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Abstract

We prove that for any a, c ∈ (0, 1) and any b, d ∈ R, the Hausdorff di-
mension of {x ∈ [0, 1] : n−a Pn

j=1 rj(x) → b and n−c Pn
j=1 rj(x)rj+1(x) →

d}, is equal to 1, where {rn(x)}n≥1, are the Rademacher functions. We
give also an extension of this result.

1 Introduction

Let {rn(x)}n≥1, x ∈ R, be the sequence of Rademacher function. Let a, c ∈

[0, 1], b, d ∈ R, Sn(x) =
n∑

j=1

rj(x) and S′n(x) =
n∑

j=1

rj(x)rj+1(x). We consider

the sets

M(a, b) =
{

x ∈ [0, 1] : lim
n→∞

n−aSn(x) = b
}

,

M ′(c, d) =
{

x ∈ [0, 1] : lim
n→∞

n−cS′n(x) = d
}

,

N(a, b, c, d) = M(a, b) ∩M ′(c, d).

We will prove the following assertion.

Theorem 1. For any a, c ∈ (0, 1) and any b, d ∈ R, we have dim N(a, b, c, d) =
1, where dim means the Hausdorff dimension.

This theorem is an extension of some previous results. We point out that
A. S. Besicovitch and H. G. Eggleston (see [1]) have computed the Hausdorff
dimension of the set M(1, b), b ∈ [−1, 1] and Jun Wu (see [11] Th. 2) has
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proved that for any a ∈ (0, 1) and any b ∈ R, we have dim M(a, b) = 1.
Moreover, A. H. Fan and D. J. Feng (see [7], [8] Th. 1) have computed
the Hausdorff dimension of the set N(1, b, 1, d), where b, d ∈ [−1, 1]. For
trigonometric functions, one can find related results in [6]. Finally, for sets
defined by digits in dyadic, triadic and other expansions see [2], [5], [3] and
[8].

In this work we get lower bounds of the Hausdorff dimension of N(a, b, c, d)
by estimating the dimensions of some non-homogeneous Cantor measures. We
construct these measures on some subsets of Cantor type of our set. Finally
we discuss another proof of the theorem in the case a, c ∈ ( 1

2 , 1) and we give
an extension of Theorem 1.

2 The Hausdorff Dimension of N(a,b, c,d)

Lemma. (i) Let ε1, . . . , ε2J+1 ∈ {±1}, J ∈ N. Then the number of ordered

pairs (ε1, . . . , ε2J) which satisfies the conditions
2J∑
i=1

εi = 0 and
2J∑
i=1

εiεi+1 = 0,

is equal to 2cJ , where cJ =
(

J
J
2

)(J−1
J−2

2

)
if J is even and cJ =

(
J

J−1
2

)(J−1
J−1

2

)
if J

is odd.

(ii)
log cJ

2J log 2
→ 1, J →∞.

Proof of (i). There exists 22J ordered pairs of the form (ε1, . . . , ε2J). If we

have only the condition
2J∑
i=1

εi = 0, then the number of ordered pairs is
(
2J
J

)
and among the numbers ε1, . . . , ε2J the J ’s are +1 and the other J ’s are -1.
Since we desire to have the two conditions simultaneously, we must have J −1
or J changes of sign on the pair (ε1, . . . , ε2J). We suppose that ε1 = 1.
(a) If J = 2n, then the J numbers with sign + are decomposed into n groups
(ε2J = −1) or into n+1 groups (ε2J = 1). (In each group we have successively
numbers with sign +.) This can be possible with

(
2n−1
n−1

)
+

(
2n−1

n

)
=

(
2n
n

)
ways.

The J numbers with sign - are placing in the remainder n positions and this
is done with

(
2n−1
n−1

)
ways. Repeating the above process for the case ε1 = −1

we get that the number of ordered pairs is

2
(

2n

n

)(
2n− 1
n− 1

)
= 2

(
J
J
2

)(
J − 1
J−2

2

)
.

(b) If J = 2n + 1, then the J numbers with sign + are decomposed into n+1
groups. This is possible in

(
2n
n

)
ways. The J numbers with sign - take the
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remainder n positions (ε2J = +1) or n + 1 positions (ε2J = −1), and this is
done in

(
2n
n

)
+

(
2n

n−1

)
=

(
2n+1

n

)
ways. Repeating the above process for the case

ε1 = −1 we get that the number of ordered pairs is

2
(

2n

n

)(
2n + 1

n

)
= 2

(
J − 1
J−1

2

)(
J

J−1
2

)
.

Proof of (ii). Using Stirling’s formula the result follows.

