Antonis Bisbas, Technological Education Institute of West Macedonia, School of Technological Applications, General Sciences Department, Kila 50100, Kozani, Greece. email: bisbas@teikoz.gr

ON THE HAUSDORFF DIMENSION OF AVERAGE TYPE SUMS OF RADEMACHER FUNCTIONS

Abstract

We prove that for any $a, c \in(0,1)$ and any $b, d \in \mathbb{R}$, the Hausdorff dimension of $\left\{x \in[0,1]: n^{-a} \sum_{j=1}^{n} r_{j}(x) \rightarrow b\right.$ and $n^{-c} \sum_{j=1}^{n} r_{j}(x) r_{j+1}(x) \rightarrow$ $d\}$, is equal to 1 , where $\left\{r_{n}(x)\right\}_{n \geq 1}$, are the Rademacher functions. We give also an extension of this result.

1 Introduction

Let $\left\{r_{n}(x)\right\}_{n \geq 1}, x \in \mathbb{R}$, be the sequence of Rademacher function. Let $a, c \in$ $[0,1], b, d \in \mathbb{R}, S_{n}(x)=\sum_{j=1}^{n} r_{j}(x)$ and $S_{n}^{\prime}(x)=\sum_{j=1}^{n} r_{j}(x) r_{j+1}(x)$. We consider the sets

$$
\begin{aligned}
M(a, b) & =\left\{x \in[0,1]: \lim _{n \rightarrow \infty} n^{-a} S_{n}(x)=b\right\}, \\
M^{\prime}(c, d) & =\left\{x \in[0,1]: \lim _{n \rightarrow \infty} n^{-c} S_{n}^{\prime}(x)=d\right\}, \\
N(a, b, c, d) & =M(a, b) \cap M^{\prime}(c, d) .
\end{aligned}
$$

We will prove the following assertion.
Theorem 1. For any $a, c \in(0,1)$ and any $b, d \in \mathbb{R}$, we have $\operatorname{dim} N(a, b, c, d)=$ 1, where dim means the Hausdorff dimension.

This theorem is an extension of some previous results. We point out that A. S. Besicovitch and H. G. Eggleston (see [1]) have computed the Hausdorff dimension of the set $M(1, b), b \in[-1,1]$ and Jun Wu (see [11] Th. 2) has

[^0]proved that for any $a \in(0,1)$ and any $b \in \mathbb{R}$, we have $\operatorname{dim} M(a, b)=1$. Moreover, A. H. Fan and D. J. Feng (see [7], [8] Th. 1) have computed the Hausdorff dimension of the set $N(1, b, 1, d)$, where $b, d \in[-1,1]$. For trigonometric functions, one can find related results in [6]. Finally, for sets defined by digits in dyadic, triadic and other expansions see [2], [5], [3] and [8].

In this work we get lower bounds of the Hausdorff dimension of $N(a, b, c, d)$ by estimating the dimensions of some non-homogeneous Cantor measures. We construct these measures on some subsets of Cantor type of our set. Finally we discuss another proof of the theorem in the case $a, c \in\left(\frac{1}{2}, 1\right)$ and we give an extension of Theorem 1.

2 The Hausdorff Dimension of $\mathbf{N}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$

Lemma. (i) Let $\varepsilon_{1}, \ldots, \varepsilon_{2 J+1} \in\{ \pm 1\}, J \in \mathbb{N}$. Then the number of ordered pairs $\left(\varepsilon_{1}, \ldots, \varepsilon_{2 J}\right)$ which satisfies the conditions $\sum_{i=1}^{2 J} \varepsilon_{i}=0$ and $\sum_{i=1}^{2 J} \varepsilon_{i} \varepsilon_{i+1}=0$, is equal to $2 c_{J}$, where $c_{J}=\binom{J}{\frac{J}{2}}\binom{J-1}{\frac{J-2}{2}}$ if J is even and $c_{J}=\binom{J}{\frac{J-1}{2}}\binom{J-1}{\frac{J-1}{2}}$ if J is odd.

$$
\begin{equation*}
\frac{\log c_{J}}{2 J \log 2} \rightarrow 1, J \rightarrow \infty \tag{ii}
\end{equation*}
$$

Proof of (i). There exists $2^{2 J}$ ordered pairs of the form $\left(\varepsilon_{1}, \ldots, \varepsilon_{2 J}\right)$. If we have only the condition $\sum_{i=1}^{2 J} \varepsilon_{i}=0$, then the number of ordered pairs is $\binom{2 J}{J}$ and among the numbers $\varepsilon_{1}, \ldots, \varepsilon_{2 J}$ the J 's are +1 and the other J 's are -1 . Since we desire to have the two conditions simultaneously, we must have $J-1$ or J changes of sign on the pair $\left(\varepsilon_{1}, \ldots, \varepsilon_{2 J}\right)$. We suppose that $\varepsilon_{1}=1$.
(a) If $J=2 n$, then the J numbers with sign + are decomposed into n groups $\left(\varepsilon_{2 J}=-1\right)$ or into $n+1$ groups $\left(\varepsilon_{2 J}=1\right)$. (In each group we have successively numbers with sign + .) This can be possible with $\binom{2 n-1}{n-1}+\binom{2 n-1}{n}=\binom{2 n}{n}$ ways. The J numbers with sign - are placing in the remainder n positions and this is done with $\binom{2 n-1}{n-1}$ ways. Repeating the above process for the case $\varepsilon_{1}=-1$ we get that the number of ordered pairs is

$$
2\binom{2 n}{n}\binom{2 n-1}{n-1}=2\binom{J}{\frac{J}{2}}\binom{J-1}{\frac{J-2}{2}}
$$

(b) If $J=2 n+1$, then the J numbers with sign + are decomposed into $\mathrm{n}+1$ groups. This is possible in $\binom{2 n}{n}$ ways. The J numbers with sign - take the
remainder n positions $\left(\varepsilon_{2 J}=+1\right)$ or $n+1$ positions $\left(\varepsilon_{2 J}=-1\right)$, and this is done in $\binom{2 n}{n}+\binom{2 n}{n-1}=\binom{2 n+1}{n}$ ways. Repeating the above process for the case $\varepsilon_{1}=-1$ we get that the number of ordered pairs is

$$
2\binom{2 n}{n}\binom{2 n+1}{n}=2\binom{J-1}{\frac{J-1}{2}}\binom{J}{\frac{J-1}{2}}
$$

Proof of (ii). Using Stirling's formula the result follows.
Proof of Theorem 1. We observe that if $0<a<a^{\prime}<1$, then $M(a, b) \subset$ $M\left(a^{\prime}, 0\right)$ and if $0<c<c^{\prime}<1$, then $M^{\prime}(c, d) \subset M^{\prime}\left(c^{\prime}, 0\right)$. So it is enough to prove the theorem for $b, d \neq 0$ and which we now assume. For convenience we shall denote by $E_{n, k}$ the interval $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right), n \in \mathbb{N}, k=0,1, \ldots, 2^{n}-1$. Let $J \in \mathbb{N}$ and

$$
\begin{equation*}
A_{1}=\left\{x \in[0,1]: S_{2 J}(x)=S_{2 J}^{\prime}(x)=0\right\} \tag{1}
\end{equation*}
$$

By the lemma we get that A_{1} is the union of $2 c_{J}$ intervals of the form $E_{2 J+1, k}$. Since $r_{j}(x)=-r_{j}(1-x)$, we have that there exist $k_{1}, k_{2} \in\left\{0,1, \ldots, 2^{2 J+1}-1\right\}$, such that $E_{2 J+1, k_{1}} \subset\left[0, \frac{1}{2}\right]$ and $E_{2 J+1, k_{2}} \subset\left[\frac{1}{2}, 1\right]$ and if $x \in E_{2 J+1, k_{1}}, y \in$ $E_{2 J+1, k_{2}}$, then

$$
\begin{align*}
r_{2 J+1}(x) r_{2 J+1}(y) & =-1, S_{2 J}(x)=S_{2 J}(y)=0 \\
S_{2 J}^{\prime}(x) & =S_{2 J}^{\prime}(y) \neq 0 \text { and } \operatorname{sign} S_{2 J}^{\prime}(x)=\operatorname{sign} b \tag{2}
\end{align*}
$$

where $\operatorname{sign} x=1,0,-1$ according to $x>0, x=0, x<0$. Analogous, there exist $k_{1}^{\prime}, k_{2}^{\prime} \in\left\{0,1, \ldots, 2^{2 J+1}-1\right\}$ (we assume $J \geq 2$), such that $E_{2 J+1, k_{1}^{\prime}} \subset$ $\left[0, \frac{1}{2}\right], E_{2 J+1, k_{2}^{\prime}} \subset\left[\frac{1}{2}, 1\right]$ and if $x \in E_{2 J+1, k_{1}^{\prime}}, y \in E_{2 J+1, k_{2}^{\prime}}$, then

$$
\begin{align*}
r_{2 J+1}(x) r_{2 J+1}(y) & =-1, S_{2 J}^{\prime}(x)=S_{2 J}^{\prime}(y)=0 \tag{3}\\
S_{2 J}(x) & =S_{2 J}(y) \neq 0 \text { and } \operatorname{sign} S_{2 J}(x)=\operatorname{sign} d
\end{align*}
$$

Let $A_{2}=E_{2 J+1, k_{1}} \cup E_{2 J+1, k_{2}}, A_{3}=E_{2 J+1, k_{1}^{\prime}} \cup E_{2 J+1, k_{2}^{\prime}}$. We construct the following Cantor-type set. The first stage of this construction is to take the intervals $E_{2 J+1, k}$ for those k, such that $E_{2 J+1, k} \subset A_{1} \cup A_{2} \cup A_{3}$ and to remove the others. Each successive step of the construction is essentially the same. Thus, at the second stage, we subdivide each of the remaining intervals $E_{2 J+1, k}$ into 4^{J} equal intervals. We take the intervals $E_{4 J+1, \lambda}, \lambda \in\left\{0,1, \ldots, 2^{4 J+1}-\right.$ $1\}$, for which we have

$$
4^{J} E_{4 J+1, \lambda} \bmod 1 \subset A_{1} \cup A_{2} \cup A_{3}
$$

and remove the others. We proceed by induction. We also remark that by an interval $E_{2 J+1, k} \subset A_{i_{1}}, i_{1}=1,2,3$, we take at the second stage c_{J} intervals of
the form $E_{4 J+1, \lambda}$ with the property $4^{J} E_{4 J+1, \lambda} \bmod 1 \subset A_{1}$, one with the property $4^{J} E_{4 J+1, \lambda} \bmod 1 \subset A_{2}$ and one with the property $4^{J} E_{4 J+1, \lambda} \bmod 1 \subset A_{3}$. Let $A_{i_{1} i_{2}}$ be the union of the intervals $E_{4 J+1, \lambda} \subset A_{i_{1}}$ such that $4^{J} E_{4 J+1, \lambda} \bmod$ $1 \subset A_{i_{2}}$. By induction we define the sets $A_{i_{1} \ldots i_{n}, i_{n+1}}, i_{1}, \ldots, i_{n+1} \in\{1,2,3\}$, $n=1,2, \ldots$ For these sets we have that

$$
\begin{equation*}
A_{i_{1} \ldots i_{n} i_{n+1}} \subset A_{i_{1} \ldots i_{n}}, 4^{n J} A_{i_{1} \ldots i_{n} i_{n+1}} \bmod 1=A_{i_{n+1}} \tag{4}
\end{equation*}
$$

We consider a sequence of Borel probability measures $\mu_{n}, n \in \mathbb{N}$, such that

$$
\begin{equation*}
\mu_{n}\left(E_{2 J n+1, k}\right)=\frac{1}{2} p_{i_{1}}^{(1)} \ldots p_{i_{n}}^{(n)}, E_{2 J n+1, k} \subset A_{i_{1} \ldots i_{n}} \tag{5}
\end{equation*}
$$

$i_{1}, \ldots, i_{n} \in\{1,2,3\}, n \in \mathbb{N}$ and $c_{J} p_{1}^{(n)}+p_{2}^{(n)}+p_{3}^{(n)}=1$. Let

$$
\begin{aligned}
S_{n, J}(x) & :=\sum_{j=2(n-1) J+1}^{2 n J} r_{j}(x), S_{n, J}^{\prime}(x):=\sum_{j=2(n-1) J+1}^{2 n J} r_{j}(x) r_{j+1}(x), n \in \mathbb{N} \\
A_{n, i} & =\cup_{i_{1} \ldots i_{n-1}} A_{i_{1} \ldots i_{n-1} i}, i_{1}, \ldots, i_{n-1}, i \in\{1,2,3\}, n=2,3, \ldots
\end{aligned}
$$

and for convenience we write $A_{1, i}=A_{i}, i=1,2,3$. Using the relations (1)(4) we have that

$$
\begin{align*}
\text { if } x \in A_{n, 1} \text {, then } S_{n, J}(x) & =S_{n, J}^{\prime}(x)=0, \tag{6}\\
\text { if } x \in A_{n, 2}, x_{0} \in A_{2}, \text { then } S_{n, J}(x) & =0, S_{n, J}^{\prime}(x)=S_{2 J}^{\prime}\left(x_{0}\right) \\
\text { and } \operatorname{sign} S_{2 J}^{\prime}\left(x_{0}\right) & =\operatorname{sign} b, \tag{7}\\
\text { if } x \in A_{n, 3}, x_{0}^{\prime} \in A_{3}, \text { then } S_{n, J}^{\prime}(x) & =0, S_{n, J}(x)=S_{2 J}\left(x_{0}^{\prime}\right), \tag{8}\\
\text { and } \operatorname{sign} S_{2 J}\left(x_{0}^{\prime}\right) & =\operatorname{sign} d .
\end{align*}
$$

Let μ be the weak* limit of the sequence of measures $\mu_{n}, n \in \mathbb{N}$. Then, we deduce that

$$
\begin{equation*}
\mu\left(A_{n, 1}\right)=c_{J} p_{1}^{(n)}, \mu\left(A_{n, i}\right)=p_{i}^{(n)}, i=2,3, n \in \mathbb{N} \tag{9}
\end{equation*}
$$

An easy computation shows that the sequences of functions $S_{n, J}$ and $S_{n, J}^{\prime}, n \in$ \mathbb{N}, are sequences of independent random variables with respect to μ. We denote by $E(f)$ and by $V(f)$ the expectation and the variance of the function f with respect to μ respectively. From (6) - (9) it follows that

$$
\begin{array}{ll}
E\left(S_{n, J}\right)=S_{2 J}\left(x_{0}^{\prime}\right) p_{3}^{(n)}, & E\left(S_{n, J}^{\prime}\right)=S_{2 J}^{\prime}\left(x_{0}\right) p_{2}^{(n)} \\
V\left(S_{n, J}\right)=S_{2 J}^{2}\left(x_{0}^{\prime}\right) p_{3}^{(n)}\left(1-p_{3}^{(n)}\right), & V\left(S_{n, J}^{\prime}\right)=S_{2 J}^{\prime 2}\left(x_{0}\right) p_{2}^{(n)}\left(1-p_{2}^{(n)}\right)
\end{array}
$$

Let $p_{2}^{(n)}, p_{3}^{(n)}$ be such that (for sufficient large n)

$$
\begin{aligned}
p_{2}^{(n)} & =\frac{(2 J)^{c}|d|}{\left|S_{2 J}^{\prime}\left(x_{0}\right)\right|}\left(n^{c}-(n-1)^{c}\right) \sim \frac{(2 J)^{c}|d|}{\left|S_{2 J}^{\prime}\left(x_{0}\right)\right|} \frac{c}{n^{1-c}} \\
p_{3}^{(n)} & =\frac{(2 J)^{a}|b|}{\left|S_{2 J}\left(x_{0}^{\prime}\right)\right|}\left(n^{a}-(n-1)^{a}\right) \sim \frac{(2 J)^{a}|b|}{\left|S_{2 J}\left(x_{0}^{\prime}\right)\right|} \frac{a}{n^{1-a}}
\end{aligned}
$$

Using the above relations we take that

$$
\sum_{n=1}^{\infty} \frac{V\left(S_{n, J}\right)}{n^{2 a}}<\infty \text { and } \sum_{n=1}^{\infty} \frac{V\left(S_{n, J}^{\prime}\right)}{n^{2 c}}<\infty
$$

Hence, by the strong law of large numbers (see [9] p. 364), we conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{a}} \sum_{k=1}^{n} S_{k, J}(x)=(2 J)^{a} b \text { and } \lim _{n \rightarrow \infty} \frac{1}{n^{c}} \sum_{k=1}^{n} S_{k, J}^{\prime}(x)=(2 J)^{c} d, \mu-\text { a.e. }
$$

and so $\mu(N(a, b, c, d))=1$, as is easy to check. We denote by $E_{n}(x)$ the interval $E_{n, k}$ which contains x. By (5) we have that

$$
\begin{aligned}
& \log \mu\left(E_{2 J n+1}(x)\right)=\log \mu_{n}\left(E_{2 J n+1}(x)\right)=\log \left[\frac{1}{2} \prod_{k=1}^{n} p_{i_{k}(x)}^{(k)}\right] \\
= & -\log 2+\sum_{k=1}^{n}\left[\chi_{A_{k, 1}}(x) \log p_{1}^{(k)}+\chi_{A_{k, 2}}(x) \log p_{2}^{(k)}+\chi_{A_{k, 3}}(x) \log p_{3}^{(k)}\right],
\end{aligned}
$$

where $i_{k(x)} \in\{1,2,3\}$ and $\chi_{A_{k, i}}(x)$ is the characteristic function of the set $A_{k, i}$. It is a simple matter to see that for $i=1,2,3$ the sequence of functions

$$
\chi_{A_{n, i}}(x) \log p_{i}^{(n)}, x \in[0,1], n \in \mathbb{N}
$$

is a sequence of independent random variables with respect to the measure μ. Since $p_{2}^{(n)}, p_{3}^{(n)} \rightarrow 0, n \rightarrow+\infty$, the strong law of large numbers and (9) implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\log \mu\left(E_{2 J n+1}(x)\right)}{-(2 J n+1) \log 2} & =\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n}\left[c_{J} p_{1}^{(k)} \log p_{1}^{(k)}+p_{2}^{(k)} \log p_{2}^{(k)}+p_{3}^{(k)} \log p_{3}^{(k)}\right]}{-(2 J n+1) \log 2} \\
& =\frac{\log c_{J}}{2 J \log 2}, \mu-\text { a.e. }
\end{aligned}
$$

and consequently

$$
\lim _{n \rightarrow \infty} \frac{\log \mu\left(E_{n}(x)\right)}{-n \log 2}=\frac{\log c_{J}}{2 J \log 2}, \mu-\text { a.e.. }
$$

Since $\mu(N(a, b, c, d))=1$, by the well know mass distribution principle, (see [1] p. 141), we obtain that $\operatorname{dim} N(a, b, c, d) \geq \frac{\log c_{J}}{2 J \log 2}$. By the lemma we get that $\operatorname{dim} N(a, b, c, d)=1$, as we desired.

The theorem implies the following.
Corollary. For any $c \in(0,1)$ and any $d \in \mathbb{R}$, we have $\operatorname{dim} M^{\prime}(c, d)=1$.
Remark. (i) If $a \in(1 / 2,1)$, then we can find $\operatorname{dim} M(a, b)$ using the measure $d \mu=\prod_{n=1}^{\infty}\left(1+a_{n} r_{n}(x)\right) d x$, where $a_{n}=\left(n^{a}-(n-1)^{a}\right) b$, also see $[6]$.
(ii) If $a, c \in(1 / 2,1)$, then it is possible to take the result of the theorem using the measure

$$
d \mu=\prod_{n=1}^{\infty}\left[\left(1+\frac{1}{2} \operatorname{sign} b r_{k_{n}}(x)\right)\left(1+\frac{1}{2} \operatorname{sign} d r_{m_{n}}(x) r_{m_{n}+1}(x)\right)\right] d x
$$

where the sequences k_{n} and m_{n} satisfies the following conditions:
$\left(\alpha_{1}\right)\left\{k_{n}, n \in \mathbb{N}\right\} \cap\left\{m_{n}, n \in \mathbb{N}\right\} \cap\left\{m_{n}+1, n \in \mathbb{N}\right\}=\emptyset$,
$\left(\alpha_{2}\right) \frac{1}{2} \lim _{n \rightarrow \infty} \frac{n}{k_{n}^{a}}=|b|, \frac{1}{2} \lim _{n \rightarrow \infty} \frac{n}{m_{n}^{c}}=|d|$.
One can see that $\mu(N(a, b, c, d))=1$. Also see [4] about the Hausdorff dimension of μ.

Next we give an extension of our theorem 1 and theorem 3 of [12].
Theorem 2. Let $\left(\gamma_{n}\right)_{n \geq 0}$ and $\left(\delta_{n}\right)_{n \geq 0}$ be two increasing and unbounded sequences of positive numbers such that $\lim _{n \rightarrow \infty}\left(\gamma_{n+1}-\gamma_{n}\right)=\lim _{n \rightarrow \infty}\left(\delta_{n+1}-\right.$ $\left.\delta_{n}\right)=0$. Then for any $b, d \in \mathbb{R}$, the Hausdorff dimension of the set

$$
\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}} S_{n}(x)=b \text { and } \lim _{n \rightarrow \infty} \frac{1}{\delta_{n}} S_{n}^{\prime}(x)=d\right\}
$$

is equal to 1 .

Proof. The proof is similar to the proof of Theorem 1. For the convenience of the reader we mention that we choose

$$
p_{2}^{(n)}=\frac{|d|}{\left|S_{2 J}^{\prime}\left(x_{0}\right)\right|}\left(\delta_{2 J n}-\delta_{2 J(n-1)}\right) \text { and } p_{3}^{(n)}=\frac{|b|}{\left|S_{2 J}^{\prime}\left(x_{0}\right)\right|}\left(\gamma_{2 J n}-\gamma_{2 J(n-1)}\right) .
$$

In order to apply the strong law of large numbers we make use of the fact that the series $\sum_{n=1}^{\infty} \frac{\gamma_{n}-\gamma_{n-1}}{\gamma_{n}^{2}}, \sum_{n=1}^{\infty} \frac{\delta_{n}-\delta_{n-1}}{\delta_{n}^{2}}$ converges, (see [10], Theorem 2.41, p. 57). Finally, we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{\gamma_{2 J n}} \sum_{k=1}^{n} S_{k, J}(x)=b \text { and } \lim _{n \rightarrow \infty} \frac{1}{\delta_{2 J n}} \sum_{k=1}^{n} S_{k, J}^{\prime}(x)=d, \mu-a . e . .
$$

We can now proceed analogously to the proof of Theorem 1. We point out that in [12] (Th. 3), the author estimates the Hausdorff dimension of the set $\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}} S_{n}(x)=b\right\}$.

References

[1] P. Billingsley, Ergodic theory and information, New York, Wiley, 1965.
[2] A. Bisbas, A note on the distribution of digits in dyadic expansions, C. R. Acad. Sci., t.318, série I, 1994, 105-109.
[3] A. Bisbas, A note on the distribution of digits in triadic expansions, Real Analysis Exchange, 23 (1997/98), 2, 545-552.
[4] A. Bisbas, C. Karanikas, Dimension and Entropy of a Non - ergodic Markovian Process and its Relation to Rademacher Riesz Products, Monatshefte für Math., 118 (1994), 21-32.
[5] A. Bisbas, C. Karanikas and G. Proios, On the distribution of digits in dyadic expansion, Results in Math., 33 (1998), 40-49.
[6] A. H. Fan, A refinement of an ergodic theorem and its application to Hardy functions, C. R. Acad. Sci. Paris, 325 (1997), 145-150.
[7] A. H. Fan and De-Jun Feng, Analyse multifractale de la récurrence sur l'espace symbolique, C. R. Acad. Sci. Paris, 327 (1998), 629-632.
[8] A. H. Fan and De-Jun Feng, On the distribution of long-term time average on the symbolic space, J. Statist. Phys., 99 (2000), no. 3-4, 813-856.
[9] A. N. Shiryayev, Probability, Berlin - Heidelberg - New York, Springer 1984.
[10] K. R. Stromberg, Introduction to classical real Analysis, Wadsworth, Inc. 1981.
[11] Jun Wu, Dimension of level sets of some Rademacher series, C. R. Acad. Sci. Paris, 327 (1998), 29-33.
[12] Li-Feng Xi, Hausdorff dimensions of level sets of Rademacher series, C. R. Acad. Sci. Paris, 331 (2000), 953-958.

[^0]: Key Words: Hausdorff dimension, Rademacher functions
 Mathematical Reviews subject classification: 28A78
 Received by the editors October 6, 2002
 Communicated by: R. Daniel Mauldin

