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REARRANGEMENTS OF
TRIGONOMETRIC SERIES AND

TRIGONOMETRIC POLYNOMIALS

Abstract

The paper is related to the following question of P. L. Ul’yanov. Is it
true that for any 2π-periodic continuous function f there is a uniformly
convergent rearrangement of its trigonometric Fourier series? In par-
ticular, we give an affirmative answer if the absolute values of Fourier
coefficients of f decrease. Also, we study how to choose m terms of a
trigonometric polynomial of degree n to make the uniform norm of their
sum as small as possible.

1 Introduction

P. L. Ul’yanov [Ul] raised the following question. Is it true that for any 2π-
periodic continuous function f there is a uniformly convergent rearrangement
of its trigonometric Fourier series? The problem is still open.

Let T = R/2πZ, C(T) be the space of all continuous functions f : T → C,
‖f‖ be the uniform norm of f ∈ C(T). We associate with every function
f ∈ C(T) its Fourier series in complex form

f ∼
∑
k∈Z

ckeikx

and in real form

f ∼
∞∑

k=0

Ak(x), Ak(x) = dk cos(kx + φk).
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Observe that Ak(x) = ckeikx + c−ke−ikx. It is easy to see that if Ul’yanov’s
conjecture is true for the series in a real form (that is, there is a permutation
σ of N such that ‖f − d0 −

∑n
k=1 Aσ(k)‖ → 0 as n →∞), then it is also true

for the series in complex form because for n →∞∥∥∥f − d0 −
n∑

k=1

(
cσ(k)e

iσ(k)x + c−σ(k)e
−iσ(k)x

)∥∥∥ → 0.

Sz.Gy. Révész[R, R2] proved that for any f ∈ C(T) there is a rear-
rangement of its trigonometric Fourier series such that some subsequence
of the sequence of partial sums of the rearranged series converges to f uni-
formly. Due to this result, Ul’yanov’s conjecture is equivalent to the follow-
ing. There is an absolute constant C > 0 such that for any trigonometric
polynomial (with a zero constant term)

∑n
k=1 Ak(x) there is a permutation

σ : {1, . . . , n} → {1, . . . , n} such that for m = 1, . . . , n

∥∥∥ m∑
k=1

Aσ(k)(x)
∥∥∥ ≤ C

∥∥∥ n∑
k=1

Ak(x)
∥∥∥.

It is known that ∥∥∥ m∑
k=1

Ak(x)
∥∥∥ ≤ C log(n + 1)

∥∥∥ n∑
k=1

Ak(x)
∥∥∥

(see [Z][ chapter 2, §12]). Let

ω(f, δ) = sup
x,y∈T
|x−y|≤δ

|f(x)− f(y)|

be the modulus of continuity of f . By the Dini-Lipschitz theorem [Z] [chap-
ter 2, §10], if ω(f, δ) = o(1/ log 1/δ) as δ → 0, then the Fourier series of f
converges to f uniformly. Moreover, the condition on ω(f, δ) is sharp and
cannot be replaced by ω(f, δ) = O(1/ log 1/δ)[Z] [chapter 8, §2].

The author[K, K2] proved the following results.

Theorem 1. For any trigonometric polynomial
∑n

k=1 Ak(x) there is a per-
mutation σ : {1, . . . , n}→ {1, . . . , n} such that for m = 1, . . . , n

∥∥∥ m∑
k=1

Aσ(k)(x)
∥∥∥ ≤ C log log(n + 2)

∥∥∥ n∑
k=1

Ak(x)
∥∥∥.
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Theorem 2. Let f ∈ C(T) and ω(f, δ) = o(1/ log log 1/δ) as δ → 0. Then
there is a permutation σ : N → N such that

∥∥∥f − d0 −
n∑

k=1

Aσ(k)(x)
∥∥∥ → 0 (n →∞).

Theorem 2 follows from Theorem 1 by using Theorem 5 from [R].
To approach Ul’yanov’s conjecture, one can try to prove that there is an

absolute constant C > 0 such that for any trigonometric polynomial (with
a zero constant term)

∑n
k=1 Ak(x) and for any m ≤ n there is an injection

σ : {1, . . . ,m} → {1, . . . , n} such that

∥∥∥ m∑
k=1

Aσ(k)(x)
∥∥∥ ≤ C

∥∥∥ n∑
k=1

Ak(x)
∥∥∥.

I cannot prove this either.

Theorem 3. For any trigonometric polynomial
∑n

k=1 Ak(x) and for any m ≤
n there is a set K ⊂ {1, . . . , n} such that |K| = m and

∥∥∥ ∑
k∈K

Ak(x)
∥∥∥ ≤ C log log log(n + 20)

∥∥∥ n∑
k=1

Ak(x)
∥∥∥.

