REARRANGEMENTS OF TRIGONOMETRIC SERIES AND TRIGONOMETRIC POLYNOMIALS

Abstract

The paper is related to the following question of P. L. Ul'yanov. Is it true that for any 2π-periodic continuous function f there is a uniformly convergent rearrangement of its trigonometric Fourier series? In particular, we give an affirmative answer if the absolute values of Fourier coefficients of f decrease. Also, we study how to choose m terms of a trigonometric polynomial of degree n to make the uniform norm of their sum as small as possible.

1 Introduction

P. L. Ul'yanov [Ul] raised the following question. Is it true that for any $2 \pi-$ periodic continuous function f there is a uniformly convergent rearrangement of its trigonometric Fourier series? The problem is still open.

Let $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}, C(\mathbb{T})$ be the space of all continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$, $\|f\|$ be the uniform norm of $f \in C(\mathbb{T})$. We associate with every function $f \in C(\mathbb{T})$ its Fourier series in complex form

$$
f \sim \sum_{k \in \mathbb{Z}} c_{k} e^{i k x}
$$

and in real form

$$
f \sim \sum_{k=0}^{\infty} A_{k}(x), A_{k}(x)=d_{k} \cos \left(k x+\phi_{k}\right)
$$

[^0]Observe that $A_{k}(x)=c_{k} e^{i k x}+c_{-k} e^{-i k x}$. It is easy to see that if Ul'yanov's conjecture is true for the series in a real form (that is, there is a permutation σ of \mathbb{N} such that $\left\|f-d_{0}-\sum_{k=1}^{n} A_{\sigma(k)}\right\| \rightarrow 0$ as $\left.n \rightarrow \infty\right)$, then it is also true for the series in complex form because for $n \rightarrow \infty$

$$
\left\|f-d_{0}-\sum_{k=1}^{n}\left(c_{\sigma(k)} e^{i \sigma(k) x}+c_{-\sigma(k)} e^{-i \sigma(k) x}\right)\right\| \rightarrow 0
$$

Sz.Gy. Révész[R, R2] proved that for any $f \in C(\mathbb{T})$ there is a rearrangement of its trigonometric Fourier series such that some subsequence of the sequence of partial sums of the rearranged series converges to f uniformly. Due to this result, Ul'yanov's conjecture is equivalent to the following. There is an absolute constant $C>0$ such that for any trigonometric polynomial (with a zero constant term) $\sum_{k=1}^{n} A_{k}(x)$ there is a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that for $m=1, \ldots, n$

$$
\left\|\sum_{k=1}^{m} A_{\sigma(k)}(x)\right\| \leq C\left\|\sum_{k=1}^{n} A_{k}(x)\right\| .
$$

It is known that

$$
\left\|\sum_{k=1}^{m} A_{k}(x)\right\| \leq C \log (n+1)\left\|\sum_{k=1}^{n} A_{k}(x)\right\|
$$

(see [Z][chapter 2, §12]). Let

$$
\omega(f, \delta)=\sup _{\substack{x, y \in \mathbb{T} \\|x-y| \leq \delta}}|f(x)-f(y)|
$$

be the modulus of continuity of f. By the Dini-Lipschitz theorem [Z] [chapter 2, §10], if $\omega(f, \delta)=o(1 / \log 1 / \delta)$ as $\delta \rightarrow 0$, then the Fourier series of f converges to f uniformly. Moreover, the condition on $\omega(f, \delta)$ is sharp and cannot be replaced by $\omega(f, \delta)=O(1 / \log 1 / \delta)[\mathrm{Z}]$ [chapter $8, \S 2]$.

The author $[\mathrm{K}, \mathrm{K} 2]$ proved the following results.
Theorem 1. For any trigonometric polynomial $\sum_{k=1}^{n} A_{k}(x)$ there is a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that for $m=1, \ldots, n$

$$
\left\|\sum_{k=1}^{m} A_{\sigma(k)}(x)\right\| \leq C \log \log (n+2)\left\|\sum_{k=1}^{n} A_{k}(x)\right\|
$$

Theorem 2. Let $f \in C(\mathbb{T})$ and $\omega(f, \delta)=o(1 / \log \log 1 / \delta)$ as $\delta \rightarrow 0$. Then there is a permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\left\|f-d_{0}-\sum_{k=1}^{n} A_{\sigma(k)}(x)\right\| \rightarrow 0(n \rightarrow \infty)
$$

Theorem 2 follows from Theorem 1 by using Theorem 5 from $[R]$.
To approach Ul'yanov's conjecture, one can try to prove that there is an absolute constant $C>0$ such that for any trigonometric polynomial (with a zero constant term) $\sum_{k=1}^{n} A_{k}(x)$ and for any $m \leq n$ there is an injection $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that

$$
\left\|\sum_{k=1}^{m} A_{\sigma(k)}(x)\right\| \leq C\left\|\sum_{k=1}^{n} A_{k}(x)\right\|
$$

I cannot prove this either.
Theorem 3. For any trigonometric polynomial $\sum_{k=1}^{n} A_{k}(x)$ and for any $m \leq$ n there is a set $K \subset\{1, \ldots, n\}$ such that $|K|=m$ and

$$
\left\|\sum_{k \in K} A_{k}(x)\right\| \leq C \log \log \log (n+20)\left\|\sum_{k=1}^{n} A_{k}(x)\right\|
$$

Theorem 4. Let $f \in C(\mathbb{T})$,

$$
f \sim \sum_{k=0}^{\infty} A_{k}(x), A_{k}(x)=d_{k} \cos \left(k x+\phi_{k}\right)
$$

and $d_{k}=O\left(k^{-1 / 2}\right)$. Then there is a permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\left\|f-d_{0}-\sum_{k=1}^{n} A_{\sigma(k)}(x)\right\| \rightarrow 0 \quad(n \rightarrow \infty)
$$

In particular, Theorem 4 works if the sequence $\left\{\left|d_{k}\right|\right\}$ is nonincreasing. Note that, by a theorem of Salem [S], there exists an even continuous function such that its Fourier series diverges at $x=0$ and the sequence $\left\{\left|d_{k}\right|\right\}$ is nonincreasing,

By $C, C^{\prime}, C_{1}, C_{2}, \ldots$ we denote positive constants. Let $[u]$ and $\{u\}$ be the integer and the fractional part of the real number u, respectively.

2 Proof of Theorem 3

Let $n \in \mathbb{N}, T$ be a trigonometric polynomial,

$$
T(x)=\sum_{k=1}^{n} A_{k}(x)=\sum_{k=1}^{n} d_{k} \cos \left(k x+\phi_{k}\right)
$$

We use the following lemmas from [K2].
Lemma 1. Let $\|T\| \leq 1, l \in \mathbb{N}, j \in \mathbb{Z}, K_{l, j}=\{k: 1 \leq k \leq n, k \equiv$ $\pm j(\bmod l)\}$. Then

$$
\left\|\sum_{k \in K_{l, j}} A_{k}\right\| \leq 2
$$

Lemma 2. Let $\|T\| \leq 1$. Then there exists an odd prime $p \leq 2 \log ^{3}(n+3)$ such that

$$
\begin{equation*}
\sum_{\substack{k_{1} \neq k_{2} \\ c_{1} \equiv k_{2}(\bmod p)}}\left|d_{k_{1}}\right|^{2}\left|d_{k_{2}}\right|^{2} \leq \frac{C_{1}}{\log ^{2}(n+1)} \tag{1}
\end{equation*}
$$

Lemma 3. Let p be a prime satisfying (1), $j \in \mathbb{Z}, K_{p, j}=\{k: 1 \leq k \leq n, k \equiv$ $\pm j(\bmod p)\}, N_{j}=\left|K_{p, j}\right|$. Then there exists a bijection $\tau:\left\{1, \ldots, N_{j}\right\} \rightarrow$ $K_{p, j}$ such that for any $m=1, \ldots, N_{j}$ the inequality

$$
\left\|\sum_{j=1}^{m} A_{\tau(j)}\right\| \leq C_{2}(1+\|T\|)
$$

holds.
In the proof of Theorem 3 we assume that n is sufficiently large and $\|T\| \leq$ 1. We can also assume that $m \leq n / 2$; otherwise we can take the complement to a set constructed for $n-m<n / 2$ instead of m. Also, it is sufficient to construct a set $K^{\prime} \subset\{1, \ldots, n\}$ such that $\left|K^{\prime}\right|=m^{\prime}$ for some $m^{\prime} \leq m$, $m-m^{\prime} \leq 0.2 n / \log ^{3} n$, and

$$
\left\|\sum_{k \in K^{\prime}} A_{k}(x)\right\| \leq C^{\prime} \log \log \log n
$$

Indeed, take an odd prime $p \leq 2 \log ^{3}(n+3)$ satisfying Lemma 2. Define the sets $K_{p, j}$ as in Lemma 3. Since $\left|K^{\prime}\right| \leq n / 2$, we can find j so that

$$
\left|K_{p, j} \backslash K^{\prime}\right| \geq\left(n-\left|K^{\prime}\right|\right) / p \geq n /\left(4 \log ^{3}(n+3)\right) \geq 0.2 n / \log ^{3} n
$$

provided that $n \geq 20$. Applying Lemma 3 to the polynomial

$$
\sum_{k \in\{1, \ldots, n\} \backslash K^{\prime}} A_{k}
$$

we can define the set K as $K^{\prime} \cup\{\tau(1), \ldots, \tau(m)\}$ where m is such that

$$
\{\tau(1), \ldots, \tau(m)\} \backslash K^{\prime}=m-m^{\prime}
$$

By the above arguments we can assume that $m>0.2 n / \log ^{3} n$; otherwise, we take $m^{\prime}=0$ and $K^{\prime}=\emptyset$.

We shall use the following known fact.
Lemma 4. For any real $\alpha \in(0,1]$ there exist positive integers l_{1}, l_{2}, \ldots, such that for any positive integer s

$$
\begin{equation*}
0<\alpha-\sum_{j=1}^{s} \frac{1}{l_{j}} \leq 2^{-2^{s-1}} \tag{2}
\end{equation*}
$$

Proof. We construct l_{s} inductively by

$$
l_{s}=\min \left\{l: \alpha-\sum_{j=1}^{s-1} \frac{1}{l_{j}}-\frac{1}{l}>0\right\}
$$

The inequalities (2) can be checked by induction on s. The proof of the first inequality is straightforward. The induction base for the second inequality holds: $\alpha-1 / l_{1} \leq 1 / 2$.

By the induction supposition (2), we have $l_{s+1}-1 \geq 2^{2^{s-1}}$. Also, by the definition of $l_{s+1}, \alpha-\sum_{j=1}^{s} \frac{1}{l_{j}}-\frac{1}{l_{s+1}-1} \leq 0$. Therefore,

$$
\alpha-\sum_{j=1}^{s+1} \frac{1}{l_{j}} \leq \frac{1}{l_{s+1}-1}-\frac{1}{l_{s+1}}<\frac{1}{\left(l_{s+1}-1\right)^{2}} \leq 2^{-2^{s}}
$$

and (2) is established for $s+1$. Lemma 4 is proved.
Take $s=[2 \log \log \log n]$. Note that for sufficiently large n we have

$$
\begin{equation*}
2^{-2^{s-1}} \leq 0.05 / \log ^{3} n \tag{3}
\end{equation*}
$$

One can try to define the numbers l_{1}, \ldots, l_{s} by Lemma 3 with α close to m / n and to take, for example,

$$
K^{\prime}=\bigcup_{j=1}^{s} K_{j}, \quad K_{j}=\left\{k \equiv \pm 1\left(\bmod 2 l_{j}\right)\right\}
$$

By Lemma 1,

$$
\left\|\sum_{k \in K_{j}} A_{k}\right\| \leq 2
$$

and $\sum_{j}\left|K_{j}\right|$ is close to m. However, the sets K_{j} might have common points, and in general we cannot give good estimates for $\left\|\sum_{k \in K^{\prime}} A_{k}\right\|$ and for $\left|K^{\prime}\right|$. We show how to correct the construction.

Let $l_{0}=[5 \log \log \log n], \gamma=l_{0} m / n-0.1 / \log ^{3} n, g=[\gamma], \alpha=\{\gamma\}$. Note that $g \geq 0$. Because of our supposition $m>0.2 n / \log ^{3} n$. Take the numbers l_{1}, \ldots, l_{s} in accordance with Lemma 4 and define

$$
K^{\prime}=\bigcup_{j=1}^{g} K_{j} \cup \bigcup_{j=1}^{s} K_{j}^{\prime}
$$

where $K_{j}=\left\{k \equiv \pm j\left(\bmod 2 l_{0}\right)\right\}, K_{j}^{\prime}=\left\{k \pm(g+j) \equiv 0\left(\bmod 2 l_{0} l_{j}\right)\right\}$. Note that the residues classes $\pm j\left(\bmod 2 l_{0}\right)(j=1, \ldots, g+s)$, are all distinct since $g+s \leq l_{0} / 2+s<l_{0}-1$. Therefore, the sets K_{j}, K_{j}^{\prime} are pairwise disjoint. Further, by Lemma 1,

$$
\left\|\sum_{k \in K_{j}} A_{k}\right\| \leq 2,\left\|\sum_{k \in K_{j}^{\prime}} A_{k}\right\| \leq 2 .
$$

Hence,

$$
\left\|\sum_{k \in K^{\prime}} A_{k}\right\| \leq 2(g+s) \leq 10 \log \log \log n
$$

Also, it is not difficult to check that

$$
\left|\left|K_{j}\right|-n / l_{0}\right| \leq 1,\left|\left|K_{j}^{\prime}\right|-n /\left(l_{0} l_{j}\right)\right| \leq 1
$$

Therefore,

$$
\left|K^{\prime}\right|=n g / l_{0}+\sum_{j=1}^{s} n /\left(l_{0} l_{j}\right)+O(\log \log \log n)
$$

Taking (2) and (3) into account, we get

$$
\begin{aligned}
& n g / l_{0}+\sum_{j=1}^{s} n /\left(l_{0} l_{j}\right) \leq m-0.1 n / \log ^{3} n \\
& n g / l_{0}+\sum_{j=1}^{s} n /\left(l_{0} l_{j}\right) \geq m-0.1 n / \log ^{3} n-0.05 n / \log ^{3} n
\end{aligned}
$$

Combining three last inequalities, we obtain

$$
m \geq\left|K^{\prime}\right| \geq m-0.2 n / \log ^{3} n
$$

as required. This completes the proof of Theorem 3.

3 Spencer's Theorem and Its Corollaries

Let u be a vector $u=\left(u^{1}, \ldots, u^{n}\right) \in \mathbb{R}^{n}$ and let $|u|_{\infty}=\max _{k}\left|u^{k}\right|$. J. Spencer [Sp] actually proved the following theorem.

Theorem A. Let $r \leq n$ be a positive integer, $u_{j} \in \mathbb{R}^{n},\left|u_{j}\right|_{\infty} \leq 1$. Then for some choice of signs

$$
\left| \pm u_{1} \pm \cdots \pm u_{r}\right|_{\infty} \leq C_{3}(r \log (2 n / r))^{1 / 2}
$$

Corollary 1. Let $r \leq n$ be positive integers and $K \subset\{1, \ldots, n\},|K|=r$. Consider a trigonometric polynomial

$$
\sum_{k \in K} A_{k}(x), A_{k}(x)=d_{k} \cos \left(k x+\phi_{k}\right)
$$

Then there are sets $K_{+} \subset K$ and $K_{-} \subset K$ such that

$$
\begin{equation*}
K_{+} \cup K_{-}=K, K_{+} \cap K_{-}=\emptyset,\left|K_{+}\right|=[|K| / 2] \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{k \in K_{+}} A_{k}-\sum_{k \in K_{-}} A_{k}\right\| \leq C_{4}(r \log (2 n / r))^{1 / 2} \max _{k \in K}\left|d_{k}\right| \tag{5}
\end{equation*}
$$

Proof. Let $d=\max _{k \in K}\left|d_{k}\right|$. We apply Theorem A to the vectors $u_{k} \in$ $\mathbb{R}^{20 n+1}, k \in K$, defined as

$$
u_{k}=\left(\Re\left(A_{k}(\pi l /(5 n)) / d\right)_{l=0, \ldots, 10 n-1}, \Im\left(A_{k}(\pi l /(5 n)) / d\right)_{l=0, \ldots, 10 n-1}, 1\right)
$$

Then there exist numbers $\sigma_{k}= \pm 1(k \in K)$ such that

$$
\begin{equation*}
\left\|\sum_{k \in K} \sigma_{k} A_{k}\right\| \leq 3 \sqrt{2} C_{3}(r \log ((40 n+2) / r))^{1 / 2} d \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{k \in K} \sigma_{k}\right| \leq C_{3}(r \log ((40 n+2) / r))^{1 / 2} \tag{7}
\end{equation*}
$$

For the proof of (6) we use that for any trigonometric polynomial T of order n

$$
\|T\| \leq 3 \max _{l=0, \ldots, 10 n-1}|T(\pi l /(5 n))|
$$

(see, for example, $[\mathrm{Kl}]$). Without loss of generality we can assume that $\sum_{k \in K} \sigma_{k} \leq 0$. Take $K_{+}^{\prime}=\left\{k \in K: \sigma_{k}=1\right\}, K_{-}^{\prime}=\left\{k \in K: \sigma_{k}=-1\right\}$. We have

$$
2\left|K_{+}^{\prime}\right|=|K|+\sum_{k \in K} \sigma_{k} \leq 2[|K| / 2]
$$

Take an arbitrary set $K_{1} \subset K_{-}^{\prime}$ such that $\left|K_{1}\right|=[|K| / 2]-\left|K_{+}^{\prime}\right| . \quad$ By (7), $\left|K_{1}\right| \leq C_{3}(r \log ((40 n+2) / r))^{1 / 2} / 2$. Hence,

$$
\begin{equation*}
\left\|\sum_{k \in K_{1}} A_{k}\right\| \leq C_{3}(r \log ((40 n+2) / r))^{1 / 2} d / 2 \tag{8}
\end{equation*}
$$

Denote $K_{+}=K_{+}^{\prime} \cup K_{1}, K_{-}=K_{-}^{\prime} \backslash K_{1}$. The conditions (4) are satisfied. By (6) and (8) we get

$$
\left\|\sum_{k \in K_{+}} A_{k}-\sum_{k \in K_{-}} A_{k}\right\| \leq 6 C_{3}(r \log ((40 n+2) / r))^{1 / 2} d
$$

Therefore, (5) also holds, and Corollary 1 is proved.
Corollary 2. Let $r \leq n$ be positive integers and $K \subset\{1, \ldots, n\},|K|=r$. Consider a trigonometric polynomial

$$
\sum_{k \in K} \alpha_{k} A_{k}(x), A_{k}(x)=d_{k} \cos \left(k x+\phi_{k}\right)
$$

where α_{k} are real numbers. Then there are numbers $\beta_{k} \in\left\{\left[\alpha_{k}\right],\left[\alpha_{k}\right]+1\right\}$ such that

$$
\left\|\sum_{k \in K} \alpha_{k} A_{k}-\sum_{k \in K} \beta_{k} A_{k}\right\| \leq C_{4}(r \log (2 n / r))^{1 / 2} \max _{k \in K}\left|d_{k}\right|
$$

In fact, the deduction of Corollary 2 from Corollary 1 is exhibited in [Kl].
Corollary 3. Let r, n be positive integers, $r \leq n / 5$ and $K \subset\{1, \ldots, n\}$, $|K|=r$. Consider a trigonometric polynomial

$$
\sum_{k \in K} A_{k}(x), A_{k}(x)=d_{k} \cos \left(k x+\phi_{k}\right)
$$

Then there exists a bijection $\sigma:\{1, \ldots, r\} \rightarrow K$ such that for any $m=1, \ldots, r$ the inequality

$$
\begin{equation*}
\left\|\sum_{j=1}^{m} A_{\sigma(j)}-\frac{m}{r} \sum_{k \in K} A_{k}\right\| \leq\left(4 C_{4}+4\right)(r \log (2 n / r))^{1 / 2} \max _{k \in K}\left|d_{k}\right| \tag{9}
\end{equation*}
$$

holds.
Proof. Let $d=\max _{k \in K}\left|d_{k}\right|$. We fix n and use induction on r. If $r \leq 8$ then we take an arbitrary bijection σ. For any $m \leq r$ we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{m} A_{\sigma(j)}-\frac{m}{r} \sum_{k \in K} A_{k}\right\| & \leq m d+\frac{m}{r}(r d) \leq 2 m d \\
& \leq 2 r d=(2 r)^{1 / 2}(2 r)^{1 / 2} d \leq 4(r \log (2 n / r))^{1 / 2} d
\end{aligned}
$$

and (9) holds. Let us assume that $9 \leq r \leq n / 5$ and that the statement of the corollary is satisfied for all $r^{\prime}<r$.

By Corollary 1, we split the sets K into the sets K_{+}and K_{-}. The inequality (5) can be rewritten as

$$
\left\|\sum_{k \in K_{+}} A_{k}-\frac{1}{2} \sum_{k \in K} A_{k}\right\| \leq \frac{C_{4}}{2}(r \log (2 n / r))^{1 / 2} d
$$

We have

$$
\begin{align*}
\| \sum_{k \in K_{+}} A_{k}-\frac{[r / 2]}{r} & \sum_{k \in K} A_{k} \| \leq \frac{C_{4}}{2}(r \log (2 n / r))^{1 / 2} d \\
& +\left(\frac{1}{2}-\frac{[r / 2]}{r}\right)\left\|\sum_{k \in K} A_{k}\right\| \\
\leq & \frac{C_{4}}{2}(r \log (2 n / r))^{1 / 2} d+\frac{1}{2 r}(r d) \tag{10}\\
& =\frac{C_{4}}{2}(r \log (2 n / r))^{1 / 2} d+d / 2 \\
\leq & \frac{C_{4}+1}{2}(r \log (2 n / r))^{1 / 2} d
\end{align*}
$$

By the induction supposition, there exist bijections $\sigma_{+}:\{1, \ldots,[r / 2]\} \rightarrow$ K_{+}and $\sigma_{-}:\{1, \ldots, r-[r / 2]\} \rightarrow K_{-}$such that for any $m \leq[r / 2]$

$$
\begin{equation*}
\left\|\sum_{j=1}^{m} A_{\sigma_{+}(j)}-\frac{m}{r_{1}} \sum_{k \in K_{+}} A_{k}\right\| \leq\left(4 C_{4}+4\right)\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} d, r_{1}=[r / 2] \tag{11}
\end{equation*}
$$

and for any $m \leq r-[r / 2]$

$$
\begin{equation*}
\left\|\sum_{j=1}^{m} A_{\sigma_{-}(j)}-\frac{m}{r_{1}} \sum_{k \in K_{-}} A_{k}\right\| \leq\left(4 C_{4}+4\right)\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} d, r_{1}=r-[r / 2] \tag{12}
\end{equation*}
$$

We take $\sigma(j)=\sigma_{+}(j)$ for $j \leq[r / 2]$ and $\sigma(j)=\sigma_{-}(r+1-j)$ for $j>[r / 2]$. If $m \leq[r / 2]$ then we have, by (10) and (11),

$$
\begin{align*}
\| \sum_{j=1}^{m} A_{\sigma(j)}- & \frac{m}{r} \sum_{k \in K} A_{k}\|\leq\| \sum_{j=1}^{m} A_{\sigma_{+}(j)}-\frac{m}{r_{1}} \sum_{k \in K_{+}} A_{k} \| \\
& +\left\|\frac{m}{r_{1}} \sum_{k \in K_{+}} A_{k}-\frac{m}{r} \sum_{k \in K} A_{k}\right\| \\
\leq & \left\|\sum_{j=1}^{m} A_{\sigma_{+}(j)}-\frac{m}{r_{1}} \sum_{k \in K_{+}} A_{k}\right\| \tag{13}\\
& +\left\|\sum_{k \in K_{+}} A_{k}-\frac{[r / 2]}{r} \sum_{k \in K} A_{k}\right\| \\
\leq & \left(4 C_{4}+4\right)\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} d \\
& +\frac{C_{4}+1}{2}(r \log (2 n / r))^{1 / 2} d, r_{1}=[r / 2] .
\end{align*}
$$

Further, for $r_{1}=[r / 2]$ we have

$$
\begin{aligned}
\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} & \leq\left(\frac{r}{2} \log (2 n / r \times 9 / 4)\right)^{1 / 2}<\left(\frac{r}{2} \times \frac{3}{2} \log (2 n / r)\right)^{1 / 2} \\
& <\left(\frac{3}{4} r \log (2 n / r)\right)^{1 / 2}<\frac{7}{8}(r \log (2 n / r))^{1 / 2}
\end{aligned}
$$

Substituting the last inequality into (13) we get the required

$$
\left\|\sum_{j=1}^{m} A_{\sigma(j)}-\frac{m}{r} \sum_{k \in K} A_{k}\right\| \leq\left(4 C_{4}+4\right)(r \log (2 n / r))^{1 / 2} d
$$

If $m>[r / 2]$, then, similarly to (13), we have

$$
\begin{align*}
\left\|\sum_{j=1}^{m} A_{\sigma(j)}-\frac{m}{r} \sum_{k \in K} A_{k}\right\|= & \left\|\sum_{j=1}^{r-m} A_{\sigma_{-}(j)}-\frac{r-m}{r} \sum_{k \in K} A_{k}\right\| \\
\leq & \left(4 C_{4}+4\right)\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} d \tag{14}\\
& +\frac{C_{4}+1}{2}(r \log (2 n / r))^{1 / 2} d, r_{1}=r-[r / 2]
\end{align*}
$$

For $r_{1}=[r / 2]$ we have

$$
\begin{aligned}
\left(r_{1} \log \left(2 n / r_{1}\right)\right)^{1 / 2} & \leq\left(\frac{5 r}{9} \log (2 n / r \times 2)\right)^{1 / 2}<\left(\frac{5 r}{9} \times \frac{4}{3} \log (2 n / r)\right)^{1 / 2} \\
& <\left(\frac{3}{4} r \log (2 n / r)\right)^{1 / 2}<\frac{7}{8}(r \log (2 n / r))^{1 / 2} .
\end{aligned}
$$

and after substitution of the last inequality into (14) we complete the proof of Corollary 3 .

4 Proof of Theorem 4

We use Vallée Poussin sums defined for positive integers $n>m$ as

$$
V_{m, n}(x)=\sum_{k=0}^{m} A_{k}(x)+\sum_{k=m+1}^{n} \frac{n-k}{n-m} A_{k}(x) .
$$

It is known that for any $f \in C(\mathbb{T})$ there is a function $n: \mathbb{N} \rightarrow \mathbb{N}$ such that $n(m)>m$ for all $m, \lim _{m \rightarrow \infty} n(m) / m=1$ and $\lim _{m \rightarrow \infty}\left\|V_{m, n}-f\right\|=0$. (This follows, for example, from [D] or from [St].) We define the increasing sequence of positive integers $\left\{N_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ by $N_{1}=1, N_{\lambda+1}=n\left(N_{\lambda}\right)$ for $\lambda \geq 1$.

We fix $\lambda \geq 1$, take $m=N_{\lambda}, n=N_{\lambda+1}$ and use Corollary 2 for $K_{\lambda}=$ $\{m+1, \ldots, n\}, \alpha_{k}=\frac{n-k}{n-m}$. We find that there are numbers $\beta_{k} \in\{0,1\}$, $k \in K$, such that

$$
\begin{gathered}
\left\|V_{m, n}-\sum_{k=0}^{m} A_{k}-\sum_{k \in K} \beta_{k} A_{k}\right\| \\
\ll(((n-m) / n) \log ((2 n) /(n-m)))^{1 / 2} \rightarrow 0 \quad(\lambda \rightarrow \infty) .
\end{gathered}
$$

Also, by the choice of the sequence $\left.\left\{N_{\lambda}\right\}\right\}$, we have $\lim _{\lambda \rightarrow \infty}\left\|V_{m, n}-f\right\|=0$. Therefore, letting $L_{\lambda}=\{1, \ldots, m\} \cup\left\{k \in K_{\lambda}: \beta_{k}=1\right\}$ we get

$$
\begin{equation*}
\left\|f-d_{0}-\sum_{k \in L_{\lambda}} A_{k}\right\| \rightarrow 0(\lambda \rightarrow \infty) . \tag{15}
\end{equation*}
$$

To complete the proof, it is enough, by (15), to find a good permutation of the terms of the polynomials $\sum_{k \in L_{\lambda+1} \backslash L_{\lambda}} A_{k}$. We construct a permutation in such a way that the numbers from $L_{\lambda} \backslash L_{\lambda-1}$ precede the numbers from $L_{\lambda+1} \backslash L_{\lambda}$ for all λ for all $\lambda \in \mathbb{N}$; we consider that $L_{0}=\emptyset$. The permutation
can be constructed by Corollary 3 , the partial sums can be estimated similarly to (15), and we are done.

The author is grateful to the referee for a careful reading of the paper. Due to his (or her) remarks, a series of misprints have been corrected.

References

[D] V. Damen, Best approximations and de la Vallée Poussin sums, (Russian) Mat. Zametki, 23 (1978), 671-683.
[K] S. V. Konyagin, On rearrangements of trigonometric Fourier series, (Russian) Vsesoyuznaya shkola "Teoriya priblizheniya funkciy". Tezisy dokladov, p. 80. Kiev, 1989.
[K2] S. V. Konyagin, On uniformly converging rearrangements of trigonometric Fourier series, (Russian) Metric theory of functions and related problems in analysis (Russian), 101-111, Izd. Nauchno-Issled. AktuarnoFinans. Tsentra (AFTs), Moscow, 1999.
[Kl] M. N. Kolountzakis, On nonnegative cosine polynomials with nonnegative integral coefficients, Proc. Amer. Math. Soc., 120 (1994), 157-163.
[R] Sz.Gy. Révész, Rearrangement of Fourier series, J. Appr. Theory, 60 (1990), 101-121.
[R2] Sz.Gy. Révész, On the convergence of Fourier series of U.A.P. functions, J. Math. Anal. Appl., 151 (1990), 308-317.
[S] R. Salem, On a problem of Smithies, Indag. Math., 16 (1954), 403-407.
[Sp] J. Spencer, Six standard deviation suffice, Trans. Amer. Math. Soc., 289 (1985), 679-706.
[St] S. B. Stechkin, On the approximation of periodic functions by de la Vallée Poussin sums, Anal. Math., 4 (1978), 61-74.
[U1] P. L. Ul'yanov, Solved and unsolved problems in the theory of trigonometric and orthogonal series., (Russian), Uspehi Mat. Nauk, 19 (1964), N. 1(115), 3-69.
[Z] A. Zygmund, Trigonometric series; V. 1., Cambridge, The University Press, 1959.

[^0]: Key Words: trigonometric polynomials, trigonometric Fourier series, uniform convergence Mathematical Reviews subject classification: 42A20; 42A05, 42A61
 Received by the editors March 7, 2003
 Communicated by: Alexander Olevskii
 *This research was supported by the Erwin Schrödinger Institute where the author was a visitor.