Proof of Theorem 1. We observe that if 0 < a < a′ < 1, then M(a, b) ⊂
M(a′, 0) and if 0 < c < c′ < 1, then M ′(c, d) ⊂ M ′(c′, 0). So it is enough to
prove the theorem for b, d 6= 0 and which we now assume. For convenience we
shall denote by En,k the interval [ k

2n , k+1
2n ), n ∈ N, k = 0, 1, . . . , 2n − 1. Let

J ∈ N and
A1 = {x ∈ [0, 1] : S2J(x) = S′2J(x) = 0}. (1)

By the lemma we get that A1 is the union of 2cJ intervals of the form E2J+1,k.
Since rj(x) = −rj(1−x), we have that there exist k1, k2 ∈ {0, 1, . . . , 22J+1−1},
such that E2J+1,k1 ⊂

[
0, 1

2

]
and E2J+1,k2 ⊂

[
1
2 , 1

]
and if x ∈ E2J+1,k1 , y ∈

E2J+1,k2 , then

r2J+1(x) r2J+1(y) = −1, S2J(x) = S2J(y) = 0,

S′2J(x) = S′2J(y) 6= 0 and signS′2J(x) = sign b
(2)

where signx = 1, 0,−1 according to x > 0, x = 0, x < 0. Analogous, there
exist k′1, k

′
2 ∈ {0, 1, . . . , 22J+1 − 1} (we assume J ≥ 2), such that E2J+1,k′1

⊂[
0, 1

2

]
, E2J+1,k′2

⊂
[
1
2 , 1

]
and if x ∈ E2J+1,k′1

, y ∈ E2J+1,k′2
, then

r2J+1(x) r2J+1(y) = −1, S′2J(x) = S′2J(y) = 0,

S2J(x) = S2J(y) 6= 0 and signS2J(x) = sign d.
(3)

Let A2 = E2J+1,k1 ∪ E2J+1,k2 , A3 = E2J+1,k′1
∪ E2J+1,k′2

. We construct the
following Cantor-type set. The first stage of this construction is to take the
intervals E2J+1,k for those k, such that E2J+1,k ⊂ A1∪A2∪A3 and to remove
the others. Each successive step of the construction is essentially the same.
Thus, at the second stage, we subdivide each of the remaining intervals E2J+1,k

into 4J equal intervals. We take the intervals E4J+1,λ, λ ∈ {0, 1, . . . , 24J+1 −
1}, for which we have

4JE4J+1,λ mod 1 ⊂ A1 ∪A2 ∪A3

and remove the others. We proceed by induction. We also remark that by an
interval E2J+1,k ⊂ Ai1 , i1 = 1, 2, 3, we take at the second stage cJ intervals of
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the form E4J+1,λ with the property 4JE4J+1,λ mod 1 ⊂ A1, one with the prop-
erty 4JE4J+1,λ mod 1 ⊂ A2 and one with the property 4JE4J+1,λ mod 1 ⊂ A3.
Let Ai1i2 be the union of the intervals E4J+1,λ ⊂ Ai1 such that 4JE4J+1,λ mod
1 ⊂ Ai2 . By induction we define the sets Ai1 ... in,in+1 , i1, . . . , in+1 ∈ {1, 2, 3},
n = 1, 2, . . . . For these sets we have that

Ai1...inin+1 ⊂ Ai1... in , 4nJAi1... inin+1 mod 1 = Ain+1 . (4)

We consider a sequence of Borel probability measures µn, n ∈ N, such that

µn(E2Jn+1,k) =
1
2
p
(1)
i1

. . . p
(n)
in

, E2Jn+1,k ⊂ Ai1 ... in , (5)

i1, . . . , in ∈ {1, 2, 3}, n ∈ N and cJp
(n)
1 + p

(n)
2 + p

(n)
3 = 1. Let

Sn,J(x) :=
2nJ∑

j=2(n−1)J+1

rj(x), S′n,J(x) :=
2nJ∑

j=2(n−1)J+1

rj(x)rj+1(x), n ∈ N,

An,i = ∪i1 ... in−1Ai1 ... in−1 i, i1, . . . , in−1, i ∈ {1, 2, 3}, n = 2, 3, . . .

and for convenience we write A1,i = Ai, i = 1, 2, 3. Using the relations (1) –
(4) we have that

if x ∈ An,1, then Sn,J(x) = S′n,J(x) = 0, (6)

if x ∈ An,2, x0 ∈ A2, then Sn,J(x) = 0, S′n,J(x) = S′2J(x0)

and signS′2J(x0) = sign b,
(7)

if x ∈ An,3, x′0 ∈ A3, then S′n,J(x) = 0, Sn,J(x) = S2J(x′0),

and signS2J(x′0) = sign d.
(8)

Let µ be the weak* limit of the sequence of measures µn, n ∈ N. Then, we
deduce that

µ(An,1) = cJp
(n)
1 , µ(An,i) = p

(n)
i , i = 2, 3, n ∈ N. (9)

An easy computation shows that the sequences of functions Sn,J and S′n,J , n ∈
N, are sequences of independent random variables with respect to µ. We denote
by E(f) and by V (f) the expectation and the variance of the function f with
respect to µ respectively. From (6) – (9) it follows that

E(Sn,J) = S2J(x′0)p
(n)
3 , E(S′n,J) = S′2J(x0)p

(n)
2 ,

V (Sn,J) = S2
2J(x′0)p

(n)
3 (1− p

(n)
3 ), V (S′n,J) = S′22J(x0)p

(n)
2 (1− p

(n)
2 ).
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Let p
(n)
2 , p

(n)
3 be such that (for sufficient large n)

p
(n)
2 =

(2J)c|d|
|S′2J(x0)|

(nc − (n− 1)c) ∼ (2J)c|d|
|S′2J(x0)|

c

n1−c
,

p
(n)
3 =

(2J)a|b|
|S2J(x′0)|

(na − (n− 1)a) ∼ (2J)a|b|
|S2J(x′0)|

a

n1−a
.

Using the above relations we take that

∞∑
n=1

V (Sn,J)
n2a

< ∞ and
∞∑

n=1

V (S′n,J)
n2c

< ∞.

Hence, by the strong law of large numbers (see [9] p. 364), we conclude that

lim
n→∞

1
na

n∑
k=1

Sk,J(x) = (2J)ab and lim
n→∞

1
nc

n∑
k=1

S′k,J(x) = (2J)cd, µ− a.e.

and so µ(N(a, b, c, d)) = 1, as is easy to check. We denote by En(x) the
interval En,k which contains x. By (5) we have that

log µ(E2Jn+1(x)) = log µn(E2Jn+1(x)) = log

[
1
2

n∏
k=1

p
(k)
ik(x)

]

=− log 2 +
n∑

k=1

[
χ

Ak,1(x) log p
(k)
1 + χ

Ak,2(x) log p
(k)
2 + χ

Ak,3(x) log p
(k)
3

]
,

where ik(x) ∈ {1, 2, 3} and χ
Ak,i

(x) is the characteristic function of the set
Ak,i. It is a simple matter to see that for i = 1, 2, 3 the sequence of functions

χ
An,i(x) log p

(n)
i , x ∈ [0, 1], n ∈ N,

is a sequence of independent random variables with respect to the measure
µ. Since p

(n)
2 , p

(n)
3 → 0, n → +∞, the strong law of large numbers and (9)

implies that

lim
n→∞

log µ(E2Jn+1(x))
−(2Jn + 1) log 2

= lim
n→∞

n∑
k=1

[
cJp

(k)
1 log p

(k)
1 + p

(k)
2 log p

(k)
2 + p

(k)
3 log p

(k)
3

]
−(2Jn + 1) log 2

=
log cJ

2J log 2
, µ− a.e.
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and consequently

lim
n→∞

log µ(En(x))
−n log 2

=
log cJ

2J log 2
, µ− a.e..

Since µ(N(a, b, c, d)) = 1, by the well know mass distribution principle, (see

[1] p. 141), we obtain that dim N(a, b, c, d) ≥ log cJ

2J log 2
. By the lemma we get

that dim N(a, b, c, d) = 1, as we desired.

The theorem implies the following.

Corollary. For any c ∈ (0, 1) and any d ∈ R, we have dim M ′(c, d) = 1.

Remark. (i) If a ∈ (1/2, 1), then we can find dim M(a, b) using the measure

dµ =
∞∏

n=1
(1 + anrn(x))dx, where an = (na − (n− 1)a)b, also see [6].

(ii) If a, c ∈ (1/2, 1), then it is possible to take the result of the theorem
using the measure

dµ =
∞∏

n=1

[(1 +
1
2

sign b rkn
(x))(1 +

1
2

sign d rmn
(x)rmn+1(x))] dx,

where the sequences kn and mn satisfies the following conditions:

(α1) {kn, n ∈ N} ∩ {mn, n ∈ N} ∩ {mn + 1, n ∈ N} = ∅,

(α2) 1
2 lim

n→∞
n
ka

n
= |b|, 1

2 lim
n→∞

n
mc

n
= |d|.

One can see that µ(N(a, b, c, d)) = 1. Also see [4] about the Hausdorff dimen-
sion of µ.

Next we give an extension of our theorem 1 and theorem 3 of [12].

Theorem 2. Let (γn)n≥0 and (δn)n≥0 be two increasing and unbounded se-
quences of positive numbers such that limn→∞(γn+1 − γn) = limn→∞(δn+1 −
δn) = 0. Then for any b, d ∈ R, the Hausdorff dimension of the set{

x ∈ [0, 1] : lim
n→∞

1
γn

Sn(x) = b and lim
n→∞

1
δn

S′n(x) = d
}

,

is equal to 1.
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Proof. The proof is similar to the proof of Theorem 1. For the convenience
of the reader we mention that we choose

p
(n)
2 =

|d|
|S′2J(x0)|

(δ2Jn − δ2J(n−1)) and p
(n)
3 =

|b|
|S′2J(x0)|

(γ2Jn − γ2J(n−1)).

In order to apply the strong law of large numbers we make use of the fact that
the series

∑∞
n=1

γn−γn−1
γ2

n
,

∑∞
n=1

δn−δn−1
δ2

n
converges, (see [10], Theorem 2.41,

p. 57). Finally, we obtain

lim
n→∞

1
γ2Jn

n∑
k=1

Sk,J(x) = b and lim
n→∞

1
δ2Jn

n∑
k=1

S′k,J(x) = d, µ− a.e..

We can now proceed analogously to the proof of Theorem 1. We point out
that in [12] (Th. 3), the author estimates the Hausdorff dimension of the set{
x ∈ [0, 1] : lim

n→∞
1

γn
Sn(x) = b

}
.
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