} and h^{s} on unbounded components (a^{s}, b^{s}) of the set $\mathbb{R} \backslash D$.

Putting $\phi(x)=g^{k}(x), \psi(x)=h^{k}(x)$ on every component $\left(a^{k}, b^{k}\right)$ of the complement $\mathbb{R} \backslash D$ and $\phi(x)=g(x), \psi(x)=h(x)$ on D we obtain Darboux functions ϕ and ψ continuous on $\mathbb{R} \backslash D$ such that $\phi+\psi=g+h=f$. Since ϕ, ψ are continuous on $\mathbb{R} \backslash D$, for every $x \in \mathbb{R} \backslash D$ we have $\phi \in s_{3}(x)$ and $\psi \in s_{3}(x)$. Now, let $x \in D$, let $U \in T_{d}$ be the set containing x and let $\varepsilon>0$ be a real. By (1), (2) and (3) the lower density

$$
d_{l}\left(\mathbb{R} \backslash\left(\bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2}\left(I_{n, i}^{k} \cup J_{n, i}^{k}\right) \backslash D, x\right)=1\right.
$$

Observe that

$$
T_{d} \ni\left(\mathbb{R} \backslash\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{2}\left(I_{n, i}^{k} \cup J_{n, i}^{k}\right) \backslash D\right) \cap U\right) \cup\{x\} \neq \emptyset
$$

and $g(t)=\phi(t), h(t)=\psi(t)$ for $t \in\{x\} \cup\left(\mathbb{R} \backslash\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{2}\left(I_{n, i}^{k} \cup J_{n, i}^{k}\right)\right)\right.$. Since $g \in s_{3}(x)$, there is an open interval

$$
I \subset\left(\mathbb{R} \backslash\left(\bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2}\left(I_{n, i}^{k} \cup J_{n, i}^{k}\right)\right) \backslash D\right)
$$

such that $I \cap U \neq \emptyset$ and $|g(t)-g(x)|<\varepsilon$ for all $t \in I \cap U$. So,

$$
|\phi(t)-\phi(x)|=|g(t)-g(x)|<\varepsilon
$$

for all $t \in I \cap U$ and consequently $\phi \in s_{3}(x)$. Similarly we can prove that $\psi \in s_{3}(x)$.

Case II. Suppose that $\mu(D)>0$. In this case there are positive numbers

$$
c_{1}>c_{2}>\cdots>c_{n}>\cdots>0 \text { such that } \sum_{n} c_{n}<\infty
$$

and the sets

$$
\begin{gathered}
E_{1}=\left\{x ; \operatorname{osc} g(x) \geq c_{1}\right\} \cup\left\{x ; \operatorname{osc} h(x) \geq c_{1}\right\} \\
E_{n+1}=\left\{x ; c_{n}>\operatorname{osc} g(x) \geq c_{n+1}\right\} \cup\left\{x ; c_{n}>\operatorname{osc} h(x) \geq c_{n+1}\right\}
\end{gathered}
$$

are nonempty for $n \geq 1$.
In the first step of the inductive construction of functions ϕ and ψ we consider the closed set E_{1} which is of measure zero evidently. Let $\left(\left(a^{k, 1}, b^{k, 1}\right)\right)_{k=1}^{\infty}$ be a sequence of all components of the complement $\mathbb{R} \backslash E_{1}$ such that $\left(a^{k, 1}, b^{k, 1}\right) \cap$ $\left(a^{j, 1}, b^{j, 1}\right)=\emptyset$ for $k \neq j$.

If, for a fixed $k \in \mathbb{N}$, the interval $\left(a^{k, 1}, b^{k, 1}\right)$ is a bounded component of the complement $\mathbb{R} \backslash E_{1}$, we find two monotone sequences of points

$$
a^{k, 1}<\cdots<a_{n+1}^{k, 1}<a_{n}^{k, 1}<\cdots a_{1}^{k, 1}<b_{1}^{k, 1}<\cdots<b_{n}^{k, 1}<b_{n+1}^{k, 1}<\cdots<b^{k, 1}
$$

such that $\lim _{n \rightarrow \infty} a_{n}^{k, 1}=a^{k, 1}$ and $\lim _{n \rightarrow \infty} b_{n}^{k, 1}=b^{1, k}$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n+1}^{k, 1}-b_{n}^{k, 1}}{b^{k, 1}-b_{n}^{k, 1}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{k, 1}-a_{n+1}^{k, 1}}{a_{n}^{k, 1}-a^{k, 1}}=0 \tag{1.1}
\end{equation*}
$$

In each interval $\left(a_{n+1}^{k, 1}, a_{n}^{k, 1}\right)\left(\left(b_{n}^{k, 1}, b_{n+1}^{k, 1}\right)\right)$ we find disjoint nondegenerate closed intervals (for $i=1,2$)

$$
I_{n, i}^{k, 1} \subset\left(a_{n+1}^{k, 1}, a_{n}^{k, 1}\right) \backslash E\left(J_{n, i}^{k, 1} \subset\left(b_{n}^{k, 1}, b_{n+1}^{k, 1}\right) \backslash E\right)
$$

with endpoints from the set $C(g)$ (with endpoints from the set $C(h)$ respectively) such that

$$
\begin{equation*}
\frac{l\left(I_{n, i}^{k, 1}\right)}{a_{n}^{k, 1}-a_{n+1}^{k, 1}}<\frac{1}{2^{n+k}},\left(\frac{l\left(J_{n, i}^{k, 1}\right)}{b_{n+1}^{k, 1}-b_{n}^{k, 1}}<\frac{1}{2^{n+k}}\right) \tag{1.2}
\end{equation*}
$$

for $i=1,2$, and

$$
\begin{equation*}
\frac{\mu\left(\bigcup_{i=1}^{2} \bigcup_{n=1}^{\infty}\left(I_{n, i}^{k, 1} \cup J_{n, i}^{k, 1}\right)\right)}{b^{k, 1}-a^{k, 1}}<\frac{1}{2^{k}} \tag{1.3}
\end{equation*}
$$

If $\left(a^{s, 1}, b^{s, 1}\right)$ is an unbounded component of the complement $\mathbb{R} \backslash E_{1}$; i.e., $a^{s, 1}=$ $-\infty$ or $b^{s, 1}=\infty$, we find two sequences only, $\left(J_{n, i}^{s, 1}\right)(i=1,2)$ or respectively $\left(I_{n, i}^{s, 1}\right)(i=1,2)$, satisfying the above conditions (1.1), (1.2). For a fixed k, for $i=1,2$ and for $n \geq 1$ let $g_{n, i}^{k, 1}: I_{n, i}^{k, 1} \rightarrow \mathbb{R}$ and $h_{n, i}^{k, 1}: J_{n, i}^{k, 1} \rightarrow \mathbb{R}$ be continuous functions such that $g_{n, i}^{k, 1}(x)=0$ if x is an endpoint of $I_{n, i}^{k, 1}, h_{n, i}^{k, 1}(y)=0$ if y is an endpoint of $J_{n, i}^{k, 1}$ and
$\left(g+g_{n, 1}^{k, 1}\right)\left(I_{n, 1}^{k, 1}\right) \cap\left(h+h_{n, 1}^{k, 1}\right)\left(J_{n, 1}^{k, 1}\right) \cap\left(g+h_{n, 2}^{k, 1}\right)\left(J_{n, 2}^{k, 1}\right) \cap\left(h+g_{n, 2}^{k, 1}\right)\left(I_{n, 2}^{k, 1}\right) \supset[-n, n]$.

Now, we define the functions ϕ_{1} and ψ_{1} by

$$
\phi_{1}(x)= \begin{cases}g(x)+g_{n, 1}^{k, 1}(x) & \text { for } x \in I_{n, 1}^{k, 1}, n, k \geq 1 \\ g(x)+h_{n, 2}^{k, 1}(x) & \text { for } x \in J_{n, 2}^{k, 2}, n, k \geq 1 \\ g(x)-h_{n, 1}^{k, 1}(x) & \text { for } x \in J_{n, 1}^{k, 1}, n, k \geq 1 \\ g(x)-g_{n, 2}^{k, 1}(x) & \text { for } x \in I_{n, 2}^{k, 1}, n, k \geq 1 \\ g(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

and

$$
\psi_{1}(x)= \begin{cases}h(x)+h_{n, 1}^{k, 1}(x) & \text { for } x \in J_{n, 1}^{k, 1}, n, k \geq 1 \\ h(x)+g_{n, 2}^{k, 1}(x) & \text { for } x \in I_{n, 2}^{k, 1}, n, k \geq 1 \\ h(x)-g_{n, 1}^{k, 1}(x) & \text { for } x \in I_{n, 1}^{k, 1}, n, k \geq 1 \\ h(x)-h_{n, 2}^{k, 1}(x) & \text { for } x \in J_{n, 2}^{k, 1}, n, k \geq 1 \\ h(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

The functions ϕ_{1} and ψ_{1} have the Darboux property and for all $u \in \mathbb{R} \backslash E_{1}$

$$
\operatorname{osc} \phi_{1}(u)=\operatorname{osc} g(u) \text { and } \operatorname{osc} \psi_{1}(u)=\operatorname{osc} h(u)
$$

Moreover $\phi_{1}+\psi_{1}=g+h=f$. Also note that $D_{a p}\left(\phi_{1}\right)=D_{a p}(g)$ and $D_{a p}\left(\psi_{1}\right)=$ $D_{a p}(h)$.

In the second step we consider the closed set $E_{1} \cup E_{2}$ which is of measure zero evidently. Let $\left(\left(a^{k, 2}, b^{k, 2}\right)\right)_{k=1}^{\infty}$ be a sequence of all components of the set $\mathbb{R} \backslash\left(E_{1} \cup E_{2}\right)$ such that $\left(a^{k, 2}, b^{k, 2}\right) \cap\left(a^{j, 2}, b^{j, 2}\right)=\emptyset$ and $k \neq j$. If, for a fixed $k \in \mathbb{N},\left(a^{k, 2}, b^{k, 2}\right)$ is a bounded component of the complement $\mathbb{R} \backslash\left(E_{1} \cup E_{2}\right)$, then we find two monotone sequences of points

$$
a^{k, 2}<\ldots<a_{n+1}^{k, 2}<a_{n}^{k, 2}<\ldots<a_{1}^{k, 2}<b_{1}^{k, 2}<\ldots<b_{n}^{k, 2}<b_{n+1}^{k, 2}<\ldots<b^{k, 2}
$$

such that $\lim _{n \rightarrow \infty} a_{n}^{k, 2}=a^{k, 2}, \lim _{n \rightarrow \infty} b_{n}^{k, 2}=b^{k, 2}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n+1}^{k, 2}-b_{n}^{k, 2}}{b^{k, 2}-b_{n}^{k, 2}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{k, 2}-a_{n+1}^{k, 2}}{a_{n}^{k, 2}-a^{k, 2}}=0 \tag{2.1}
\end{equation*}
$$

In each interval $\left(a_{n+1}^{k, 2}, a_{n}^{k, 2}\right),\left(\left(b_{n}^{k, 2}, b_{n+1}^{k, 2}\right)\right)$ we find disjoint nondegenerate closed intervals (for $i=1,2$)

$$
I_{n, i}^{k, 2} \subset\left(a_{n+1}^{k, 2}, a_{n}^{k, 2}\right) \backslash E,\left(J_{n, i}^{k, 2} \subset\left(b_{n}^{k, 2}, b_{n+1}^{k, 2}\right) \backslash E\right)
$$

with endpoints from the set $C\left(\phi_{1}\right)$ (with endpoints from the set $C\left(\psi_{1}\right)$ respectively) such that, for $i=1,2$ we have

$$
\begin{equation*}
\frac{l\left(I_{n, i}^{k, 2}\right)}{a_{n}^{k, 2}-a_{n+1}^{k, 2}}<\frac{1}{2^{n+k}},\left(\frac{l\left(J_{n, i}^{k, 2}\right)}{b_{n+1}^{k, 2}-b_{n}^{k, 2}}<\frac{1}{2^{n+k}}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu\left(\bigcup_{i=1}^{2} \bigcup_{n=1}^{\infty}\left(I_{n, k}^{k, 2} \cup J_{n, i}^{k, 2}\right)\right)}{b^{k, 2}-a^{k, 2}}<\frac{1}{2^{k}} \tag{2.3}
\end{equation*}
$$

and also

$$
\begin{equation*}
\operatorname{osc}_{I_{n, i}^{k, 2}} \phi_{1}<c_{2}, \operatorname{osc}_{J_{n, i}^{k, 2}} \psi_{1}<c_{2} \tag{2.4}
\end{equation*}
$$

for $n \geq 1$ and $i=1,2$.
If $\left(a^{s, 2}, b^{s, 2}\right)$ is an unbounded component of the complement $\mathbb{R} \backslash\left(E_{1} \cup E_{2}\right)$; i.e., $a^{s, 2}=-\infty$ or $b^{s, 2}=\infty$, we find two sequences only, $\left(J_{n, i}^{s, 2}\right)_{n=1}^{\infty}(i=1,2)$ or $\left(I_{n, i}^{s, 2}\right)_{n=1}^{\infty}(i=1,2)$ respectively, satisfying above conditions (2.1), (2.2) and (2.4).

For a fixed $k \in \mathbb{N}$, for $i=1,2$ and for a fixed $n \geq 1$ we will construct continuous functions $g_{n, i}^{k, 2}: I_{n, i}^{k, 2} \rightarrow \mathbb{R}$ and $h_{n, i}^{k, 2}: J_{n, i}^{k, 2} \rightarrow \mathbb{R}$. Fix $k, n \in \mathbb{N}$. For $i=1,2$ the set $\phi_{1}\left(I_{n, i}^{k, 2}\right)$ is an interval of the length less than c_{2}. Let γ_{i}^{2} be the mid point of the interval $\phi_{1}\left(I_{n, i}^{k, 2}\right)$, for $i=1,2$. In the interval $\operatorname{int}\left(I_{n, i}^{k, 2}\right)$, where $\operatorname{int}(H)$ denotes the interior of the set H, choose two points α_{i}^{2} and β_{i}^{2} such that, for $i=1,2, \phi_{1}\left(\alpha_{i}^{2}\right)<\gamma_{i}^{2}<\phi_{1}\left(\beta_{i}^{2}\right)$.

The continuous function $g_{n, i}^{k, 2}: I_{n, i}^{k, 2} \rightarrow \mathbb{R}$ (for $\left.i=1,2\right)$ we define by

$$
\begin{aligned}
& g_{n, i}^{k, 2}(x)=0 \text { if } x \text { is any endpoint of } I_{n, i}^{k, 2} \\
& g_{n, i}^{k, 2}\left(\alpha_{i}^{2}\right)=-c_{2} \\
& g_{n, i}^{k, 2}\left(\beta_{i}^{2}\right)=c_{2} \text { and }
\end{aligned}
$$

$$
g_{n, i}^{k, 2} \text { is linear on the closures of the components of the set } I_{n, i}^{k, 2} \backslash\left\{\alpha_{i}^{2}, \beta_{i}^{2}\right\} .
$$

Similarly we define the continuous functions $h_{n, i}^{k, 2}: J_{n, i}^{k, 2} \rightarrow \mathbb{R}(i=1,2)$. The set $\psi_{1}\left(J_{n, i}^{k, 2}\right)$, for fixed $k, n \in \mathbb{N}$ and $i=1,2$, is an interval of the length less than c_{2}. Let ν_{i}^{2} be the center of the interval $\psi_{1}\left(J_{n, i}^{k, 2}\right)$ for $i=1,2$. In the set int $\left(J_{n, i}^{k, 2}\right)$ choose two points ξ_{i}^{2} and η_{i}^{2} such that, for $i=1,2, \psi_{1}\left(\xi_{i}^{2}\right)<\nu_{i}^{2}<\psi_{1}\left(\eta_{i}^{2}\right)$. Let the continuous function $h_{n, i}^{k, 2}: J_{n, i}^{k, 2} \rightarrow \mathbb{R}(i=1,2)$ be such that

$$
\begin{aligned}
& h_{n, i}^{k, 2}(x)=0 \text { if } x \text { is any endpoint of } J_{n, i}^{k, 2}, \\
& h_{n, i}^{k, 2}\left(\xi_{i}^{2}\right)=-c_{2}, \\
& h_{n, i}^{k, 2}\left(\eta_{i}^{2}\right)=c_{2} \text { and }
\end{aligned}
$$

$h_{n, i}^{k, 2}$ is linear on the closures of the components of the set $J_{n, i}^{k, 2} \backslash\left\{\xi_{i}^{2}, \eta_{i}^{2}\right\}$.

Finally, for the second step, we define the functions ϕ_{2} and ψ_{2} by

$$
\phi_{2}(x)= \begin{cases}\phi_{1}(x)+g_{n, 1}^{k, 2}(x) & \text { for } x \in I_{n, 1}^{k, 2}, n, k \geq 1 \\ \phi_{1}(x)-h_{n, 1}^{k, 2}(x) & \text { for } x \in J_{n, 1}^{k, 2}, n, k \geq 1 \\ \phi_{1}(x)-g_{n, 2}^{k, 2}(x) & \text { for } x \in I_{n, 2}^{k, 2}, n, k \geq 1 \\ \phi_{1}(x)+h_{n, 2}^{k, 2}(x) & \text { for } x \in J_{n, 2}^{k, 2}, n, k \geq 1 \\ \phi_{1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

and

$$
\psi_{2}(x)= \begin{cases}\psi_{1}(x)-g_{n}^{k, 2}(x) & \text { for } x \in I_{n, 1}^{k, 2}, n, k \geq 1 \\ \psi_{1}(x)+h_{n, 1}^{k, 2}(x) & \text { for } x \in J_{n, 2}^{k, 2}, n, k \geq 1 \\ \psi_{1}(x)+g_{n, 2}^{k, 2}(x) & \text { for } x \in I_{n, 2}^{k, 2}, n, k \geq 1 \\ \psi_{1}(x)-h_{n, 2}^{k, 2}(x) & \text { for } x \in J_{n, 2}^{k, 2}, n, k \geq 1 \\ \psi_{1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

Observe that $D_{a p}\left(\phi_{2}\right)=D_{a p}(g)$ and $D_{a p}\left(\psi_{2}\right)=D_{a p}(h)$ and for each point $u \in \mathbb{R} \backslash\left(E_{1} \cup E_{2}\right)$ the oscillation osc $\phi_{2}(u)=\operatorname{osc} g(u)$ and $\operatorname{osc} \psi_{2}(u)=\operatorname{osc} h(u)$. Observe too, that for $i=1,2 \phi_{2}\left(I_{n, i}^{k, 2}\right) \supset \phi_{1}\left(I_{n, i}^{k, 2}\right), \psi_{2}\left(J_{n, i}^{k, 2}\right) \supset \psi_{1}\left(J_{n, i}^{k, 2}\right)$ and for all $x \in \mathbb{R}, \$\left|\phi_{2}(x)-\phi_{1}(x)\right|<3 c_{2}$ and $\left|\psi_{2}(x)-\psi_{1}(x)\right|<3 c_{2}$. Moreover, $\phi_{2}+\psi_{2}=\phi_{1}+\psi_{1}=g+h=f$.

In the m th step $(m>2)$, we repeat the construction of the step $(m-1)$, but for the closed set $\bigcup_{j=1}^{m-1} E_{j} \cup E_{m}$ of measure zero. Let $m>2$. In this inductive step, let $\left(\left(a^{k, m}, b^{k, m}\right)\right)_{k=1}^{\infty}$ be a sequence of all components of the complement of the set $\mathbb{R} \backslash\left(\bigcup_{j=1}^{m} E_{j}\right)$ such that $\left(a^{k, m}, b^{k, m}\right) \cap\left(a^{j, m}, b^{j, m}\right)=\emptyset$ and $k \neq j$. If $\left(a^{k, m}, b^{k, m}\right)$, for fixed $k \in \mathbb{N}$, is a bounded component of the complement $\mathbb{R} \backslash \bigcup_{j=1}^{m} E_{j}$, we find two sequences of the points
$a^{k, m}<\ldots<a_{n+1}^{k, m}<a_{n}^{k, m}<\ldots<a_{1}^{k, m}<b_{1}^{k, m}<\ldots<b_{n}^{k, m}<b_{n+1}^{k, m}<\ldots<b^{k, m}$ such that $\lim _{n \rightarrow \infty} a_{n}^{k, m}=a^{k, m}, \lim _{n \rightarrow \infty} b_{n}^{k, m}=b^{k, m}$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n+1}^{k, m}-b_{n}^{k, m}}{b^{k, m}-b_{n}^{k, m}}=\lim _{n \rightarrow \infty} \frac{a_{n}^{k, m}-a_{n+1}^{k, m}}{a_{n}^{k, m}-a^{k, m}}=0 \tag{m.1}
\end{equation*}
$$

In each interval $\left(a_{n+1}^{k, m}, a_{n}^{k, m}\right)\left(\left(b_{n}^{k, m}, b_{n+1}^{k, m}\right)\right)$ we find two disjoint nondegenerate closed intervals $I_{n, i}^{k, m} \subset\left(a_{n+1}^{k, m}, a_{n}^{k, m}\right) \backslash E\left(J_{n, i}^{k, m} \subset\left(b_{n}^{k, m}, b_{n+1}^{k, m}\right) \backslash E\right)($ for $i=1,2)$ with endpoints from the set $C\left(\phi_{m-1}\right)$ (with endpoints from the set $C\left(\psi_{m-1}\right)$ respectively) such that, for $i=1,2$ we have

$$
\begin{equation*}
\frac{l\left(I_{n, i}^{k, m}\right)}{a_{n}^{k, m}-a_{n+1}^{k, m}}<\frac{1}{2^{k+n}},\left(\frac{l\left(J_{n, i}^{k, m}\right)}{b_{n+1}^{k, m}-b_{n}^{k, m}}<\frac{1}{2^{n+k}}\right) \tag{m.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu\left(\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{2}\left(I_{n, i}^{k, m} \cup J_{n, i}^{k, m}\right)\right)}{b^{k, m}-a^{k, m}}<\frac{1}{2^{k}} \tag{m.3}
\end{equation*}
$$

and also

$$
\begin{equation*}
\operatorname{osc}_{I_{n, i}^{k, m}} \phi_{m-1}<c_{m}, \operatorname{osc}_{J_{n, i}^{k, m}} \psi_{m-1}<c_{m} \tag{m.4}
\end{equation*}
$$

for $n \geq 1$ and $i=1,2$.
If $\left(a^{s, m}, b^{s, m}\right)$ is an unbounded component of $\mathbb{R} \backslash \bigcup_{j=1}^{m} E_{j}$; i.e., $a^{s, m}=-\infty$ or $b^{s, m}=\infty$, then we find two sequences only: $\left(I_{n, i}^{s, m}\right)_{n=1}^{\infty}(i=1,2)$ or respectively $\left(J_{n, i}^{s, m}\right)_{n=1}^{\infty}(i=1,2)$ satisfying above conditions (m.1), (m.2) and (m.4).

We will construct continuous functions $g_{n, i}^{k, m}: I_{n, i}^{k, m} \rightarrow \mathbb{R}$ and $h_{n, i}^{k, m}: J_{n, i}^{k, m} \rightarrow$ \mathbb{R} for $i=1,2$ and $n=1,2, \ldots$, and $k=1,2 \ldots$. Fix $k, n \in \mathbb{N}$. For $i=1,2$ the image $\phi_{m-1}\left(I_{n, i}^{k, m}\right)$ is the interval of the length less than c_{m}. Let the point γ_{i}^{m} be the center of the interval $\phi_{m-1}\left(I_{n, i}^{k, m}\right)$. In the interval int $\left(I_{n, i}^{k, m}\right)$ choose two numbers α_{i}^{m} and β_{i}^{m} such that, for $i=1,2, \phi_{m-1}\left(\alpha_{i}^{m}\right)<\gamma_{i}^{m}<\phi_{m-1}\left(\beta_{i}^{m}\right)$.

Next, for $i=1,2$, the continuous functions $g_{n, i}^{k, m}: I_{n, i}^{k, m} \rightarrow \mathbb{R}$ we define by

$$
\begin{aligned}
& g_{n, i}^{k, m}(x)=0 \text { if } x \text { is any endpoint of } I_{n, i}^{k, m} \\
& g_{n, i}^{k, m}\left(\alpha_{i}^{m}\right)=-c_{m} \\
& g_{n, i}^{k, m}\left(\beta_{i}^{m}\right)=c_{m} \text { and } \\
& g_{n, i}^{k, m} \text { is linear on the closures of the components of } I_{n, i}^{k, m} \backslash\left\{\alpha_{i}^{m}, \beta_{i}^{m}\right\} .
\end{aligned}
$$

The construction of the continuous function $h_{n, i}^{k, m}: J_{n, i}^{k, m} \rightarrow \mathbb{R}($ for $i=1,2)$ is similar. For fixed $k, n \in \mathbb{N}$ and for $i=1,2$ the image $\psi_{m-1}\left(J_{n, i}^{k, m}\right)$ is the interval of length less than c_{m}. Let ν_{i}^{m} be the mid point of the interval $\psi_{m-1}\left(J_{n, i}^{k, m}\right)$. In the set $\operatorname{int}\left(J_{n, i}^{k, m}\right)$ choose two points ξ_{i}^{m} and η_{i}^{m} such that, for $i=1,2, \psi_{m-1}\left(\xi_{i}^{m}\right)<\nu_{i}^{m}<\psi_{m-1}\left(\eta_{i}^{m}\right)$.

Let the continuous functions $h_{n, i}^{k, m}: J_{n, i}^{k, m} \rightarrow \mathbb{R}(i=1,2)$ be such that

$$
h_{n, i}^{k, m}(x)=0 \text { if } x \text { is any endpoint of } J_{n, i}^{k, m}
$$

$$
h_{n, i}^{k, m}\left(\xi_{i}^{m}\right)=-c_{m}
$$

$$
h_{n, i}^{k, m}\left(\eta_{i}^{m}\right)=c_{m} \text { and }
$$

$h_{n, i}^{k, m}$ is linear on the closures of the components of $J_{n, i}^{k, m} \backslash\left\{\xi_{i}^{m}, \eta_{i}^{m}\right\}$.

Finally, in the inductive step $m>2$, we define the functions ϕ_{m} and ψ_{m} by

$$
\begin{aligned}
& \phi_{m}(x)= \begin{cases}\phi_{m-1}(x)+g_{n, 1}^{k, m}(x) & \text { for } x \in I_{n, 1}^{k, m}, n, k \geq 1 \\
\phi_{m-1}(x)-h_{n, 1}^{k, m}(x) & \text { for } x \in J_{n, 1}^{k, m}, n, k \geq 1 \\
\phi_{m-1}(x)-g_{n, 2}^{k, m}(x) & \text { for } x \in I_{n, 2}^{k, m}, n, k \geq 1 \\
\phi_{m-1}(x)+h_{n, 2}^{k, m}(x) & \text { for } x \in J_{n, 2}^{k, m}, n, k \geq 1 \\
\phi_{m-1}(x) & \text { otherwise on } \mathbb{R},\end{cases} \\
& \psi_{m}(x)= \begin{cases}\psi_{m-1}(x)-g_{n, 1}^{k, m}(x) & \text { for } x \in I_{n, 1}^{k, m}, n, k \geq 1 \\
\psi_{m-1}(x)+h_{n, 1}^{k, m}(x) & \text { for } x \in J_{n, 1}^{k, m}, n, k \geq 1 \\
\psi_{m-1}(x)+g_{n, 2}^{k, m}(x) & \text { for } x \in I_{n, 2}^{k, m}, n, k \geq 1 \\
\psi_{m-1}(x)-h_{n, 2}^{k, m}(x) & \text { for } x \in J_{n, 2}^{k, m}, n, k \geq 1 \\
\psi_{m-1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
\end{aligned}
$$

Observe that $D_{a p}\left(\phi_{m}\right)=D_{a p}(g)$ and $D_{a p}\left(\psi_{m}\right)=D_{a p}(h)$ and for each point $u \in \mathbb{R} \backslash \bigcup_{j=1}^{m} E_{j}$ the oscillation osc $\phi_{m}(u)=\operatorname{osc} g(u)$ and $\operatorname{osc} \psi_{m}(u)=\operatorname{osc} h(u)$. Observe too, that for $i=1,2$

$$
\phi_{m}\left(I_{n, i}^{k, m}\right) \supset \phi_{m-1}\left(I_{n, i}^{k, m}\right), \psi_{m}\left(J_{n, i}^{k, m}\right) \supset \psi_{m-1}\left(J_{n, i}^{k, m}\right)
$$

and for all $x \in \mathbb{R},\left|\phi_{m}(x)-\phi_{m-1}(x)\right|<3 c_{m}$ and $\left|\psi_{m}(x)-\psi_{m-1}(x)\right|<3 c_{m}$. Moreover $\phi_{m}+\psi_{m}=\phi_{m-1}+\psi_{m-1}=\ldots=\phi_{1}+\psi_{1}=g+h=f$. The sequences $\left(\phi_{m}\right)_{m=1}^{\infty}$ and $\left(\psi_{m}\right)_{m=1}^{\infty}$ uniformly converge to functions ϕ and ψ respectively. Observe that $\phi+\psi=\lim _{m \rightarrow \infty}\left(\phi_{m}+\psi_{m}\right)=g+h=f$. The functions ϕ and ψ, as the uniform limits, are continuous in each point of the set $\mathbb{R} \backslash D$. Thus they satisfy condition $\left(s_{3}\right)$ at all points of the complement $\mathbb{R} \backslash D$.

We will prove that ϕ and ψ satisfy also the property $\left(s_{3}\right)$ at all points of the set D. For this fix a point $x \in D$, a real $\varepsilon>0$ and a set $U \in T_{d}$ such that $x \in U$. Let j be the integer such that $\left|\phi_{j}-\phi\right|<\frac{\varepsilon}{3}$. Since the function g has the property $\left(s_{3}\right)$ and $d_{u}\left(\left\{u ; \phi_{j}(u) \neq g(u)\right\}, x\right)=0$, there is an open interval $I \subset\left\{u ; \phi_{j}(u)=g(u)\right\}$ such that

$$
\emptyset \neq I \cap U \subset A(\phi) \text { and } g(I \cap U)=\phi_{j}(I \cap U) \subset\left(g(x)-\frac{\varepsilon}{3}, g(x)+\frac{\varepsilon}{3}\right) .
$$

Consequently, for $u \in I \cap U$ we have
$|\phi(u)-\phi(x)| \leq\left|\phi(u)-\phi_{j}(u)\right|+\left|\phi_{j}(u)-\phi_{j}(x)\right|+\left|\phi_{j}(x)-\phi(x)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$.
So the function $\phi \in s_{3}(x)$ for all $x \in D$. In the same way we can check that $\psi \in s_{3}(x)$ for these points. Thus $\phi, \psi \in \mathcal{S}_{3}$.

Now we will prove that ϕ has the Darboux property. Suppose, to the contrary, that it has not the Darboux property. Then there are points a, b with $a<b$ and $\phi(a) \neq \phi(b)$ and a real $c \in K=(\min (\phi(a), \phi(b)), \max (\phi(a), \phi(b))$ such that $\phi^{-1}(c) \cap[a, b]=\emptyset$. If there is a point $x \in E_{1} \cap[a, b]$, then there is a nondegenerate closed interval $I \subset[a, b]$ such that $\phi(I) \supseteq \phi_{1}(I) \supset K \ni c$, a contradiction. Fix a point

$$
z \in[a, b] \cap \operatorname{cl}(\{u ; \phi(u)<c\}) \cap \operatorname{cl}(\{u ; \phi(u)>c\}) .
$$

Observe that $z \in D$ and there is an integer $m>1$ such that $z \in E_{m}$. Thus $\operatorname{osc} \phi_{m-1}(z)<c_{m}$ and there is an open interval $V \ni z$ such that $\operatorname{osc}_{V} \phi_{m-1}<$ c_{m}. So we have either $\phi(z)=\phi_{m-1}(z)<c$ or $\phi(z)=\phi_{m-1}(z)>c$. Suppose that $\phi_{m-1}(z)<c$. Then there is a point $v \in[a, b] \cap V$ such that $\phi_{m-1}(v)>c$. Since $v \in V$, we have $\phi_{m-1}(v)-\phi_{m-1}(z)<c_{m}$ and consequently $c-\phi_{m-1}(z)<$ c_{m}. From the construction of ϕ_{m} it follows that there is a nondegenerate closed interval $I \in[a, b] \cap V$ such that $\phi(I) \supseteq \phi_{m}(I) \supset\left[\phi_{m-1}(z), \phi_{m-1}(v)\right] \ni c$, a contradiction. If $\phi_{m-1}(z)>c$ the reasoning is similar. So $\phi \in \mathcal{D}$. The same we can show that the function ψ has the Darboux property.

Part II. In this part I will show that every a.e. continuous function with some special condition is the sum of two functions with condition $\left(s_{3}\right)$.
Remark 3. If $f \in S_{4}$ is almost everywhere continuous and approximately continuous at least unilaterally at the point x, then $f \in s_{3}(x)$.
Proof. Let $U \in T_{d}$ be the set containing x and let $\varepsilon>0$. There is a point $t \in U \cap C(f)$ such that $|f(t)-f(x)|<\frac{\varepsilon}{2}$. Since $t \in C(f)$, there is an open interval I_{1} such that $t \in I_{1}$ and $|f(u)-f(t)|<\frac{\varepsilon}{2}$ for all $u \in I_{1}$. Now, observe that for all $u \in I_{1}$ we have

$$
\begin{equation*}
|f(u)-f(x)| \leq|f(u)-f(t)|+|f(t)-f(x)|<\varepsilon \tag{4}
\end{equation*}
$$

Since $\emptyset \neq I_{1} \cap U \in T_{d}$ and $f \in S_{4}$, there is an open interval $I_{2} \subset I_{1}$ such that $\emptyset \neq I_{2} \cap U \subset A(f)$. So, by (4) the function $f \in s_{3}(x)$.

Obviously the sum of two functions almost everywhere continuous belonging to S_{4} is also an almost everywhere continuous function belonging to S_{4}. But the uniform limit of functions from the class S_{4} need not be a function from S_{4}.
Example 3. Let $\left\{w_{1}, w_{2}, \ldots\right\}$ be a decreasing sequences of all rationals from the interval $[0,1]$ and let $f_{n}:[0,1] \rightarrow[0,1]$ for $n=1,2, \ldots$, be defined by

$$
f_{n}(x)= \begin{cases}\frac{1}{n} & \text { for } x \in\left\{w_{1}, w_{2}, \ldots w_{n}\right\} \\ 1 & \text { for } x \in[0,1] \backslash\left\{w_{1}, w_{2}, \ldots w_{n}\right\}\end{cases}
$$

Then, for all n, the function $f_{n} \in S_{4}$, the sequence $\left(f_{n}\right)$ uniformly converges, but $\lim _{n \rightarrow \infty} f_{n} \notin S_{4}$.

Now, by using Grande's methods from the proof of theorem 2 in [3], I will prove the fundamental theorems of this part. We need the following lemmas below. Lemma 2 is a modification of Lemma 1.

Lemma 1. (see [3]) If $A \subset \mathbb{R}$ is a nonempty compact set of Lebesgue measure zero, $U \supset A$ is an open set and $E \subset U \backslash A$ is a dense set in U, then there is a family $K_{i, j} \subset U \backslash A, i, j=1,2, \ldots$, of pairwise disjoint nondegenerate closed intervals with the endpoints belonging to E such that for each positive integer i and each point $x \in A$ the upper density

$$
\begin{equation*}
d_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1 \tag{5}
\end{equation*}
$$

and for each positive real ε the set of all pairs (i, j) for which $\operatorname{dist}\left(K_{i, j}, A\right)=$ $\inf \left\{|x-y| ; x \in K_{i, j}, y \in A\right\} \geq \varepsilon$ is empty or finite.

Lemma 2. Let $U \subset \mathbb{R}$ be an open set. If $A \subset U$ is nonempty compact set of Lebesgue measure μ zero and there is an open set $V \subset U \backslash A$ such that $\mu(U \backslash V)=0$ and $E \subset V$ is dense in V, then there is a family of pairwise disjoint nondegenerate closed intervals $K_{i, j} \subset V, i, j=1,2, \ldots$ with the endpoints belonging to E such that for each positive integer i and each point $x \in A$ condition (5) holds, and for each real $\varepsilon>0$ the set of all pairs (i, j) for which $\operatorname{dist}\left(K_{i, j}, A\right) \geq \varepsilon$ is empty or finite.

Proof. Observe that in the proof of Lemma 1 (see [3]) we can choose pairwise disjoint nondegenerate closed intervals $K_{i, j} \subset V \subset U \backslash A$ satisfying condition (5) or, if $K_{i, j}(i, j=1,2 \ldots)$ is the family of pairwise disjoint nondegenerate closed intervals satisfying the conclusion of Lemma 1, consider the family $K_{i, j} \cap V(i, j=1,2, \ldots)$ where $V \subset U \backslash A$ is an open set. In the set $K_{i, j} \cap$ $V(i, j=1,2, \ldots)$ we can choose a family $L_{i, j}^{l}(l=1,2 \ldots, k(i, j))$ of pairwise disjoint nondegenerate closed intervals with the endpoints belonging to E such that $\mu\left(K_{i, j} \backslash \bigcup_{l=1}^{k(i, j)} L_{i, j}^{l}\right)=0$ for $i, j=1,2, \ldots, l \leq k(i, j)$. Then, for each point $x \in A$ the family $L_{i, j}^{l}(i, j=1,2, \ldots, l \leq k(i, j))$ satisfies the conclusion of Lemma 2 .

Theorem 2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is the sum of two functions $g, h \in S_{3}$, then f is almost everywhere continuous and satisfies:
(a) the set $D_{a p}(f)$ is nowhere dense,
(b) for every nonempty set $U \in T_{d}$ contained in $\operatorname{cl}\left(D_{a p}(f)\right)$ the set $U \cap D_{a p}(f)$ is nowhere dense in U.

Proof. Since h, g are almost everywhere continuous, $f=g+h$ is the same. We have observed above that the sets $D_{a p}(g)$ and $D_{a p}(h)$ are nowhere dense. So, $D_{a p}(f) \subset D_{a p}(g) \cup D_{a p}(h)$ is also nowhere dense. Now we prove that $D_{a p}(f)$ satisfies condition (b). If $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)\right)=0$, then f satisfies condition (b). So, we assume that $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)\right)>0$ and fix a nonempty set $U \in T_{d}$ and an open interval I such that $I \cap U \neq \emptyset$. Since g has property $\left(s_{3}\right)$ and $I \cap U$ is a nonempty set belonging to T_{d}, there is an open interval $I_{1} \subset I$ such that $\emptyset \neq I_{1} \cap U \subset A(g)$. Similarly, by property $\left(s_{3}\right)$ of h, there is an open interval $I_{2} \subset I_{1}$ such that $\emptyset \neq I_{2} \cap U \subset A(h)$. But $f=g+h$; so $I_{2} \cap U \subset A(f)$.

Theorem 3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is the function almost everywhere continuous and $\mu\left(\operatorname{cl}\left(D_{\text {ap }}(f)\right)\right)=0$. Then there are functions $g, h \in S_{3}$ such that $f=g+h$.

Proof. First suppose that the set $D_{a p}(f)$ is bounded. Then $\operatorname{cl}\left(D_{a p}(f)\right)$ is a compact set. If $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)=0\right.$, then by Lemma 1 there is a family $K_{i, j}(i, j=1,2, \ldots)$ of pairwise disjoint nondegenerate closed intervals

$$
K_{i, j} \subset \mathbb{R} \backslash \operatorname{cl}\left(D_{a p}(f)\right), i, j \geq 1
$$

with the endpoints belonging to $C(f)$ such that for each real $\varepsilon>0$ the set of all pairs (i, j) for which $\operatorname{dist}\left(K_{i, j}, \operatorname{cl}\left(D_{a p}(f)\right)\right) \geq \varepsilon$ is empty or finite and such that for each positive integer i and each point $x \in \operatorname{cl}\left(D_{a p}(f)\right)$ the upper density $d_{u}\left(\bigcup_{j=1}^{\infty} K_{i, j}, x\right)=1$. Let $\left(w_{i}\right)$ be a sequence of all rationals and let

$$
g(x)= \begin{cases}w_{i} & \text { for } x \in K_{2 i-1, j}, i, j \geq 1 \\ f(x)-w_{i} & \text { for } x \in K_{2 i, j}, i, j \geq 1 \\ f(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

and

$$
h(x)= \begin{cases}f(x)-w_{i} & \text { for } x \in K_{2 i-1, j}, i, j \geq 1 \\ w_{i} & \text { for } x \in K_{2 i, j}, i, j \geq 1 \\ 0 & \text { otherwise on } \mathbb{R}\end{cases}
$$

Evidently, $g+h=f$. Moreover the functions $g, h \in S_{4}$ and g, h are almost everywhere continuous. If $x \in \mathbb{R} \backslash \operatorname{cl}\left(D_{a p}(f)\right)$, then g, h are approximately continuous at least unilaterally at x. So, by Remark 1, the functions $g, h \in$ $s_{3}(x)$.

If $x \in \operatorname{cl}\left(D_{a p}(f)\right), x \in U \in T_{d}$ and $\varepsilon>0$, then there is an index k such that $\left|f(x)-w_{k}\right|<\varepsilon$. Since $d_{u}\left(\bigcup_{j=1}^{\infty} K_{2 k-1, j}, x\right)=1$, there is an index m such that $\emptyset \neq \operatorname{int}\left(K_{2 k-1, m}\right) \cap U \subset A(f)$. For $u \in \operatorname{int}\left(K_{2 k-1, m} \cap U\right)$ we have $|g(u)-g(x)|=\left|w_{k}-f(x)\right|<\varepsilon$. Thus $g \in s_{3}(x)$. Similarly we can verify that $h \in s_{3}(x)$ for $x \in \operatorname{cl}\left(D_{a p}(f)\right)$.

Now, suppose that $D_{a p}(f)$ is unbounded. Let $\left(a_{k}\right)(k=0, \pm 1, \pm 2, \ldots)$ be a sequence of points of $\operatorname{int}(C(f))$ which converges to $-\infty$ as $k \rightarrow-\infty$ and to $+\infty$ as $k \rightarrow+\infty$. Then, for $k=0, \pm 1, \pm 2, \ldots$ the set $D_{a p}(f) \cap\left(a_{k}, a_{k+1}\right)$ is bounded and $\operatorname{cl}\left(D_{a p}(f) \cap\left(a_{k}, a_{k+1}\right)\right)$ is a compact set. On each interval $\left[a_{k}, a_{k+1}\right) k=0 \pm 1, \pm 2, \ldots$ we can define the functions $g_{k}, h_{k} \in S_{3}$ such that $f=h_{k}+g_{k}$ for $k=0,-1,1,-2,2, \ldots$. For this we repeat the construction of the functions h_{k}, g_{k} on $\left(a_{k}, a_{k+1}\right)$, for a fixed k, which was presented for the case of the set $D_{\text {ap }}(f)$ bounded in \mathbb{R} but now, for fixed a k, in each interval $\left(a_{k}, a_{k+1}\right), U=U_{k} \subset\left(a_{k}, a_{k+1}\right)$ and $\operatorname{cl}\left(D_{a p}(f) \cap\left(a_{k}, a_{k+1}\right)\right) \subset U_{k}$. Finally, we define $g, h: \mathbb{R} \rightarrow \mathbb{R}$ by $h(x)=h_{k}(x), g(x)=g_{k}(x)$ for $x \in\left[a_{k}, a_{k+1}\right)$ and $k=0 \pm 1, \pm 2, \ldots$ Then, in this case, $h, g \in S_{3}$ and $f=h+g$.

Theorem 4. Let $f \in S_{4}$ be an almost everywhere continuous function satisfying conditions (a), (b) from Theorem 1 and the condition
(c) $D_{a p}(f)$ is an $F_{\sigma}-$ set.

Then there are functions $g, h \in S_{3}$ such that $f=g+h$.
Proof. If $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)\right)=0$, the conclusion of the theorem follows from Theorem 3. So, let $\mu\left(\operatorname{cl}\left(D_{a p}(f)\right)\right)>0$. At first suppose that $D_{a p}(f)$ is bounded. Since $D_{a p}(f)$ is an F_{σ}-set, there is an increasing sequence of closed sets $F_{1} \subset$ $F_{2} \subset \ldots$ such that $D_{a p}(f)=\bigcup_{i=1}^{\infty} F_{i}$. Let $\left(a_{n}\right)_{n}$ be a sequence of positive real numbers such that $a_{n} \searrow 0$ and $\sum_{n=1}^{\infty} a_{n}<\infty$. For $n=1,2, \ldots$ let

$$
A_{n}=\left\{x ; \operatorname{osc} f(x) \geq a_{n}\right\}
$$

The sets $A_{n}(n=1,2, \ldots)$ are closed sets of measure μ zero and $D(f)=$ $\bigcup_{i=1}^{\infty} A_{i}$. Without loss of the generality we can assume that for $i=1,2, \ldots$ the set $F_{i} \cap A_{i} \neq \emptyset$, because if not, we can consider a subsequence of $\left(a_{n}\right)_{n}$. Let $H_{i}=F_{i} \cap A_{i}$ for $i=1,2, \ldots$ The sets $H_{i}(i=1,2, \ldots)$ are closed sets of μ measure zero and form an increasing sequence of subsets. We can assume that for each $i=1,2, \ldots H_{i+1} \backslash H_{i} \neq \emptyset$, because if not, we can consider some subsequence of the sequence $\left(H_{i}\right)$. Obviously $H_{i} \subset A_{i}$ for $i=1,2, \ldots$. By Lemma 2 there is a family of pairwise disjoint closed intervals $K_{1, i, j} \subset$ $\mathbb{R} \backslash H_{1}, i, j=1,2, \ldots$, with endpoints belonging to $C(f)$ such that for each $i=1,2, \ldots$ and for each $x \in H_{1}$ the upper density $d_{u}\left(\bigcup_{j=1}^{\infty} K_{1, i, j}, x\right)=1$ and for each real $\varepsilon>0$ the set of pairs (i, j) for which $\operatorname{dist}\left(K_{1, i, j}, H_{1}\right) \geq \varepsilon$ is empty
or finite. In the interiors $\operatorname{int}\left(K_{1, i, j}\right)$ we find closed intervals $I_{1, i, j} \subset \operatorname{int}\left(K_{1, i, j}\right)$ such that for each point $x \in A_{1}$ and for each integer $i=1,2, \ldots$ the upper density $d_{u}\left(\bigcup_{j=1}^{\infty} I_{1, i, j}, x\right)=1$. Let $\left(w_{1, i}\right)_{i}$ be a sequence of all rationals and let $g_{1}, h_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g_{1}(x)= \begin{cases}w_{1, i} & \text { for } x \in I_{1,2 i, j}, i, j=1,2, \ldots \\ f(x) \quad & \text { for } x \in \mathbb{R} \backslash \bigcup_{i, j=1}^{\infty} \operatorname{int}\left(K_{1,2 i, j}\right) \\ & \text { linear on the components of the sets } \\ & K_{1,2 i, j} \backslash \operatorname{int}\left(I_{1,2 i, j}\right), i, j=1,2, \ldots\end{cases}
$$

and $h_{1}(x)=f(x)-g_{1}(x)$ for $x \in \mathbb{R}$. As in the proof of Theorem 1 we can prove that $g_{1}, h_{1} \in S_{3}(x)$ for $x \in H_{1}$ and

$$
A(f) \subset A\left(g_{1}\right) \cap A\left(h_{1}\right), C(f) \subset C\left(g_{1}\right) \cap C\left(h_{1}\right)
$$

In the second step we consider the set $A_{2} \backslash A_{1}=A_{2} \cap\left(\mathbb{R} \backslash A_{1}\right)$. There are pairwise disjoint open intervals $P_{2, k} \subset \mathbb{R} \backslash A_{1}, k \geq 1$, with the centers belonging to $C(f)$ such that every set $A_{2} \cap P_{2, k}$ is nonempty and compact and $A_{2} \backslash A_{1}=\bigcup_{k}\left(A_{2} \cap P_{2, k}\right)$. A construction of such intervals $P_{2, k}$ may be the following. We find a bounded open set $G \supset A_{2}$ and divide each component of the the set $G \backslash A_{1}$ by points belonging to $C(f)$ into open intervals. As $P_{2, k}$ we take all from the above intervals which have common points with A_{2}.

If $x \in\left(A_{2} \cap \operatorname{int}\left(K_{1,2 i, j}\right)\right) \backslash A_{1}$ for some pair (i, j), then g_{1} is continuous at x, and consequently osc $g_{1}(x)=0$ and $\operatorname{osc} h_{1}(x)=\operatorname{osc} f(x)<a_{1}$. If

$$
x \in A_{2} \backslash A_{1} \backslash \bigcup_{i, j \geq 1} K_{1,2 i, j}
$$

then $g_{1}(t)=f(t)$ and $h_{1}(t)=0$ on an open interval containing x and contained in $\mathbb{R} \backslash A_{1}$. So osc $g_{1}(x)=\operatorname{osc} f(x)<a_{1}$ and osc $h_{1}(x)=0$. Similarly we show that $\max \left(\operatorname{osc} g_{1}(x), \operatorname{osc} h_{1}(x)\right)<a_{1}$ if $x \in A_{2} \backslash A_{1}$ is an endpoint of some $K_{1,2 i, j}$. So for each integer k and each point $x \in A_{2} \cap P_{2, k}$ there is an open interval $J_{2, k}(x) \subset P_{2, k}$ containing x such that on the interval $J_{2, k}(x)$ the oscillation $\operatorname{osc}_{J_{2, k}(x)} g_{1}<a_{1}$ and $\operatorname{osc}_{J_{2, k}(x)} h_{1}<a_{1}$. Since the set $A_{2} \cap P_{2, k}$ is compact, there are points $x_{1}, x_{2}, \ldots, x_{j(k)}$ such that

$$
A_{2} \cap P_{2, k} \subset J_{2, k}\left(x_{1}\right) \cup \ldots \cup J_{2, k}\left(x_{j(k)}\right)
$$

Without loss of the generality we can assume that the above intervals $J_{2, k}\left(x_{j}\right)$, $j \leq j(k)$, are pairwise disjoint. For each pair of positive integers (i, j) such that $A_{2} \cap K_{1, i, j} \neq \emptyset$ we find an open set $U\left(K_{1, i, j}\right) \subset \operatorname{int}\left(K_{1, i, j}\right)$ such that
$A_{2} \cap K_{1, i, j} \subset U\left(K_{1, i, j}\right)$ and $\frac{\mu\left(\operatorname{cl}\left(U\left(K_{1, i, j}\right)\right)\right)}{\mu\left(K_{1, i, j}\right)}<\frac{1}{4^{1+i+j}}$. If for some integers i_{1}, j_{1}, j_{2} the intersection $A_{2} \cap \operatorname{int}\left(K_{1, i_{1}, j_{1}}\right) \cap J_{2, k}\left(x_{j_{2}}\right) \neq \emptyset$ then, by Lemma 2, we find pairwise disjoint nondegenerate closed intervals

$$
K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right) \subset U\left(K_{1, i_{1}, j_{1}}\right) \cap J_{2, k}\left(x_{j_{2}}\right) \backslash H_{2}
$$

with the endpoints belonging to $C(f)$ such that for every positive integer i and every point $x \in H_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}$ the upper density

$$
d_{u}\left(\bigcup_{j=1}^{\infty} K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right), x\right)=1
$$

and for every real $\varepsilon>0$ the set of all pairs (i, j) for which

$$
\operatorname{dist}\left(H_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}, K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right)>\varepsilon
$$

is empty or finite.
In every interval $\operatorname{int}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right)$ we find a closed interval $I_{2, i, j}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right.$ such that for every integer i and for every point $x \in H_{2} \cap J_{2, k}\left(x_{j_{2}}\right) \cap K_{1, i_{1}, j_{1}}$ the upper density

$$
\begin{equation*}
d_{u}\left(\bigcup_{j=1}^{\infty} I_{2, i, j}\left(K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)\right), x\right)=1 \tag{6}
\end{equation*}
$$

For each positive integer $j \leq j(k)$ let $\left(w_{i}\left(x_{j}\right)\right)$ be an enumeration of all rationals of the interval $\left(y_{j}-\frac{a_{1}}{2}, y_{j}+\frac{a_{1}}{2}\right)$, where y_{j} is the center of the interval $\left[\inf _{H_{2} \cap J_{2, k}\left(x_{j}\right)} g_{1}, \sup _{H_{2} \cap J_{2, k}\left(x_{j}\right)} g_{1}\right]$, and let $\left(u_{i}\left(x_{j}\right)\right)$ be an enumeration of all rationals of the interval $\left(z_{j}-\frac{a_{1}}{2}, z_{j}+\frac{a_{1}}{2}\right)$, where z_{j} is the midpoint of the interval $\left[\inf _{H_{2} \cap J_{2, k}\left(x_{j}\right)} h_{1}, \sup _{H_{2} \cap J_{2, k}\left(x_{j}\right)} h_{1}\right]$. Put

$$
g_{2}(x)=w_{i}\left(x_{j_{2}}\right) \text { and } h_{2}(x)=f(x)-g_{2}(x)
$$

for $x \in I_{2,2 i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right), j_{2} \leq j(k), i, j=1,2, \ldots$,

$$
h_{2}(x)=u_{i}\left(x_{j_{2}}\right) \text { and } g_{2}(x)=f(x)-h_{2}(x)
$$

for $x \in I_{2,2 i-1, j}\left(K_{1, i_{1}, j_{1}} J_{2, k}\left(x_{j_{2}}\right)\right), j_{2} \leq j(k), i, j=1,2, \ldots$,

$$
g_{2}(x)=g_{1}(x) \text { and } h_{2}(x)=h_{1}(x)
$$

$$
\text { for } x \in K_{1, i_{1}, j_{1}} \backslash \bigcup_{j_{2} \leq j(k)} \bigcup_{i, j=1}^{\infty} K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)
$$

and assume that the function g_{2} is linear and $h_{2}=f-g_{2}$ on the components of the sets $K_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right) \backslash I_{2, i, j}\left(K_{1, i_{1}, j_{1}}, J_{2, k}\left(x_{j_{2}}\right)\right)$. In the same way, modifying the values of g_{1} and h_{1} on respectively constructed closed intervals, we define the functions g_{2} and h_{2} on components $L_{2, m}$ of the set $P_{2, k} \backslash H_{1} \backslash$ $\bigcup_{i, j=1}^{\infty} K_{1, i, j}$ for which $L_{2, m} \cap A_{2} \neq \emptyset$. Put $g_{2}(x)=g_{1}(x)$ and $h_{2}(x)=h_{1}(x)$ otherwise on \mathbb{R}. Observe that if the function f is continuous at a point x, then from the constructions of g_{1} and g_{2} it follows that $x \in \mathbb{R} \backslash A_{2}$, and g_{1} and g_{2} are continuous at x. Consequently, the functions h_{1} and h_{2} as the differences of functions continuous at x, are also continuous at this point. So, $C(f) \subset C\left(g_{2}\right) \cap C\left(h_{2}\right)$. Similarly $A(f) \subset A\left(g_{2}\right) \cap A\left(h_{2}\right)$. Moreover it is evident that $\left|g_{2}-g_{1}\right| \leq a_{1},\left|h_{2}-h_{1}\right| \leq a_{1}$ and $g_{2}+h_{2}=f$. We will show that $g_{2}, h_{2} \in s_{3}(x)$ for $x \in H_{2}$. For this fix a point $x \in H_{2}$, a set $U \ni x$ belonging to T_{d} and a real $\varepsilon>0$. If $x \in H_{1}$, then we find a rational $w_{1, k}$ with $\left|g_{1}(x)-w_{1, k}\right|<\varepsilon$. Since $d_{u}\left(\bigcup_{j=1}^{\infty} I_{1,2 k, j}, x\right)=1$ and $\frac{\mu\left(\mathrm{cl}\left(U\left(K_{1,2 k, j}\right)\right)\right)}{\mu\left(K_{1,2 k, j}\right)}<\frac{1}{4^{1+2 k+j}}$, we obtain $d_{u}\left(\left(g_{1}\right)^{-1}\left(w_{1, k}\right) \cap \bigcup_{j=1}^{\infty} I_{1,2 k, j}, x\right)=1$ and consequently there is an integer m and an open interval $I \subset I_{1,2 k, m} \backslash \operatorname{cl}\left(U\left(K_{1,2 k, m}\right)\right)$ such that $\emptyset \neq I \cap U$. But $g_{2}(u)=w_{1, k}$ for $u \in I \cap U$, so $I \cap U \subset C\left(g_{2}\right) \subset A\left(g_{2}\right)$. Moreover for $u \in I \cap U$ we have $\left|g_{2}(u)-g_{2}(x)\right|=\left|w_{1, k}-g_{2}(x)\right|<\varepsilon$. So $g_{2} \in s_{3}(x)$ for $x \in H_{1}$. Similarly we show that $h_{2} \in s_{3}(x)$ for $x \in H_{1}$.

Using (6) by similar reasoning we can show that $g_{2}, h_{2} \in s_{3}(x)$ for $x \in$ $H_{2} \backslash H_{1}$. Let $\left(K_{2, i, j}\right)$ be a double sequence of all closed intervals on which we have modified the functions g_{1} and h_{1} to obtain g_{2} and h_{2}. Similarly, in the $n^{t h}$ step, we change the functions g_{n-1} and h_{n-1} on respectively taken closed intervals $K_{n, 2 i, j}$ and $K_{n, 2 i-1, j}$ and define functions g_{n} and h_{n} such that g_{n} (and respectively h_{n}) has constant rational values on respective closed intervals $I_{n, 2 i, j} \subset \operatorname{int}\left(K_{n, 2 i, j}\right)$ (resp. on $\left.I_{n, 2 i-1, j}\right), C(f) \subset C\left(g_{n}\right) \cap C\left(h_{n}\right)$, $A(f) \subset A\left(g_{n}\right) \cap A\left(h_{n}\right), g_{n}, h_{n} \in s_{3}(x)$ for $x \in H_{n},\left|g_{n}-g_{n-1}\right| \leq a_{n-1}$, $\left|h_{n}-h_{n-1}\right| \leq a_{n-1}$ and $g_{n}+h_{n}=f$. Moreover, we suppose that for every triple $\left(k, i_{1}, j_{1}\right)$, where $k<n$ and $i_{1}, j_{1}=1,2, \ldots$,

$$
\begin{equation*}
\frac{\mu\left(K_{k, i_{1}, j_{1}} \backslash \bigcup_{i, j=1}^{\infty} K_{n, i, j}\right)}{\mu\left(K_{k, i_{1}, j_{1}}\right)}>1-\frac{1}{4^{n+i+j}} \tag{7}
\end{equation*}
$$

Let $g=\lim _{n \rightarrow \infty} g_{n}$ and $h=\lim _{n \rightarrow \infty} h_{n}$. Observe that the above limits are uniform. Evidently, $g+h=f$. Since $f \in S_{4}$ and $A(f) \subset A(g) \cap A(h)$, the functions g, h have the property $\left(s_{4}\right)$.

We will prove that the functions g, h have the property $\left(s_{3}\right)$. For this, fix a real $\varepsilon>0$, a point $x \in \mathbb{R}$ and a set $U \in T_{d}$ containing x. If $x \in C(f)$, then g is continuous at x and there is a real $\eta>0$ such that $|g(t)-g(x)|<\varepsilon$ for $t \in(x-\eta, x+\eta)$. But g has the property $\left(s_{4}\right)$; so there are an open interval $J \subset(x-\eta, x+\eta)$ such that $A(g) \supset J \cap U \neq \emptyset$. Since $|g(t)-g(x)|<\varepsilon$ for
$t \in J \cap U$, we obtain $g \in s_{3}(x)$. Similarly we can prove that $h \in s_{3}(x)$.
If $x \in A(f)$, , then $x \in A(g) \cap A(h)$ and because the functions $g, h \in S_{4}$ and they are approximately continuous at x, from Remark 3 it follows that $g, h \in s_{3}(x)$.

Suppose that $x \in D_{a p}(g) \cap D_{a p}(h)$. Then there is an positive integer n such that $x \in H_{n} \backslash H_{n-1}$ (where $H_{0}=\emptyset$). Let $k>n$ be a positive integer such that $\sum_{i=k+1}^{\infty} a_{i}<\frac{\varepsilon}{3}$. There is a rational value w of the function g_{n} such that $\left|g_{n}(x)-w\right|<\frac{\varepsilon}{3}$ and $d_{u}\left(\left(g_{n}\right)^{-1}(w), x\right)=1$. By condition (7) the upper density

$$
d_{u}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m>n} \bigcup_{l, j=1}^{\infty} K_{m, l, j}, x\right)=1
$$

So

$$
d_{u}\left(\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}, x\right)=1
$$

and by the construction of g_{n} and $K_{m, l, j}$ also

$$
\left.d_{u}\left(\operatorname{int}\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right), x\right)=1
$$

Since $x \in U \in T_{d}$, we have

$$
\left.d_{u}\left(U \cap \operatorname{int}\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right), x\right)=1
$$

Consequently, there is an open interval

$$
\left.I \subset \operatorname{int}\left(g_{n}\right)^{-1}(w) \backslash \bigcup_{m=n+1}^{k-1} \bigcup_{l, j=1}^{\infty} K_{m, l, j}\right) \backslash A_{k}
$$

such that $I \cap U \neq \emptyset$. Evidently, $\emptyset \neq I \cap U \subset A(f) \subset A(g)$. For $t \in I \cap U$ we obtain $g_{n}(t)=g_{k}(t)$ and

$$
|g(t)-g(x)|=\left|g(t)-g_{k}(t)+w-g_{n}(x)\right| \leq \sum_{i=k+1}^{\infty} a_{i}+\frac{\varepsilon}{3}<\frac{2 \varepsilon}{3}<\varepsilon
$$

So $g \in s_{3}(x)$. The proof that $h \in s_{3}(x)$ is analogous.
Up to now we have supposed that the set $D(f)$ is bounded. Now we consider the general case. Since $D(f)$ is a first category set, there are points $x_{k} \in$
$\mathbb{R} \backslash D(f), k=0,1,-1,2,-2, \ldots$ such that $\lim _{k \rightarrow-\infty} x_{k}=-\infty, \lim _{k \rightarrow \infty} x_{k}=\infty$ and $x_{k}<x_{k+1}$ for all integers k. Then $\mathbb{R}=\bigcup_{k=-\infty}^{\infty}\left[x_{k}, x_{k+1}\right]$. Every restricted function $f_{k}=f /\left[x_{k}, x_{k+1}\right]$ is the sum of two functions $g_{k}, h_{k}:\left[x_{k}, x_{k+1}\right] \rightarrow \mathbb{R}$ having the property $\left(s_{3}\right)$ and continuous at the points x_{k} and x_{k+1}. Let

$$
g(x)= \begin{cases}g_{k}(x)-\left(a_{1}+\cdots+a_{k}\right) & \text { for } x \in\left[x_{k}, x_{k+1}\right], k \geq 1 \\ g_{0}(x) & \text { for } x \in[0,1] \\ g_{k}(x)+\left(a_{0}+a_{-1}+\cdots+a_{k+1}\right) & \text { for } x \in\left[x_{k}, x_{k+1}\right], k \leq-1\end{cases}
$$

where $a_{k}=g_{k}(k)-g_{k-1}(k)$ for $k=0 \pm 1, \pm 2, \ldots$ and $h(x)=f(x)-g(x)$ for $x \in \mathbb{R}$. Observe that the functions g and h have property $\left(s_{3}\right)$ and $f=g+h$.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin (1978).
[2] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch., 24 (1998-1999), 171-184.
[3] Z. Grande, On the sums of functions satisfying the condition (s_{1})., Real Anal. Exch., 28 (2003), 41-54.
[4] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Density topology, condition $\left(s_{3}\right)$, condition $\left(s_{4}\right)$, approximate continuity, Darboux property

 Mathematical Reviews subject classification: 26A03, 26A15
 Received by the editors October 28, 2002
 Communicated by: B. S. Thomson

