Zbigniew Grande, Institute of Mathematics, Bydgoszcz Academy, Plac

EXTENDING SOME FUNCTIONS TO STRONGLY APPROXIMATELY QUASICONTINUOUS FUNCTIONS

Abstract

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is strongly approximately quasicontinuous at a point x if for each real $r>0$ and for each set $U \ni x$ belonging to the density topology there is an open interval I such that $I \cap U \neq \emptyset$ and $f(U \cap I) \subset(f(x)-r, f(x)+r)$. In this article we investigate the sets A such that each almost everywhere continuous bounded function may be extended from A to a bounded strongly approximately quasicontinuous function on \mathbb{R}.

Let \mathbb{R} be the set of all reals. Denote by μ the Lebesgue measure in \mathbb{R} and by μ_{e} the outer Lebesgue measure in \mathbb{R}. For a set $A \subset \mathbb{R}$ and a point x we define the upper (lower) outer density $D_{u}(A, x)\left(D_{l}(A, x)\right)$ of the set A at the point x as

$$
\begin{gathered}
\limsup _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \\
\left(\liminf _{h \rightarrow 0^{+}} \frac{\mu_{e}(A \cap[x-h, x+h])}{2 h} \text { respectively }\right)
\end{gathered}
$$

A point x is said to be an outer density point (a density point) of a set A if $D_{l}(A, x)=1$ (if there is a Lebesgue measurable set $B \subset A$ such that $\left.D_{l}(B, x)=1\right)$.

The family T_{d} of all sets A for which the implication $x \in A \Longrightarrow x$ is a density point of A is true, is a topology called the density topology ($[1,6]$).

The sets $A \in T_{d}$ are Lebesgue measurable [1, 6].
In [5] O'Malley investigates the topology

$$
T_{a e}=\left\{A \in T_{d} ; \mu(A \backslash \operatorname{int}(A))=0\right\}
$$

[^0]where $\operatorname{int}(A)$ denotes the interior of the set A.
Let T_{e} be the Euclidean topology in \mathbb{R}. The continuity of functions f from $\left(\mathbb{R}, T_{d}\right)$ to $\left(\mathbb{R}, T_{e}\right)$ is called approximate continuity $([1,6])$.

For an arbitrary function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all continuity points of f and by $D(f)$ the set $\mathbb{R} \backslash C(f)$.

In [5] it is proved that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is $T_{a e}$-continuous (i.e., continuous as a function from $\left(\mathbb{R}, T_{a e}\right)$ to $\left.\left(\mathbb{R}, T_{e}\right)\right)$ if and only if it is T_{d}-continuous (i.e., approximately continuous) everywhere and $\mu(D(f))=0$. In [2] the following property is investigated. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is strongly approximately quasicontinuous at a point $x\left(f \in s_{0}(x)\right)$ if for each positive real r and for each set $U \in T_{d}$ containing x there is an open interval I such that $\emptyset \neq I \cap U$ and $|f(t)-f(x)|<r$ for all points $t \in I \cap U$.

A function f has the property $\left(s_{0}\right)$, if $f \in s_{0}(x)$ for every point $x \in \mathbb{R}$.
For each function f having property $\left(s_{0}\right)$ the set $D(f)=\mathbb{R} \backslash C(f)$ is of Lebesgue measure 0 ([2]), but it may be dense in \mathbb{R}.

Each approximately continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is of the first Baire class ([1]).

In [4] the authors investigate the family $\Phi_{a p}$ of all nonempty sets A such that for every Baire 1 function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is an approximately continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \upharpoonright A=g \upharpoonright A$. They prove there that $A \in \Phi_{a p}$ if and only if $\mu(A)=0$.

In [3] I investigate the family $\Phi_{a e}$ of all nonempty sets A such that for every Baire 1 function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a $T_{a e}$-continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $f / A=g / A$. I show in this article that a nonempty set $A \in \Phi_{a e}$ if and only if $\mu(\operatorname{cl}(A))=0$, where $\operatorname{cl}(A)$ denotes the closure of the set A.

In this paper I investigated the family $\Phi_{s_{0}}$ of all nonempty sets A such that for every almost everywhere continuous bounded function $f: \mathbb{R} \rightarrow \mathbb{R}$ there is a bounded function $g: \mathbb{R} \rightarrow \mathbb{R}$ having the property $\left(s_{0}\right)$ such that $f \upharpoonright A=g \upharpoonright A$.

Theorem 1. If the set $A \in \Phi_{s_{0}}$ then

$$
\begin{equation*}
\text { for each point } x \in A \text { we have } D_{l}(\operatorname{cl}(A), x)<1 \tag{1}
\end{equation*}
$$

Proof. Assume that there is a point $x \in A$ such that the lower density $D_{l}(\operatorname{cl}(A), x)=1$. Then the bounded function $f(t)=0$ for $t \neq x$, and $f(x)=1$ is almost everywhere continuous, but for each extension $g: \mathbb{R} \rightarrow \mathbb{R}$ of the restricted function $f \upharpoonright A$ we obtain that g is not in $s_{0}(x)$. Of course, if $g: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f \upharpoonright A=g \upharpoonright A$ and $r=\frac{1}{3}$ then the set

$$
U=\left\{t \in \operatorname{cl}(A) ; D_{l}(\operatorname{cl}(A), t)=1\right\} \in T_{d} \text { and } U \ni x
$$

and for every open interval I with $I \cap U \neq \emptyset$ there is a point $t \in I \cap U \cap A$ such that $t \neq x$. So,

$$
|g(t)-g(x)|=|f(t)-f(x)|=|0-1|=1>\frac{1}{3}=r
$$

and consequently g is not in $s_{0}(x)$ and A is not in $\Phi_{s_{0}}$.
Theorem 2. If a nonempty set $A \subset \mathbb{R}$ satisfies the condition

$$
\text { for each point } x \in A \text { we have } D_{l}(\mathbb{R} \backslash \operatorname{cl}(A), x)>0
$$

then $A \in \Phi_{s_{0}}$.
Proof. Evidently the set A is nowhere dense. At first we suppose that A is a bounded set. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an almost everywhere continuous bounded function. Then the function

$$
h(x)= \begin{cases}f(x) & \text { for } x \in \operatorname{cl}(A) \\ \operatorname{linear} & \text { on the } \operatorname{components} \text { of }[\inf A, \sup A] \backslash \operatorname{cl}(A) \\ f(\sup A) & \text { for } x \geq \sup A \\ f(\inf A) & \text { for } x \leq \inf A\end{cases}
$$

is also bounded and almost everywhere continuous, $C(h) \supset \mathbb{R} \backslash \operatorname{cl}(A)$ and $f \upharpoonright A=h \upharpoonright A$. Since the function h is almost everywhere continuous, the set

$$
B=\left\{y ; \mu\left(\operatorname{cl}\left(h^{-1}(y)\right)\right)>0\right\}
$$

is at most countable. Let $c=\inf h(\mathbb{R})$ and $d=\sup h(\mathbb{R})$. There are nonempty finite sets

$$
B_{n}=\left\{y_{n, 1}, y_{n, 2}, \ldots, y_{n, j(n)}\right\} \subset \mathbb{R} \backslash B, n \geq 1
$$

such that $c=y_{n, 0}<y_{n, 1}<\cdots<y_{n, j(n)}<d$ for $n \geq 1, B_{n} \subset B_{n+1}$ for $n \geq 1$, $\left|y_{n, i+1}-y_{n, i}\right|<\frac{1}{2^{n}}$ for $n \geq 1$ and $i \leq j(n)$, where $y_{n, j(n)+1}=d+\frac{1}{8^{n}}$. Let

$$
\phi_{1}(x)=y_{1, i} \text { if } y_{1, i} \leq h(x)<y_{1, i+1} \text { for } i=0,1, \ldots, j(1) .
$$