Theorem 4. Let f ∈ C(T),

f ∼
∞∑

k=0

Ak(x), Ak(x) = dk cos(kx + φk),

and dk = O(k−1/2). Then there is a permutation σ : N → N such that

∥∥∥f − d0 −
n∑

k=1

Aσ(k)(x)
∥∥∥ → 0 (n →∞).

In particular, Theorem 4 works if the sequence {|dk|} is nonincreasing.
Note that, by a theorem of Salem [S], there exists an even continuous func-
tion such that its Fourier series diverges at x = 0 and the sequence {|dk|} is
nonincreasing,

By C,C ′, C1, C2, . . . we denote positive constants. Let [u] and {u} be the
integer and the fractional part of the real number u, respectively.
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2 Proof of Theorem 3

Let n ∈ N, T be a trigonometric polynomial,

T (x) =
n∑

k=1

Ak(x) =
n∑

k=1

dk cos(kx + φk).

We use the following lemmas from [K2].

Lemma 1. Let ‖T‖ ≤ 1, l ∈ N, j ∈ Z, Kl,j = {k : 1 ≤ k ≤ n, k ≡
±j(mod l)}. Then ∥∥∥ ∑

k∈Kl,j

Ak

∥∥∥ ≤ 2.

Lemma 2. Let ‖T‖ ≤ 1. Then there exists an odd prime p ≤ 2 log3(n + 3)
such that ∑

k1 6=k2
k1≡k2( mod p)

|dk1 |2|dk2 |2 ≤
C1

log2(n + 1)
. (1)

Lemma 3. Let p be a prime satisfying (1), j ∈ Z, Kp,j = {k : 1 ≤ k ≤ n, k ≡
±j(mod p)}, Nj = |Kp,j |. Then there exists a bijection τ : {1, . . . , Nj} →
Kp,j such that for any m = 1, . . . , Nj the inequality

∥∥∥ m∑
j=1

Aτ(j)

∥∥∥ ≤ C2(1 + ‖T‖)

holds.

In the proof of Theorem 3 we assume that n is sufficiently large and ‖T‖ ≤
1. We can also assume that m ≤ n/2; otherwise we can take the complement
to a set constructed for n − m < n/2 instead of m. Also, it is sufficient
to construct a set K ′ ⊂ {1, . . . , n} such that |K ′| = m′ for some m′ ≤ m,
m−m′ ≤ 0.2n/ log3 n, and∥∥∥ ∑

k∈K′

Ak(x)
∥∥∥ ≤ C ′ log log log n.

Indeed, take an odd prime p ≤ 2 log3(n + 3) satisfying Lemma 2. Define the
sets Kp,j as in Lemma 3. Since |K ′| ≤ n/2, we can find j so that

|Kp,j \K ′| ≥ (n− |K ′|)/p ≥ n/(4 log3(n + 3)) ≥ 0.2n/ log3 n
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provided that n ≥ 20. Applying Lemma 3 to the polynomial∑
k∈{1,...,n}\K′

Ak,

we can define the set K as K ′ ∪ {τ(1), . . . , τ(m)} where m is such that

{τ(1), . . . , τ(m)} \K ′ = m−m′.

By the above arguments we can assume that m > 0.2n/ log3 n; otherwise, we
take m′ = 0 and K ′ = ∅.

We shall use the following known fact.

Lemma 4. For any real α ∈ (0, 1] there exist positive integers l1, l2, . . . , such
that for any positive integer s

0 < α−
s∑

j=1

1
lj
≤ 2−2s−1

. (2)

Proof. We construct ls inductively by

ls = min{l : α−
s−1∑
j=1

1
lj
− 1

l
> 0}.

The inequalities (2) can be checked by induction on s. The proof of the first
inequality is straightforward. The induction base for the second inequality
holds: α− 1/l1 ≤ 1/2.

By the induction supposition (2), we have ls+1 − 1 ≥ 22s−1
. Also, by the

definition of ls+1, α−
∑s

j=1
1
lj
− 1

ls+1−1 ≤ 0. Therefore,

α−
s+1∑
j=1

1
lj
≤ 1

ls+1 − 1
− 1

ls+1
<

1
(ls+1 − 1)2

≤ 2−2s

,

and (2) is established for s + 1. Lemma 4 is proved.

Take s = [2 log log log n]. Note that for sufficiently large n we have

2−2s−1
≤ 0.05/ log3 n. (3)

One can try to define the numbers l1, . . . , ls by Lemma 3 with α close to m/n
and to take, for example,

K ′ =
s⋃

j=1

Kj , Kj = {k ≡ ±1(mod 2lj)},
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By Lemma 1, ∥∥∥ ∑
k∈Kj

Ak

∥∥∥ ≤ 2

and
∑

j |Kj | is close to m. However, the sets Kj might have common points,
and in general we cannot give good estimates for

∥∥∑
k∈K′ Ak

∥∥ and for |K ′|.
We show how to correct the construction.

Let l0 = [5 log log log n], γ = l0m/n − 0.1/ log3 n, g = [γ], α = {γ}. Note
that g ≥ 0. