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ON THE SUM OF FUNCTIONS WITH
CONDITION (s3)

Abstract

A function f : R → R satisfies condition (s3) if for each real ε > 0, for
each x and for each set U 3 x belonging to the density topology there
is an open interval I such that A(f) ⊃ I ∩ U 6= ∅ and f(U ∩ I) ⊂
(f(x) − ε, f(x) + ε), where A(f) denotes the set of all approximate
continuity points of f . In this article it is show that the sum of two
functions with the condition (s3) is the sum of two Darboux functions
satisfying this condition (s3) and that every a.e.-continuous function
with some special condition is the sum of two functions with condition
(s3).

Let R be the set of all reals. Denote by µ Lebesgue measure in R and by
µe the outer Lebesgue measure in R.

For a set A ⊂ R and a point x we define the upper (lower) outer density
du(A, x) (dl(A, x)) of the set A at the point x as

lim sup
h→0+

µe(A ∩ [x− h, x+ h])
2h

(lim inf
h→0+

µe(A ∩ [x− h, x+ h])
2h

respectively).

A point x is said to be an outer density point (a density point) of a set A if
dl(A, x) = 1 (if there is a measurable set B ⊂ A such that dl(B, x) = 1).

The family

Td = {A ⊂ R : x ∈ A =⇒ x is a density point of A}
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is a topology called the density topology [1, 4]. The sets A ∈ Td are Lebesgue
measurable ([1]).

Let Te denotes the Euclidean topology in R. A function f : (R, Td) →
(R, Te) continuous at x is called approximately continuity at x ([1]).

For a function f : R → R let C(f) denote the set of all continuity points
of f , let A(f) denote the set of all approximate continuity points of f , let
D(f) = R \C(f) denote the set of all discontinuity points of f , and finally let
Dap(f) = R\A(f) denote the set of all approximate discontinuity points of f .

In [2] the following properties are investigated.
A function f : R → R has the property (s3) [ the property (s1)] at a point

x (f ∈ s3(x)) [f ∈ s1(x) respectively] if for each real ε > 0 and for each set
U ∈ Td containing x there is an open interval I such that ∅ 6= I ∩ U ⊂ A(f)
[∅ 6= I ∩ U ⊂ C(f) respectively] and f(I ∩ U) ⊂ (f(x)− ε, f(x) + ε).

A function f : R → R has the property (s4) at a point x (f ∈ s4(x)) if for
each nonempty open set U ∈ Td containing x there is an open interval I such
that ∅ 6= I ∩ U ⊂ A(f).

A function f has the property (s3) (the property (s1), the property (s4)
respectively) if f ∈ s3(x) (f ∈ s1(x), f ∈ s4(x) respectively) for every point
x ∈ R.

The class of all functions f : R → R with the property (s3) (with the
property (s1), with the property s4(x) respectively) we denote by S3 (by S1,
by S4 respectively). It is obvious that S1 ⊂ S3 ⊂ S4. Some examples of
functions from S3 \ S1,S4 \ S3 are given in [2].

From the definition of the property (s3) it follows that if f : R → R satisfies
condition (s3), then the set Dap(f) is nowhere dense and of Lebesgue measure
zero. But there are functions f : R → R satisfying (s3) such that
cl(Dap(f)) is of positive measure.

Example 1. Let C ⊂ [0, 1] be a Cantor set of positive measure, (In) - an
enumeration of all components of the set [0, 1] \ C such that In 6= Im for
n 6= m and let Jn ⊂ In be nondegenerate closed intervals (n,m = 1, 2, . . . ).
Then the function

f(x) =
1
n

for x ∈ Jn, n = 1, 2, . . . , and f(x) = 0 otherwise on R

has the property (s3) but for the set Dap(f) = D(f) and containing the
endpoints of Jn, (n ≥ 1) we have µ(cl(Dap(f))) > 0.

In [2] it is shown that a function f having property (s3) is almost every-
where continuous; i.e., µ(D(f)) = 0. Since there are approximately continuous
functions f such that µ(D(f)) > 0 ([1]), approximate continuity does not im-
ply the property (s3).



On the Sum of Functions with Condition (s3) 157

Part I. In the paper [3] Z. Grande proved that if f : R → R is the sum of
two functions g, h ∈ S1, then there are two Darboux functions φ and ψ with
property (s1) such that f = φ+ψ. In this part, by using Grande’s method from
the proof of theorem 1 in [3], I will prove a similar theorem for the functions
with condition (s3).

It is well known, that the class D of Darboux functions f : R → R is not
closed under certain operations and that every function f : R → R can be
represented as the sum of Darboux functions ([1]). Observe too, that the sum
of two functions satisfying condition (s3) can be without this property.

Example 2. The functions

f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0,

g(x) = 1 for x < 0 and g(x) = 0 for x ≥ 0

are continuous at x 6= 0 and unilaterally continuous at x = 0. So, they satisfy
condition (s1) (and (s3) also), but the sum

(f + g)(x) =

{
0 for x = 0
1 for x 6= 0

does not satisfy condition (s3).

Remark 1. There are approximately continuous functions f ∈ S3 \ S1.

For example, there are functions f approximately continuous everywhere
and almost everywhere continuous with dense set D(f).

Remark 2. There are functions f ∈ S1 which are not approximately contin-
uous.

For example, the functions f, g from Example 2 are such.

Theorem 1. If a function f is the sum of two functions g, h ∈ S3, then there
are two functions φ, ψ ∈ S3 ∩ D such that f = φ+ ψ.

Proof. Let E = cl(Dap(g) ∪Dap(h)) and D = cl(D(g) ∪D(h)). It is known
thatDap(g) ⊂ D(g), Dap(h) ⊂ D(h); soD ⊃ E.Moreover the set E is nowhere
dense in R.

If D = ∅, then we can define φ = g and ψ = h and the proof is done. So
we suppose that D 6= ∅. We will consider two cases:

I.µ(D) = 0 and II.µ(D) > 0.
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Case I. Let µ(D) = 0. In this case let (ak, bk)∞k=1 be a sequence of all
components of the complement R\D such that (ak, bk)∩(aj , bj) = ∅ for k 6= j.
If, for a fixed k ∈ N, where N denotes the set of all positive integers, the
interval (ak, bk) is a bounded component of the complement R \ D, we find
two monotone sequences of points

ak < · · · < ak
n+1 < ak

n < · · · ak
1 < bk1 < · · · < bkn < bkn+1 < · · · < bk

such that limn→∞ ak
n = ak and limn→∞ bkn = bk, and

lim
n→∞

bkn+1 − bkn
bk − bkn

= lim
n→∞

ak
n − ak

n+1

ak
n − ak

= 0. (1)

In each interval (ak
n+1, a

k
n) ((bkn, b

k
n+1)) we find disjoint nondegenerate closed

intervals Ik
n,i ⊂ (ak

n+1, a
k
n) (Jk

n,i ⊂ (bkn, b
k
n+1)) for i = 1, 2 such that

l(Ik
n,i)

ak
n − ak

n+1

<
1

2n+k
,

( l(Jk
n,i)

bkn+1 − bkn
<

1
2n+k

)
(2)

for i = 1, 2, where l(H) denotes the length of the interval H, and

µ(
⋃2

i=1

⋃∞
n=1(I

k
n,i ∪ Jk

n,i))
bk − ak

<
1
2k
. (3)

If (as, bs) is an unbounded component of the complement R\D; i.e., as = −∞
or bs = ∞, we find two sequences only, (Js

n,i) (i = 1, 2) or respectively (Is
n,i)

(i = 1, 2), satisfying the above conditions (1), (2).
For a fixed k, for i = 1, 2 and for n ≥ 1 let gk

n,i : Ik
n,i → R and hk

n,i : Jk
n,i →

R be continuous functions such that gk
n,i(x) = 0 if x is an endpoint of Ik

n,i,
hk

n,i(y) = 0 if y is an endpoint of Jk
n,i and

(g+ gk
n,1)(I

k
n,1)∩ (h+hk

n,1)(J
k
n,1)∩ (g+hk

n,2)(J
k
n,2)∩ (h+ gk

n,2)(I
k
n,2) ⊃ [−n, n].

If (ak, bk) is a bounded component of the complement R \D, then we put
(for fixed k)

gk(x) =



g(x) + gk
n,1(x) for x ∈ Ik

n,1, n ≥ 1
g(x) + hk

n,2(x) for x ∈ Jk
n,2, n ≥ 1

g(x)− hk
n,1(x) for x ∈ Jk

n,1, n ≥ 1
g(x)− gk

n,2(x) for x ∈ Ik
n,2, n ≥ 1

g(x) otherwise on (ak, bk)

and
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hk(x) =



h(x) + hk
n,1(x) for x ∈ Jk

n,1, n ≥ 1
h(x) + gk

n,2(x) for x ∈ Ik
n,2, n ≥ 1

h(x)− gk
n,1(x) for x ∈ Ik

n,1, n ≥ 1
h(x)− hk

n,2(x) for x ∈ Jk
n,2, n ≥ 1

h(x) otherwise on (ak, bk).

Similarly we define the functions gs and hs on unbounded components (as, bs)
of the set R \D.

Putting φ(x) = gk(x), ψ(x) = hk(x) on every component (ak, bk) of the
complement R \ D and φ(x) = g(x), ψ(x) = h(x) on D we obtain Darboux
functions φ and ψ continuous on R\D such that φ+ψ = g+h = f. Since φ, ψ
are continuous on R\D, for every x ∈ R\D we have φ ∈ s3(x) and ψ ∈ s3(x).
Now, let x ∈ D, let U ∈ Td be the set containing x and let ε > 0 be a real.
By (1), (2) and (3) the lower density

dl(R \ (
∞⋃

k=1

∞⋃
n=1

2⋃
i=1

(Ik
n,i ∪ Jk

n,i) \D,x) = 1,

Observe that

Td 3 (R \ (
∞⋃

n=1

∞⋃
k=1

2⋃
i=1

(Ik
n,i ∪ Jk

n,i) \D) ∩ U) ∪ {x} 6= ∅

and g(t) = φ(t), h(t) = ψ(t) for t ∈ {x} ∪ (R \ (
⋃∞

n=1

⋃∞
k=1

⋃2
i=1(I

k
n,i ∪ Jk

n,i)).
Since g ∈ s3(x), there is an open interval

I ⊂ (R \ (
∞⋃

k=1

∞⋃
n=1

2⋃
i=1

(Ik
n,i ∪ Jk

n,i)) \D)

such that I ∩ U 6= ∅ and |g(t)− g(x)| < ε for all t ∈ I ∩ U. So,

|φ(t)− φ(x)| = |g(t)− g(x)| < ε

for all t ∈ I ∩ U and consequently φ ∈ s3(x). Similarly we can prove that
ψ ∈ s3(x).

Case II. Suppose that µ(D) > 0. In this case there are positive numbers

c1 > c2 > · · · > cn > · · · > 0 such that
∑

n

cn <∞
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and the sets
E1 = {x; osc g(x) ≥ c1} ∪ {x; osch(x) ≥ c1},

En+1 = {x; cn > osc g(x) ≥ cn+1} ∪ {x; cn > osch(x) ≥ cn+1}
are nonempty for n ≥ 1.

In the first step of the inductive construction of functions φ and ψ we con-
sider the closed set E1 which is of measure zero evidently. Let ((ak,1, bk,1))∞k=1

be a sequence of all components of the complement R\E1 such that (ak,1, bk,1)∩
(aj,1, bj,1) = ∅ for k 6= j.

If, for a fixed k ∈ N, the interval (ak,1, bk,1) is a bounded component of the
complement R \ E1, we find two monotone sequences of points

ak,1 < · · · < ak,1
n+1 < ak,1

n < · · · ak,1
1 < bk,1

1 < · · · < bk,1
n < bk,1

n+1 < · · · < bk,1

such that limn→∞ ak,1
n = ak,1 and limn→∞ bk,1

n = b1,k, and

lim
n→∞

bk,1
n+1 − bk,1

n

bk,1 − bk,1
n

= lim
n→∞

ak,1
n − ak,1

n+1

ak,1
n − ak,1

= 0. (1.1)

In each interval (ak,1
n+1, a

k,1
n ) ((bk,1

n , bk,1
n+1)) we find disjoint nondegenerate closed

intervals (for i = 1, 2)

Ik,1
n,i ⊂ (ak,1

n+1, a
k,1
n ) \ E(Jk,1

n,i ⊂ (bk,1
n , bk,1

n+1) \ E)

with endpoints from the set C(g) (with endpoints from the set C(h) respec-
tively) such that

l(Ik,1
n,i )

ak,1
n − ak,1

n+1

<
1

2n+k
,

(
l(Jk,1

n,i )

bk,1
n+1 − bk,1

n

<
1

2n+k

)
, (1.2)

for i = 1, 2, and
µ(

⋃2
i=1

⋃∞
n=1(I

k,1
n,i ∪ J

k,1
n,i ))

bk,1 − ak,1
<

1
2k
. (1.3)

If (as,1, bs,1) is an unbounded component of the complement R\E1; i.e., as,1 =
−∞ or bs,1 = ∞, we find two sequences only, (Js,1

n,i ) (i = 1, 2) or respectively
(Is,1

n,i ) (i = 1, 2), satisfying the above conditions (1.1), (1.2). For a fixed k, for
i = 1, 2 and for n ≥ 1 let gk,1

n,i : Ik,1
n,i → R and hk,1

n,i : Jk,1
n,i → R be continuous

functions such that gk,1
n,i (x) = 0 if x is an endpoint of Ik,1

n,i , hk,1
n,i(y) = 0 if y is

an endpoint of Jk,1
n,i and

(g+ gk,1
n,1)(I

k,1
n,1)∩ (h+hk,1

n,1)(J
k,1
n,1)∩ (g+hk,1

n,2)(J
k,1
n,2)∩ (h+ gk,1

n,2)(I
k,1
n,2) ⊃ [−n, n].
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Now, we define the functions φ1 and ψ1 by

φ1(x) =



g(x) + gk,1
n,1(x) for x ∈ Ik,1

n,1, n, k ≥ 1
g(x) + hk,1

n,2(x) for x ∈ Jk,1
n,2 , n, k ≥ 1

g(x)− hk,1
n,1(x) for x ∈ Jk,1

n,1 , n, k ≥ 1
g(x)− gk,1

n,2(x) for x ∈ Ik,1
n,2, n, k ≥ 1

g(x) otherwise on R

and

ψ1(x) =



h(x) + hk,1
n,1(x) for x ∈ Jk,1

n,1 , n, k ≥ 1
h(x) + gk,1

n,2(x) for x ∈ Ik,1
n,2, n, k ≥ 1

h(x)− gk,1
n,1(x) for x ∈ Ik,1

n,1, n, k ≥ 1
h(x)− hk,1

n,2(x) for x ∈ Jk,1
n,2 , n, k ≥ 1

h(x) otherwise on R.
The functions φ1 and ψ1 have the Darboux property and for all u ∈ R \ E1

oscφ1(u) = osc g(u) and oscψ1(u) = osch(u).

Moreover φ1+ψ1 = g+h = f.Also note thatDap(φ1) = Dap(g) and Dap(ψ1) =
Dap(h).

In the second step we consider the closed set E1 ∪E2 which is of measure
zero evidently. Let ((ak,2, bk,2))∞k=1 be a sequence of all components of the set
R \ (E1 ∪ E2) such that (ak,2, bk,2) ∩ (aj,2, bj,2) = ∅ and k 6= j. If, for a fixed
k ∈ N, (ak,2, bk,2) is a bounded component of the complement R \ (E1 ∪ E2),
then we find two monotone sequences of points

ak,2 < . . . < ak,2
n+1 < ak,2

n < . . . < ak,2
1 < bk,2

1 < . . . < bk,2
n < bk,2

n+1 < . . . < bk,2

such that limn→∞ ak,2
n = ak,2, limn→∞ bk,2

n = bk,2 and

lim
n→∞

bk,2
n+1 − bk,2

n

bk,2 − bk,2
n

= lim
n→∞

ak,2
n − ak,2

n+1

ak,2
n − ak,2

= 0 (2.1)

In each interval (ak,2
n+1, a

k,2
n ), ((bk,2

n , bk,2
n+1)) we find disjoint nondegenerate

closed intervals (for i = 1, 2)

Ik,2
n,i ⊂ (ak,2

n+1, a
k,2
n ) \ E, (Jk,2

n,i ⊂ (bk,2
n , bk,2

n+1) \ E)

with endpoints from the set C(φ1) (with endpoints from the set C(ψ1) respec-
tively) such that, for i = 1, 2 we have

l(Ik,2
n,i )

ak,2
n − ak,2

n+1

<
1

2n+k
,

(
l(Jk,2

n,i )

bk,2
n+1 − bk,2

n

<
1

2n+k

)
(2.2)
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and
µ(

⋃2
i=1

⋃∞
n=1(I

k,2
n,i ∪ J

k,2
n,i ))

bk,2 − ak,2
<

1
2k

(2.3)

and also
oscIk,2

n,i
φ1 < c2, oscJk,2

n,i
ψ1 < c2 (2.4)

for n ≥ 1 and i = 1, 2.
If (as,2, bs,2) is an unbounded component of the complement R\ (E1∪E2);

i.e., as,2 = −∞ or bs,2 = ∞, we find two sequences only, (Js,2
n,i )

∞
n=1 (i = 1, 2)

or (Is,2
n,i )

∞
n=1 (i = 1, 2) respectively, satisfying above conditions (2.1), (2.2) and

(2.4).
For a fixed k ∈ N, for i = 1, 2 and for a fixed n ≥ 1 we will construct

continuous functions gk,2
n,i : Ik,2

n,i → R and hk,2
n,i : Jk,2

n,i → R. Fix k, n ∈ N. For
i = 1, 2 the set φ1(I

k,2
n,i ) is an interval of the length less than c2. Let γ2

i be the
mid point of the interval φ1(I

k,2
n,i ), for i = 1, 2. In the interval int(Ik,2

n,i ), where
int(H) denotes the interior of the set H, choose two points α2

i and β2
i such

that, for i = 1, 2, φ1(α2
i ) < γ2

i < φ1(β2
i ).

The continuous function gk,2
n,i : Ik,2

n,i → R (for i = 1, 2) we define by

gk,2
n,i (x) = 0 if x is any endpoint of Ik,2

n,i ;

gk,2
n,i (α

2
i ) = −c2;

gk,2
n,i (β

2
i ) = c2 and

gk,2
n,i is linear on the closures of the components of the set Ik,2

n,i \{α2
i , β

2
i }.

Similarly we define the continuous functions hk,2
n,i : Jk,2

n,i → R (i = 1, 2). The set
ψ1(J

k,2
n,i ), for fixed k, n ∈ N and i = 1, 2, is an interval of the length less than

c2. Let ν2
i be the center of the interval ψ1(J

k,2
n,i ) for i = 1, 2. In the set int(Jk,2

n,i )
choose two points ξ2i and η2

i such that, for i = 1, 2, ψ1(ξ2i ) < ν2
i < ψ1(η2

i ). Let
the continuous function hk,2

n,i : Jk,2
n,i → R (i = 1, 2) be such that

hk,2
n,i(x) = 0 if x is any endpoint of Jk,2

n,i ,

hk,2
n,i(ξ

2
i ) = −c2,

hk,2
n,i(η

2
i ) = c2 and

hk,2
n,i is linear on the closures of the components of the set Jk,2

n,i \{ξ2i , η2
i }.
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Finally, for the second step, we define the functions φ2 and ψ2 by

φ2(x) =



φ1(x) + gk,2
n,1(x) for x ∈ Ik,2

n,1, n, k ≥ 1
φ1(x)− hk,2

n,1(x) for x ∈ Jk,2
n,1 , n, k ≥ 1

φ1(x)− gk,2
n,2(x) for x ∈ Ik,2

n,2, n, k ≥ 1
φ1(x) + hk,2

n,2(x) for x ∈ Jk,2
n,2 , n, k ≥ 1

φ1(x) otherwise on R

and

ψ2(x) =



ψ1(x)− gk,2
n,1(x) for x ∈ Ik,2

n,1, n, k ≥ 1
ψ1(x) + hk,2

n,1(x) for x ∈ Jk,2
n,1 , n, k ≥ 1

ψ1(x) + gk,2
n,2(x) for x ∈ Ik,2

n,2, n, k ≥ 1
ψ1(x)− hk,2

n,2(x) for x ∈ Jk,2
n,2 , n, k ≥ 1

ψ1(x) otherwise on R.

Observe that Dap(φ2) = Dap(g) and Dap(ψ2) = Dap(h) and for each point
u ∈ R\(E1∪E2) the oscillation oscφ2(u) = osc g(u) and oscψ2(u) = osch(u).
Observe too, that for i = 1, 2 φ2(I

k,2
n,i ) ⊃ φ1(I

k,2
n,i ), ψ2(J

k,2
n,i ) ⊃ ψ1(J

k,2
n,i ) and

for all x ∈ R, $|φ2(x) − φ1(x)| < 3c2 and |ψ2(x) − ψ1(x)| < 3c2. Moreover,
φ2 + ψ2 = φ1 + ψ1 = g + h = f.

In themth step (m > 2), we repeat the construction of the step (m−1), but
for the closed set

⋃m−1
j=1 Ej ∪Em of measure zero. Let m > 2. In this inductive

step, let ((ak,m, bk,m))∞k=1 be a sequence of all components of the complement
of the set R \ (

⋃m
j=1Ej) such that (ak,m, bk,m) ∩ (aj,m, bj,m) = ∅ and k 6= j.

If (ak,m, bk,m), for fixed k ∈ N, is a bounded component of the complement
R \

⋃m
j=1Ej , we find two sequences of the points

ak,m < . . . < ak,m
n+1 < ak,m

n < . . . < ak,m
1 < bk,m

1 < . . . < bk,m
n < bk,m

n+1 < . . . < bk,m

such that limn→∞ ak,m
n = ak,m, limn→∞ bk,m

n = bk,m and

lim
n→∞

bk,m
n+1 − bk,m

n

bk,m − bk,m
n

= lim
n→∞

ak,m
n − ak,m

n+1

ak,m
n − ak,m

= 0. (m.1)

In each interval (ak,m
n+1, a

k,m
n ) ((bk,m

n , bk,m
n+1)) we find two disjoint nondegenerate

closed intervals Ik,m
n,i ⊂ (ak,m

n+1, a
k,m
n ) \E(Jk,m

n,i ⊂ (bk,m
n , bk,m

n+1) \E) (for i = 1, 2)
with endpoints from the set C(φm−1) (with endpoints from the set C(ψm−1)
respectively) such that, for i = 1, 2 we have

l(Ik,m
n,i )

ak,m
n − ak,m

n+1

<
1

2k+n
,

(
l(Jk,m

n,i )

bk,m
n+1 − bk,m

n

<
1

2n+k

)
(m.2)
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and
µ(

⋃∞
n=1

⋃2
i=1(I

k,m
n,i ∪ Jk,m

n,i ))
bk,m − ak,m

<
1
2k
, (m.3)

and also
oscIk,m

n,i
φm−1 < cm, oscJk,m

n,i
ψm−1 < cm (m.4)

for n ≥ 1 and i = 1, 2.
If (as,m, bs,m) is an unbounded component of R\

⋃m
j=1Ej ; i.e., as,m = −∞

or bs,m = ∞, then we find two sequences only: (Is,m
n,i )∞n=1 (i = 1, 2) or respec-

tively (Js,m
n,i )∞n=1 (i = 1, 2) satisfying above conditions (m.1), (m.2) and (m.4).

We will construct continuous functions gk,m
n,i : Ik,m

n,i → R and hk,m
n,i : Jk,m

n,i →
R for i = 1, 2 and n = 1, 2, . . ., and k = 1, 2 . . . . Fix k, n ∈ N. For i = 1, 2 the
image φm−1(I

k,m
n,i ) is the interval of the length less than cm. Let the point γm

i

be the center of the interval φm−1(I
k,m
n,i ). In the interval int(Ik,m

n,i ) choose two
numbers αm

i and βm
i such that, for i = 1, 2, φm−1(αm

i ) < γm
i < φm−1(βm

i ).
Next, for i = 1, 2, the continuous functions gk,m

n,i : Ik,m
n,i → R we define by

gk,m
n,i (x) = 0 if x is any endpoint of Ik,m

n,i ,

gk,m
n,i (αm

i ) = −cm,

gk,m
n,i (βm

i ) = cm and

gk,m
n,i is linear on the closures of the components of Ik,m

n,i \ {αm
i , β

m
i }.

The construction of the continuous function hk,m
n,i : Jk,m

n,i → R (for i = 1, 2)
is similar. For fixed k, n ∈ N and for i = 1, 2 the image ψm−1(J

k,m
n,i ) is

the interval of length less than cm. Let νm
i be the mid point of the interval

ψm−1(J
k,m
n,i ). In the set int(Jk,m

n,i ) choose two points ξm
i and ηm

i such that, for
i = 1, 2, ψm−1(ξm

i ) < νm
i < ψm−1(ηm

i ).
Let the continuous functions hk,m

n,i : Jk,m
n,i → R(i = 1, 2) be such that

hk,m
n,i (x) = 0 if x is any endpoint of Jk,m

n,i ,

hk,m
n,i (ξm

i ) = −cm,

hk,m
n,i (ηm

i ) = cm and

hk,m
n,i is linear on the closures of the components of Jk,m

n,i \ {ξm
i , η

m
i }.



On the Sum of Functions with Condition (s3) 165

Finally, in the inductive step m > 2, we define the functions φm and ψm by

φm(x) =



φm−1(x) + gk,m
n,1 (x) for x ∈ Ik,m

n,1 , n, k ≥ 1
φm−1(x)− hk,m

n,1 (x) for x ∈ Jk,m
n,1 , n, k ≥ 1

φm−1(x)− gk,m
n,2 (x) for x ∈ Ik,m

n,2 , n, k ≥ 1
φm−1(x) + hk,m

n,2 (x) for x ∈ Jk,m
n,2 , n, k ≥ 1

φm−1(x) otherwise on R,

ψm(x) =



ψm−1(x)− gk,m
n,1 (x) for x ∈ Ik,m

n,1 , n, k ≥ 1
ψm−1(x) + hk,m

n,1 (x) for x ∈ Jk,m
n,1 , n, k ≥ 1

ψm−1(x) + gk,m
n,2 (x) for x ∈ Ik,m

n,2 , n, k ≥ 1
ψm−1(x)− hk,m

n,2 (x) for x ∈ Jk,m
n,2 , n, k ≥ 1

ψm−1(x) otherwise on R.

Observe that Dap(φm) = Dap(g) and Dap(ψm) = Dap(h) and for each point
u ∈ R\

⋃m
j=1Ej the oscillation oscφm(u) = osc g(u) and oscψm(u) = osch(u).

Observe too, that for i = 1, 2

φm(Ik,m
n,i ) ⊃ φm−1(I

k,m
n,i ), ψm(Jk,m

n,i ) ⊃ ψm−1(J
k,m
n,i )

and for all x ∈ R, |φm(x) − φm−1(x)| < 3cm and |ψm(x) − ψm−1(x)| < 3cm.
Moreover φm+ψm = φm−1+ψm−1 = . . . = φ1+ψ1 = g+h = f. The sequences
(φm)∞m=1 and (ψm)∞m=1 uniformly converge to functions φ and ψ respectively.
Observe that φ + ψ = limm→∞(φm + ψm) = g + h = f. The functions φ and
ψ, as the uniform limits, are continuous in each point of the set R \D. Thus
they satisfy condition (s3) at all points of the complement R \D.

We will prove that φ and ψ satisfy also the property (s3) at all points of
the set D. For this fix a point x ∈ D, a real ε > 0 and a set U ∈ Td such that
x ∈ U. Let j be the integer such that |φj − φ| < ε

3 . Since the function g has
the property (s3) and du({u;φj(u) 6= g(u)}, x) = 0, there is an open interval
I ⊂ {u;φj(u) = g(u)} such that

∅ 6= I ∩ U ⊂ A(φ) and g(I ∩ U) = φj(I ∩ U) ⊂
(
g(x)− ε

3
, g(x) +

ε

3

)
.

Consequently, for u ∈ I ∩ U we have

|φ(u)−φ(x)| ≤ |φ(u)−φj(u)|+|φj(u)−φj(x)|+|φj(x)−φ(x)| < ε

3
+
ε

3
+
ε

3
= ε.

So the function φ ∈ s3(x) for all x ∈ D. In the same way we can check that
ψ ∈ s3(x) for these points. Thus φ, ψ ∈ S3.
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Now we will prove that φ has the Darboux property. Suppose, to the
contrary, that it has not the Darboux property. Then there are points a, b with
a < b and φ(a) 6= φ(b) and a real c ∈ K = (min(φ(a), φ(b)),max(φ(a), φ(b))
such that φ−1(c) ∩ [a, b] = ∅. If there is a point x ∈ E1 ∩ [a, b], then there is
a nondegenerate closed interval I ⊂ [a, b] such that φ(I) ⊇ φ1(I) ⊃ K 3 c, a
contradiction. Fix a point

z ∈ [a, b] ∩ cl({u;φ(u) < c}) ∩ cl({u;φ(u) > c}).

Observe that z ∈ D and there is an integer m > 1 such that z ∈ Em. Thus
oscφm−1(z) < cm and there is an open interval V 3 z such that oscV φm−1 <
cm. So we have either φ(z) = φm−1(z) < c or φ(z) = φm−1(z) > c. Suppose
that φm−1(z) < c. Then there is a point v ∈ [a, b] ∩ V such that φm−1(v) > c.
Since v ∈ V, we have φm−1(v)−φm−1(z) < cm and consequently c−φm−1(z) <
cm. From the construction of φm it follows that there is a nondegenerate closed
interval I ∈ [a, b] ∩ V such that φ(I) ⊇ φm(I) ⊃ [φm−1(z), φm−1(v)] 3 c, a
contradiction. If φm−1(z) > c the reasoning is similar. So φ ∈ D. The same
we can show that the function ψ has the Darboux property.

Part II. In this part I will show that every a.e. continuous function with
some special condition is the sum of two functions with condition (s3).

Remark 3. If f ∈ S4 is almost everywhere continuous and approximately
continuous at least unilaterally at the point x, then f ∈ s3(x).
Proof. Let U ∈ Td be the set containing x and let ε > 0. There is a point
t ∈ U ∩ C(f) such that |f(t) − f(x)| < ε

2 . Since t ∈ C(f), there is an open
interval I1 such that t ∈ I1 and |f(u)− f(t)| < ε

2 for all u ∈ I1. Now, observe
that for all u ∈ I1 we have

|f(u)− f(x)| ≤ |f(u)− f(t)|+ |f(t)− f(x)| < ε. (4)

Since ∅ 6= I1 ∩ U ∈ Td and f ∈ S4, there is an open interval I2 ⊂ I1 such that
∅ 6= I2 ∩ U ⊂ A(f). So, by (4) the function f ∈ s3(x).

Obviously the sum of two functions almost everywhere continuous belong-
ing to S4 is also an almost everywhere continuous function belonging to S4.
But the uniform limit of functions from the class S4 need not be a function
from S4.

Example 3. Let {w1, w2, . . .} be a decreasing sequences of all rationals from
the interval [0, 1] and let fn : [0, 1] → [0, 1] for n = 1, 2, . . . , be defined by

fn(x) =

{
1
n for x ∈ {w1, w2, . . . wn}
1 for x ∈ [0, 1] \ {w1, w2, . . . wn}.
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Then, for all n, the function fn ∈ S4, the sequence (fn) uniformly converges,
but limn→∞ fn 6∈ S4.

Now, by using Grande’s methods from the proof of theorem 2 in [3], I will
prove the fundamental theorems of this part. We need the following lemmas
below. Lemma 2 is a modification of Lemma 1.

Lemma 1. (see [3]) If A ⊂ R is a nonempty compact set of Lebesgue measure
zero, U ⊃ A is an open set and E ⊂ U \A is a dense set in U , then there is a
family Ki,j ⊂ U \ A, i, j = 1, 2, . . ., of pairwise disjoint nondegenerate closed
intervals with the endpoints belonging to E such that for each positive integer
i and each point x ∈ A the upper density

du(
∞⋃

j=1

Ki,j , x) = 1 (5)

and for each positive real ε the set of all pairs (i, j) for which dist(Ki,j , A) =
inf{|x− y|;x ∈ Ki,j , y ∈ A} ≥ ε is empty or finite.

Lemma 2. Let U ⊂ R be an open set. If A ⊂ U is nonempty compact set
of Lebesgue measure µ zero and there is an open set V ⊂ U \ A such that
µ(U \ V ) = 0 and E ⊂ V is dense in V , then there is a family of pairwise
disjoint nondegenerate closed intervals Ki,j ⊂ V , i, j = 1, 2, . . . with the
endpoints belonging to E such that for each positive integer i and each point
x ∈ A condition (5) holds, and for each real ε > 0 the set of all pairs (i, j) for
which dist(Ki,j , A) ≥ ε is empty or finite.

Proof. Observe that in the proof of Lemma 1 (see [3]) we can choose pairwise
disjoint nondegenerate closed intervals Ki,j ⊂ V ⊂ U \A satisfying condition
(5) or, if Ki,j (i, j = 1, 2 . . .) is the family of pairwise disjoint nondegenerate
closed intervals satisfying the conclusion of Lemma 1, consider the family
Ki,j ∩ V (i, j = 1, 2, . . .) where V ⊂ U \ A is an open set. In the set Ki,j ∩
V (i, j = 1, 2, . . .) we can choose a family Ll

i,j (l = 1, 2 . . . , k(i, j)) of pairwise
disjoint nondegenerate closed intervals with the endpoints belonging to E such
that µ(Ki,j \

⋃k(i,j)
l=1 Ll

i,j) = 0 for i, j = 1, 2, . . . , l ≤ k(i, j). Then, for each
point x ∈ A the family Ll

i,j (i, j = 1, 2, . . . , l ≤ k(i, j)) satisfies the conclusion
of Lemma 2.

Theorem 2. If f : R → R is the sum of two functions g, h ∈ S3, then f is
almost everywhere continuous and satisfies:

(a) the set Dap(f) is nowhere dense,
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(b) for every nonempty set U ∈ Td contained in cl(Dap(f)) the set U∩Dap(f)
is nowhere dense in U.

Proof. Since h, g are almost everywhere continuous, f = g + h is the same.
We have observed above that the sets Dap(g) and Dap(h) are nowhere dense.
So, Dap(f) ⊂ Dap(g) ∪ Dap(h) is also nowhere dense. Now we prove that
Dap(f) satisfies condition (b). If µ(cl(Dap(f))) = 0, then f satisfies condition
(b). So, we assume that µ(cl(Dap(f))) > 0 and fix a nonempty set U ∈ Td and
an open interval I such that I ∩ U 6= ∅. Since g has property (s3) and I ∩ U
is a nonempty set belonging to Td, there is an open interval I1 ⊂ I such that
∅ 6= I1 ∩ U ⊂ A(g). Similarly, by property (s3) of h, there is an open interval
I2 ⊂ I1 such that ∅ 6= I2 ∩ U ⊂ A(h). But f = g + h; so I2 ∩ U ⊂ A(f).

Theorem 3. Suppose that f : R → R is the function almost everywhere
continuous and µ(cl(Dap(f))) = 0. Then there are functions g, h ∈ S3 such
that f = g + h.

Proof. First suppose that the set Dap(f) is bounded. Then cl(Dap(f))
is a compact set. If µ(cl(Dap(f)) = 0, then by Lemma 1 there is a family
Ki,j(i, j = 1, 2, . . .) of pairwise disjoint nondegenerate closed intervals

Ki,j ⊂ R \ cl(Dap(f)), i, j ≥ 1

with the endpoints belonging to C(f) such that for each real ε > 0 the set
of all pairs (i, j) for which dist(Ki,j , cl(Dap(f))) ≥ ε is empty or finite and
such that for each positive integer i and each point x ∈ cl(Dap(f)) the upper
density du(

⋃∞
j=1Ki,j , x) = 1. Let (wi) be a sequence of all rationals and let

g(x) =


wi for x ∈ K2i−1,j , i, j ≥ 1
f(x)− wi for x ∈ K2i,j , i, j ≥ 1
f(x) otherwise on R

and

h(x) =


f(x)− wi for x ∈ K2i−1,j , i, j ≥ 1
wi for x ∈ K2i,j , i, j ≥ 1
0 otherwise on R.

Evidently, g + h = f . Moreover the functions g, h ∈ S4 and g, h are almost
everywhere continuous. If x ∈ R \ cl(Dap(f)), then g, h are approximately
continuous at least unilaterally at x. So, by Remark 1, the functions g, h ∈
s3(x).
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If x ∈ cl(Dap(f)), x ∈ U ∈ Td and ε > 0, then there is an index k such
that |f(x) − wk| < ε. Since du(

⋃∞
j=1K2k−1,j , x) = 1, there is an index m

such that ∅ 6= int(K2k−1,m) ∩ U ⊂ A(f). For u ∈ int(K2k−1,m ∩ U) we have
|g(u)− g(x)| = |wk − f(x)| < ε. Thus g ∈ s3(x). Similarly we can verify that
h ∈ s3(x) for x ∈ cl(Dap(f)).

Now, suppose that Dap(f) is unbounded. Let (ak)(k = 0,±1,±2, . . .) be
a sequence of points of int(C(f)) which converges to −∞ as k → −∞ and
to +∞ as k → +∞. Then, for k = 0,±1,±2, . . . the set Dap(f) ∩ (ak, ak+1)
is bounded and cl(Dap(f) ∩ (ak, ak+1)) is a compact set. On each interval
[ak, ak+1) k = 0± 1,±2, . . . we can define the functions gk, hk ∈ S3 such that
f = hk + gk for k = 0,−1, 1,−2, 2, . . .. For this we repeat the construction of
the functions hk, gk on (ak, ak+1), for a fixed k, which was presented for the
case of the set Dap(f) bounded in R but now, for fixed a k, in each interval
(ak, ak+1), U = Uk ⊂ (ak, ak+1) and cl(Dap(f) ∩ (ak, ak+1)) ⊂ Uk. Finally,
we define g, h : R → R by h(x) = hk(x), g(x) = gk(x) for x ∈ [ak, ak+1) and
k = 0± 1,±2, . . . . Then, in this case, h, g ∈ S3 and f = h+ g.

Theorem 4. Let f ∈ S4 be an almost everywhere continuous function satis-
fying conditions (a), (b) from Theorem 1 and the condition

(c) Dap(f) is an Fσ − set.

Then there are functions g, h ∈ S3 such that f = g + h.

Proof. If µ(cl(Dap(f))) = 0, the conclusion of the theorem follows from
Theorem 3. So, let µ(cl(Dap(f))) > 0.At first suppose thatDap(f) is bounded.
Since Dap(f) is an Fσ-set, there is an increasing sequence of closed sets F1 ⊂
F2 ⊂ . . . such that Dap(f) =

⋃∞
i=1 Fi. Let (an)n be a sequence of positive real

numbers such that an ↘ 0 and
∑∞

n=1 an <∞. For n = 1, 2, . . . let

An = {x; osc f(x) ≥ an}.

The sets An (n = 1, 2, . . .) are closed sets of measure µ zero and D(f) =⋃∞
i=1Ai. Without loss of the generality we can assume that for i = 1, 2, . . .

the set Fi ∩ Ai 6= ∅, because if not, we can consider a subsequence of (an)n.
Let Hi = Fi ∩ Ai for i = 1, 2, . . . . The sets Hi (i = 1, 2, . . .) are closed sets of
µ measure zero and form an increasing sequence of subsets. We can assume
that for each i = 1, 2, . . . Hi+1 \ Hi 6= ∅, because if not, we can consider
some subsequence of the sequence (Hi). Obviously Hi ⊂ Ai for i = 1, 2, . . . .
By Lemma 2 there is a family of pairwise disjoint closed intervals K1,i,j ⊂
R \ H1, i, j = 1, 2, . . . , with endpoints belonging to C(f) such that for each
i = 1, 2, . . . and for each x ∈ H1 the upper density du(

⋃∞
j=1K1,i,j , x) = 1 and

for each real ε > 0 the set of pairs (i, j) for which dist(K1,i,j ,H1) ≥ ε is empty
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or finite. In the interiors int(K1,i,j) we find closed intervals I1,i,j ⊂ int(K1,i,j)
such that for each point x ∈ A1 and for each integer i = 1, 2, . . . the upper
density du(

⋃∞
j=1 I1,i,j , x) = 1. Let (w1,i)i be a sequence of all rationals and let

g1, h1 : R → R be defined by

g1(x) =



w1,i for x ∈ I1,2i,j , i, j = 1, 2, . . .

f(x) for x ∈ R \
∞⋃

i,j=1

int(K1,2i,j)

linear on the components of the sets
K1,2i,j \ int(I1,2i,j), i, j = 1, 2, . . .

and h1(x) = f(x) − g1(x) for x ∈ R. As in the proof of Theorem 1 we can
prove that g1, h1 ∈ S3(x) for x ∈ H1 and

A(f) ⊂ A(g1) ∩A(h1), C(f) ⊂ C(g1) ∩ C(h1).

In the second step we consider the set A2 \ A1 = A2 ∩ (R \ A1). There
are pairwise disjoint open intervals P2,k ⊂ R \ A1, k ≥ 1, with the centers
belonging to C(f) such that every set A2∩P2,k is nonempty and compact and
A2 \ A1 =

⋃
k(A2 ∩ P2,k). A construction of such intervals P2,k may be the

following. We find a bounded open set G ⊃ A2 and divide each component of
the the set G \ A1 by points belonging to C(f) into open intervals. As P2,k

we take all from the above intervals which have common points with A2.
If x ∈ (A2 ∩ int(K1,2i,j)) \A1 for some pair (i, j), then g1 is continuous at

x, and consequently osc g1(x) = 0 and osch1(x) = osc f(x) < a1. If

x ∈ A2 \A1 \
⋃

i,j≥1

K1,2i,j ,

then g1(t) = f(t) and h1(t) = 0 on an open interval containing x and contained
in R \ A1. So osc g1(x) = osc f(x) < a1 and osch1(x) = 0. Similarly we show
that max(osc g1(x), osch1(x)) < a1 if x ∈ A2 \ A1 is an endpoint of some
K1,2i,j . So for each integer k and each point x ∈ A2 ∩ P2,k there is an open
interval J2,k(x) ⊂ P2,k containing x such that on the interval J2,k(x) the
oscillation oscJ2,k(x) g1 < a1 and oscJ2,k(x) h1 < a1. Since the set A2 ∩ P2,k is
compact, there are points x1, x2, . . . , xj(k) such that

A2 ∩ P2,k ⊂ J2,k(x1) ∪ . . . ∪ J2,k(xj(k)).

Without loss of the generality we can assume that the above intervals J2,k(xj),
j ≤ j(k), are pairwise disjoint. For each pair of positive integers (i, j) such
that A2 ∩ K1,i,j 6= ∅ we find an open set U(K1,i,j) ⊂ int(K1,i,j) such that
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A2 ∩ K1,i,j ⊂ U(K1,i,j) and µ(cl(U(K1,i,j)))
µ(K1,i,j)

< 1
41+i+j . If for some integers i1,

j1, j2 the intersection A2 ∩ int(K1,i1,j1)∩ J2,k(xj2) 6= ∅ then, by Lemma 2, we
find pairwise disjoint nondegenerate closed intervals

K2,i,j(K1,i1,j1 , J2,k(xj2)) ⊂ U(K1,i1,j1) ∩ J2,k(xj2) \H2

with the endpoints belonging to C(f) such that for every positive integer i
and every point x ∈ H2 ∩ J2,k(xj2) ∩K1,i1,j1 the upper density

du(
∞⋃

j=1

K2,i,j(K1,i1,j1 , J2,k(xj2)), x) = 1

and for every real ε > 0 the set of all pairs (i, j) for which

dist(H2 ∩ J2,k(xj2) ∩K1,i1,j1 ,K2,i,j(K1,i1,j1 , J2,k(xj2))) > ε

is empty or finite.
In every interval int(K2,i,j(K1,i1,j1 , J2,k(xj2))) we find a closed interval

I2,i,j(K2,i,j(K1,i1,j1 , J2,k(xj2)) such that for every integer i and for every point
x ∈ H2 ∩ J2,k(xj2) ∩K1,i1,j1 the upper density

du(
∞⋃

j=1

I2,i,j(K2,i,j(K1,i1,j1 , J2,k(xj2))), x) = 1. (6)

For each positive integer j ≤ j(k) let (wi(xj)) be an enumeration of all ratio-
nals of the interval (yj − a1

2 , yj + a1
2 ), where yj is the center of the interval

[infH2∩J2,k(xj) g1, supH2∩J2,k(xj) g1], and let (ui(xj)) be an enumeration of all
rationals of the interval (zj − a1

2 , zj + a1
2 ), where zj is the midpoint of the

interval [infH2∩J2,k(xj) h1, supH2∩J2,k(xj) h1]. Put

g2(x) = wi(xj2) and h2(x) = f(x)− g2(x)

for x ∈ I2,2i,j(K1,i1,j1 , J2,k(xj2)), j2 ≤ j(k), i, j = 1, 2, . . . ,

h2(x) = ui(xj2) and g2(x) = f(x)− h2(x)

for x ∈ I2,2i−1,j(K1,i1,j1J2,k(xj2)), j2 ≤ j(k), i, j = 1, 2, . . . ,

g2(x) = g1(x) and h2(x) = h1(x)

for x ∈ K1,i1,j1 \
⋃

j2≤j(k)

∞⋃
i,j=1

K2,i,j(K1,i1,j1 , J2,k(xj2)),
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and assume that the function g2 is linear and h2 = f − g2 on the components
of the sets K2,i,j(K1,i1,j1 , J2,k(xj2))\I2,i,j(K1,i1,j1 , J2,k(xj2)). In the same way,
modifying the values of g1 and h1 on respectively constructed closed intervals,
we define the functions g2 and h2 on components L2,m of the set P2,k \H1 \⋃∞

i,j=1K1,i,j for which L2,m ∩ A2 6= ∅. Put g2(x) = g1(x) and h2(x) = h1(x)
otherwise on R. Observe that if the function f is continuous at a point x,
then from the constructions of g1 and g2 it follows that x ∈ R \ A2, and g1
and g2 are continuous at x. Consequently, the functions h1 and h2 as the
differences of functions continuous at x, are also continuous at this point.
So, C(f) ⊂ C(g2) ∩ C(h2). Similarly A(f) ⊂ A(g2) ∩ A(h2). Moreover it is
evident that |g2 − g1| ≤ a1, |h2 − h1| ≤ a1 and g2 + h2 = f. We will show
that g2, h2 ∈ s3(x) for x ∈ H2. For this fix a point x ∈ H2, a set U 3 x
belonging to Td and a real ε > 0. If x ∈ H1, then we find a rational w1,k with
|g1(x)−w1,k| < ε. Since du(

⋃∞
j=1 I1,2k,j , x) = 1 and µ(cl(U(K1,2k,j)))

µ(K1,2k,j)
< 1

41+2k+j ,

we obtain du((g1)−1(w1,k) ∩
⋃∞

j=1 I1,2k,j , x) = 1 and consequently there is
an integer m and an open interval I ⊂ I1,2k,m \ cl(U(K1,2k,m)) such that
∅ 6= I∩U. But g2(u) = w1,k for u ∈ I∩U , so I∩U ⊂ C(g2) ⊂ A(g2). Moreover
for u ∈ I ∩ U we have |g2(u) − g2(x)| = |w1,k − g2(x)| < ε. So g2 ∈ s3(x) for
x ∈ H1. Similarly we show that h2 ∈ s3(x) for x ∈ H1.

Using (6) by similar reasoning we can show that g2, h2 ∈ s3(x) for x ∈
H2 \ H1. Let (K2,i,j) be a double sequence of all closed intervals on which
we have modified the functions g1 and h1 to obtain g2 and h2. Similarly, in
the nth step, we change the functions gn−1 and hn−1 on respectively taken
closed intervals Kn,2i,j and Kn,2i−1,j and define functions gn and hn such
that gn (and respectively hn) has constant rational values on respective closed
intervals In,2i,j ⊂ int(Kn,2i,j) (resp. on In,2i−1,j), C(f) ⊂ C(gn) ∩ C(hn),
A(f) ⊂ A(gn) ∩ A(hn), gn, hn ∈ s3(x) for x ∈ Hn, |gn − gn−1| ≤ an−1,
|hn − hn−1| ≤ an−1 and gn + hn = f. Moreover, we suppose that for every
triple (k, i1, j1), where k < n and i1, j1 = 1, 2, . . .,

µ(Kk,i1,j1 \
⋃∞

i,j=1Kn,i,j)
µ(Kk,i1,j1)

> 1− 1
4n+i+j

. (7)

Let g = limn→∞ gn and h = limn→∞ hn. Observe that the above limits are
uniform. Evidently, g + h = f . Since f ∈ S4 and A(f) ⊂ A(g) ∩ A(h), the
functions g, h have the property (s4).

We will prove that the functions g, h have the property (s3). For this, fix
a real ε > 0, a point x ∈ R and a set U ∈ Td containing x. If x ∈ C(f), then
g is continuous at x and there is a real η > 0 such that |g(t) − g(x)| < ε for
t ∈ (x − η, x + η). But g has the property (s4); so there are an open interval
J ⊂ (x − η, x + η) such that A(g) ⊃ J ∩ U 6= ∅. Since |g(t) − g(x)| < ε for
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t ∈ J ∩ U , we obtain g ∈ s3(x). Similarly we can prove that h ∈ s3(x).
If x ∈ A(f),, then x ∈ A(g) ∩ A(h) and because the functions g, h ∈ S4

and they are approximately continuous at x, from Remark 3 it follows that
g, h ∈ s3(x).

Suppose that x ∈ Dap(g)∩Dap(h). Then there is an positive integer n such
that x ∈ Hn \ Hn−1 (where H0 = ∅). Let k > n be a positive integer such
that

∑∞
i=k+1 ai <

ε
3 . There is a rational value w of the function gn such that

|gn(x)−w| < ε
3 and du((gn)−1(w), x) = 1. By condition (7) the upper density

du((gn)−1(w) \
⋃

m>n

∞⋃
l,j=1

Km,l,j , x) = 1.

So

du((gn)−1(w) \
k−1⋃

m=n+1

∞⋃
l,j=1

Km,l,j , x) = 1,

and by the construction of gn and Km,l,j also

du(int(gn)−1(w) \
k−1⋃

m=n+1

∞⋃
l,j=1

Km,l,j), x) = 1.

Since x ∈ U ∈ Td, we have

du(U ∩ int(gn)−1(w) \
k−1⋃

m=n+1

∞⋃
l,j=1

Km,l,j), x) = 1.

Consequently, there is an open interval

I ⊂ int(gn)−1(w) \
k−1⋃

m=n+1

∞⋃
l,j=1

Km,l,j) \Ak

such that I ∩ U 6= ∅. Evidently, ∅ 6= I ∩ U ⊂ A(f) ⊂ A(g). For t ∈ I ∩ U we
obtain gn(t) = gk(t) and

|g(t)− g(x)| = |g(t)− gk(t) + w − gn(x)| ≤
∞∑

i=k+1

ai +
ε

3
<

2ε
3
< ε.

So g ∈ s3(x). The proof that h ∈ s3(x) is analogous.
Up to now we have supposed that the set D(f) is bounded. Now we con-

sider the general case. Since D(f) is a first category set, there are points xk ∈
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R\D(f), k = 0, 1,−1, 2,−2, . . . such that limk→−∞ xk = −∞, limk→∞ xk = ∞
and xk < xk+1 for all integers k. Then R =

⋃∞
k=−∞[xk, xk+1]. Every restricted

function fk = f/[xk, xk+1] is the sum of two functions gk, hk : [xk, xk+1] → R
having the property (s3) and continuous at the points xk and xk+1. Let

g(x) =


gk(x)− (a1 + · · ·+ ak) for x ∈ [xk, xk+1], k ≥ 1
g0(x) for x ∈ [0, 1]
gk(x) + (a0 + a−1 + · · ·+ ak+1) for x ∈ [xk, xk+1], k ≤ −1,

where ak = gk(k)− gk−1(k) for k = 0± 1,±2, . . . and h(x) = f(x)− g(x) for
x ∈ R.Observe that the functions g and h have property (s3) and f = g+h.
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