Since h is almost everywhere continuous and $y_{1, i} \in \mathbb{R} \backslash B$ for $i \leq j(1)$, the function ϕ_{1} is almost everywhere continuous and the set $C\left(\phi_{1}\right)$ of all continuity points of the function ϕ_{1} is open and of full measure (i.e., $\mu\left(\mathbb{R} \backslash C\left(\phi_{1}\right)\right)=0$). Let $A_{1}=\mathbb{R} \backslash C\left(\phi_{1}\right)$. From the above it follows that $\mu\left(A_{1}\right)=0$ and A_{1} is closed.

Now we will construct some special family of pairwise disjoint closed intervals $L_{1, i, j} \subset(\mathbb{R} \backslash \operatorname{cl}(A)) \backslash A_{1}$. For this let $I_{1,1,1}, I_{1,1,2}, \ldots, I_{1,1, i(1,1)}$ be the open components of the set

$$
U_{1,1}=\bigcup_{x \in A_{1} \cap \operatorname{cl}(A)}(x-1, x+1)
$$

There are pairwise disjoint nondegenerate closed intervals

$$
L_{1,1,1}, \ldots, L_{1,1, k(1,1)} \subset\left(U_{1,1} \backslash \operatorname{cl}(A)\right) \backslash A_{1}
$$

such that for every positive integer $j \leq i(1,1)$

$$
\mu\left(I_{1,1, j} \cap \bigcup_{i \leq k(1,1)} L_{1,1, i}\right)>\frac{1}{2} \mu\left(I_{1,1, j} \backslash \operatorname{cl}(A)\right)
$$

In the second step put

$$
r_{1,2}=\frac{\inf \left\{|x-y| ; x \in A_{1} \cap \operatorname{cl}(A), y \in \bigcup_{i \leq k(1,1)} L_{1,1, i}\right\}}{2}
$$

and denote by $I_{1,2,1}, I_{1,2,2}, \ldots, I_{1,2, i(1,2)}$ the components of the set

$$
U_{1,2}=\bigcup_{x \in A_{1} \cap \operatorname{cl}(A)}\left(x-r_{1,2}, x+r_{1,2}\right)
$$

Next we find pairwise disjoint nondegenerate closed intervals

$$
L_{1,2,1}, \ldots, L_{1,2, k(1,2)} \subset\left(U_{1,2} \backslash \operatorname{cl}(A)\right) \backslash A_{1}
$$

such that for every positive integer $j \leq i(1,2)$

$$
\mu\left(I_{1,2, j} \cap \bigcup_{i \leq k(1,2)} L_{1,2, i}\right)>\left(1-\frac{1}{2^{2}}\right) \mu\left(I_{1,2, j} \backslash \operatorname{cl}(A)\right)
$$

In general in the $n^{t h}$ step $(n>2)$ we define the positive real

$$
r_{1, n}=\frac{\inf \left\{|x-y| ; x \in A_{1} \cap \operatorname{cl}(A), y \in \bigcup_{i \leq k(1, n-1)} L_{1, n-1, i}\right\}}{2}
$$

and denote by $I_{1, n, 1}, I_{1, n, 2}, \ldots, I_{1, n, i(1, n)}$ the components of the set

$$
U_{1, n}=\bigcup_{x \in A_{1} \cap \operatorname{cl}(A)}\left(x-r_{1, n}, x+r_{1, n}\right)
$$

Next we find pairwise disjoint nondegenerate closed intervals

$$
L_{1, n, 1}, \ldots, L_{1, n, k(1, n)} \subset\left(U_{1, n} \backslash \operatorname{cl}(A)\right) \backslash A_{1}
$$

such that for each positive integer $j \leq i(1, n)$

$$
\begin{equation*}
\mu\left(I_{1, n, j} \cap \bigcup_{i \leq k(1, n)} L_{1, n, i}\right)>\left(1-\frac{1}{2^{n}}\right) \mu\left(I_{1, n, j} \backslash \operatorname{cl}(A)\right) \tag{2}
\end{equation*}
$$

Let $\{N(s, i)\}_{s, i=1}^{\infty}$ be a family of pairwise disjoint infinite subsets of positive integers. Observe that by (2) for each point $x \in A \cap A_{1}$ and for each pair (s, i) of positive integers we have

$$
\begin{equation*}
D_{u}\left(\bigcup_{n \in N(s, i)} \bigcup_{m \leq k(1, n)} L_{1, n, m}, x\right) \geq D_{l}(\mathbb{R} \backslash \operatorname{cl}(A), x)>0 \tag{3}
\end{equation*}
$$

Let $f_{1}(x)=y_{1, s}$ for $x \in L_{1, n, m}$, where $n \in N(s, i), s \leq j(1), m \leq$ $k(1, n), i=1,2, \ldots$ For $x \in A_{1} \backslash \operatorname{cl}(A)$ such that $D_{u}\left(\left\{\left(\phi_{1}\right)^{-1}\left(\phi_{1}(x)\right), x\right)=0\right.$ and $\phi_{1}(x)=y_{1, k}$ we put $f_{1}(x)=y_{1, k-1}$ and let $f_{1}(x)=\phi_{1}(x)$ otherwise on \mathbb{R}. If $x \in A_{1} \cap A$ and $f_{1}(x)=y_{1, m_{1}}$, then by (3) we have

$$
D_{u}\left(\operatorname{int}\left(\left(f_{1}\right)^{-1}\left(f_{1}(x)\right)\right), x\right) \geq D_{u}\left(\bigcup_{i=1}^{\infty} \bigcup_{n \in N_{m_{1}, i}} \bigcup_{m \leq k(1, n)} L_{1, n, m}, x\right)>0
$$

and consequently $f_{1} \in s_{0}(x)$. If $x \in A_{1} \backslash \operatorname{cl}(A)$, then by construction $f_{1} \in s_{0}(x)$. If $x \in\left(\mathbb{R} \backslash\left(A_{1} \cap \operatorname{cl}(A)\right)\right) \backslash A_{1}$, then f_{1} is continuous or unilaterally continuous and consequently $f_{1} \in s_{0}(x)$.

Now let $x \in\left(A_{1} \cap \operatorname{cl}(A)\right) \backslash A$. Observe that $\mu\left(\mathbb{R} \backslash \operatorname{int}\left(C\left(f_{1}\right)\right)\right)=0$ and $f_{1}(\mathbb{R})=\left\{y_{1,0}, y_{1,1}, \ldots, y_{1, j(1)}\right\}$. Since $D_{l}\left(\operatorname{int}\left(C\left(f_{1}\right)\right), x\right)=1$, there is an integer $m_{2}(x) \in[0, j(1)]$ such that $D_{u}\left(\operatorname{int}\left(\left(f_{1}\right)^{-1}\left(y_{1, m_{2}(x)}\right)\right), x\right)>0$. So we fix such an $m_{2}(x)$ and putting

$$
g_{1}(x)= \begin{cases}y_{1, m_{2}(x)} & \text { for } x \in\left(\operatorname{cl}(A) \cap A_{1}\right) \backslash A \\ f_{1}(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

we obtain a function g_{1} having the property $\left(s_{0}\right)$ such that $\left|h(x)-g_{1}(x)\right|<\frac{1}{2}$ for $x \in A$.

Now we will construct a function g_{2} having property $\left(s_{0}\right)$ and such that

$$
\left|g_{2}-g_{1}\right|<\frac{1}{2} \text { and }\left|g_{2}(x)-h(x)\right|<\frac{1}{2^{2}} \text { for } x \in A
$$

Let

$$
\phi_{2}(x)=y_{2, i} \text { if } y_{2, i} \leq h(x)<y_{2, i+1} \text { for } i=0,1, \ldots, j(2)
$$

Since h is almost everywhere continuous and $y_{2, i} \in \mathbb{R} \backslash B$ for $i \leq j(2)$, the function ϕ_{2} is almost everywhere continuous and the set $C\left(\phi_{2}\right)$ of all continuity points of the function ϕ_{2} is open and of full measure. Let $A_{2}=\mathbb{R} \backslash C\left(\phi_{2}\right)$. From the above it follows that $\mu\left(A_{2}\right)=0$. Since $B_{2} \supset B_{1}$, the inclusion $A_{1} \subset A_{2}$ holds.

Now we will construct some special family of pairwise disjoint closed intervals

$$
L_{2, i, j} \subset\left(\mathbb{R} \backslash \operatorname{cl}\left(A \cup A_{2}\right)\right) \backslash \bigcup_{n=1}^{\infty} \bigcup_{m \leq k(1, n)} L_{1, n, m}
$$

For this let $I_{2,1,1}, I_{2,1,2}, \ldots, I_{2,1, i(2,1)}$ be the open components of the set

$$
U_{2,1}=\bigcup_{x \in A_{2} \cap \operatorname{cl}(A)}(x-1, x+1)
$$

There are pairwise disjoint nondegenerate closed intervals

$$
L_{2,1,1}, \ldots, L_{2,1, k(2,1)} \subset\left(\left(U_{2,1} \backslash \operatorname{cl}(A)\right) \backslash A_{2}\right) \backslash \bigcup_{n=1}^{\infty} \bigcup_{i \leq k(1, n)} L_{1, n, i}
$$

such that for every positive integer $j \leq i(2,1)$

$$
\mu\left(I_{2,1, j} \cap \bigcup_{i \leq k(2,1)} L_{2,1, i}\right)>\frac{1}{2} \mu\left(\left(I_{2,1, j} \backslash \operatorname{cl}(A)\right) \backslash \bigcup_{n=1}^{\infty} \bigcup_{m \leq k(1, n)} L_{1, n, m}\right)
$$

In the second step put

$$
r_{2,2}=\frac{\inf \left\{|x-y| ; x \in A_{2} \cap \operatorname{cl}(A), y \in \bigcup_{i \leq k(2,1)} L_{2,1, i}\right\}}{2}
$$

and denote by $I_{2,2,1}, I_{2,2,2}, \ldots, I_{2,2, i(2,2)}$ the components of the set

$$
U_{2,2}=\bigcup_{x \in A_{2} \cap \operatorname{cl}(A)}\left(x-r_{2,2}, x+r_{2,2}\right)
$$

Next we find pairwise disjoint nondegenerate closed intervals

$$
L_{2,2,1}, \ldots, L_{2,2, k(2,2)} \subset\left(\left(U_{2} \backslash \operatorname{cl}(A)\right) \backslash A_{2}\right) \backslash \bigcup_{n=1}^{\infty} \bigcup_{m \leq k(1, n)} L_{1, n, m}
$$

such that for every positive integer $j \leq i(2,2)$

$$
\mu\left(I_{2,2, j} \cap \bigcup_{i \leq k(2,2)} L_{2,2, i}\right)>\left(1-\frac{1}{2^{2}}\right) \mu\left(\left(I_{2,2, j} \backslash \operatorname{cl}(A)\right) \backslash \bigcup_{n=1}^{\infty} \bigcup_{m \leq k(1, n)} L_{1, n, m}\right)
$$

In general in the $n^{t h}$ step $(n>2)$ we define the positive real

$$
r_{2, n}=\frac{\inf \left\{|x-y| ; x \in A_{2} \cap \operatorname{cl}(A), y \in \bigcup_{i \leq k(2, n-1)} L_{2, n-1, i}\right\}}{2},
$$

and denote by $I_{2, n, 1}, I_{2, n, 2}, \ldots, I_{2, n, i(2, n)}$ the components of the set

$$
U_{2, n}=\bigcup_{x \in A_{2} \operatorname{\cap cl}(A)}\left(x-r_{2, n}, x+r_{2, n}\right)
$$

Next we find pairwise disjoint nondegenerate closed intervals

$$
L_{2, n, 1}, \ldots, L_{2, n, k(2, n)} \subset\left(\left(U_{n} \backslash \operatorname{cl}(A)\right) \backslash A_{2}\right) \backslash \bigcup_{s=1}^{\infty} \bigcup_{m \leq k(1, s)} L_{1, s, m}
$$

such that for each positive integer $j \leq i(2, n)$

$$
\begin{equation*}
\mu\left(I_{2, n, j} \cap \bigcup_{i \leq k(2, n)} L_{2, n, i}\right)>\left(1-\frac{1}{2^{n}}\right) \mu\left(\left(I_{2, n, j} \backslash \operatorname{cl}(A)\right) \backslash \bigcup_{s=1}^{\infty} \bigcup_{m \leq k(1, s)} L_{1, s, m}\right) \tag{4}
\end{equation*}
$$

Observe that by (4) for each point $x \in A \cap\left(A_{2} \backslash A_{1}\right)$ and for each pair (s, i) of positive integers we have

$$
\begin{equation*}
D_{u}\left(\bigcup_{n \in N_{s, i}} \bigcup_{m \leq k(2, n)} L_{2, n, m}, x\right) \geq D_{l}(\mathbb{R} \backslash \operatorname{cl}(A), x)>0 \tag{5}
\end{equation*}
$$

Now we will define the function g_{2}. For $k=0,1, \ldots, j(1)$ denote by
$y_{1, k}=y_{2, s(k)}<y_{2, s(k)+1}<y_{2, s(k)+2}<\cdots<y_{2, s(k)+t(k)}<y_{2, s(k)+t(k)+1}=y_{1, k+1}$ all numbers of the set $B_{2} \cap\left[y_{1, k}, y_{1, k+1}\right]$. For $k \leq j(1)$ and $i \geq 1$ let $\{N(k, i, j)\}_{j=1}^{\infty}$ be a family of pairwise disjoint infinite subsets of integers such that $N(k, i)=$ $\bigcup_{j=1}^{\infty} N(k, i, j)$. For $x \in L_{1, p, m}$, where $p \in N(k, i, j), s(k) \leq i \leq s(k)+t(k)$ and $j \geq 1$, we put $g_{2}(x)=y_{2, i}$. Observe that for such points x we have

$$
\left|g_{2}(x)-g_{1}(x)\right|<y_{1, k+1}-y_{1, k}<\frac{1}{2}
$$

If

$$
L_{2, n, m} \subset\left(g_{1}\right)^{-1}\left(y_{1, k}\right) \text { and } n \in N(k, s(k)+i),
$$

where $0 \leq i \leq t(k)$ and $m \leq k(n)$, then we put $g_{2}(x)=y_{2, s(k)+i}$ for $x \in L_{2, n, m}$. As above we observe that for such points x we obtain

$$
\left|g_{2}(x)-g_{1}(x)\right|<y_{1, k+1}-y_{1, k}<\frac{1}{2} .
$$

In the other points of the set $\mathbb{R} \backslash A_{2}$ we put $g_{2}(x)=g_{1}(x)$. If $x \in A_{2} \cap A$, then we put $g_{2}(x)=\phi_{2}(x)$.

Now let $x \in A_{2} \backslash A$ and let $g_{1}(x)=y_{1, k}$. Then

$$
D_{u}\left(\left(\operatorname{int}\left(\left(g_{1}\right)^{-1}\left(y_{1, k}\right)\right), x\right)>0,\right.
$$

and consequently there is an integer $i \geq 0(i \leq t(k))$ such that

$$
D_{u}\left(\operatorname{int}\left(\left(g_{2}\right)^{-1}\left(y_{2, s(k)+i}\right)\right), x\right)>0 .
$$

So we fix such an i and put $g_{2}(x)=y_{2, s(k)+i}$. As above for such points x we obtain $\left|g_{2}(x)-g_{1}(x)\right|<\frac{1}{2}$. The function g_{2} is continuous or unilaterally continuous at points $x \in \mathbb{R} \backslash A_{2}$; so it has the property $\left(s_{0}\right)$ at these points. If $x \in A_{2} \cap A$, then by (5) and the construction of g_{2} we have

$$
D_{u}\left(\operatorname{int}\left(\left(g_{2}\right)^{-1}\left(g_{2}(x)\right)\right), x\right)>0,
$$

and consequently the function g_{2} has the property $\left(s_{0}\right)$ at x. Analogously from the construction of g_{2} it follows that the function g_{2} has the property $\left(s_{0}\right)$ at points $x \in A_{2} \backslash A$. So g_{2} has the property $\left(s_{0}\right)$ everywhere. Moreover

$$
\left|g_{2}-g_{1}\right|<\frac{1}{2} \text { and }\left|g_{2}(x)-h(x)\right|=\left|\phi_{2}(x)-h(x)\right|<\frac{1}{2^{2}} \text { for } x \in A .
$$

Analogously, in the $n^{\text {th }}$ step $(n>2)$ we define a function g_{n} having the property (s_{0}) such that $\left|g_{n-1}-g_{n}\right|<\frac{1}{2^{n-1}}$ and $\left|g_{n}(x)-h(x)\right|<\frac{1}{2^{n}}$ for $x \in A$. The sequence $\left(g_{n}\right)_{n}$ uniformly converges to a bounded function g, which has the property $\left(s_{0}\right)$ (as the uniform limit of a sequence of functions having this property [2]). For $x \in A$ we have $g(x)=\lim _{n \rightarrow \infty} g_{n}(x)=h(x)$.

Now we consider the general case, where the set A may be unbounded. Then there are points

$$
x_{0}, x_{-1}, x_{1}, x_{-2}, x_{2}, \ldots \in \mathbb{R} \backslash \operatorname{cl}(A)
$$

such that

$$
x_{k+1}>x_{k} \text { for } k=0,-1,1,-2,2, \ldots,
$$

$$
\lim _{k \rightarrow-\infty} x_{k}=-\infty, \quad \lim _{k \rightarrow \infty} x_{k}=\infty
$$

If $E_{k}=\left(x_{k-1}, x_{k}\right) \cap A \neq \emptyset$ then by the proved part of our theorem there is a bounded function $f_{k}: \mathbb{R} \rightarrow[c, d]$ having the property $\left(s_{0}\right)$ such that $h(x)=f_{k}(x)$ for $x \in E_{k}$. Let

$$
g(x)= \begin{cases}f_{k}(x) & \text { if } E_{k} \neq \emptyset \text { and } x \in\left(x_{k-1}, x_{k}\right) \\ h(x) & \text { otherwise on } \mathbb{R}\end{cases}
$$

Then the bounded function g has property $\left(s_{0}\right)$ and $g \upharpoonright A=h \upharpoonright A=f \upharpoonright A$.
Problem. Is the following implication true?

$$
A \text { satisfies condition }(1) \Longrightarrow A \in \Phi_{s_{0}}
$$

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[2] Z. Grande, On some special notions of approximate quasi-continuity, Real Anal. Exch., 24 (1998-99), 171-184.
[3] Z. Grande, Sur le prolongement des fonctions, Acta Math. Acad. Sci. Hungar., 34 (1979), 43-45.
[4] M. Laczkovich, G. Petruska, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar., 25 (1974), 189212.
[5] R. J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math., 72 (1977), 207-222.
[6] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.

[^0]: Key Words: Density topology, condition (s_{0}), extension, continuity
 Mathematical Reviews subject classification: 26A05, 26A15
 Received by the editors July 30, 2002
 Communicated by: B. S. Thomson

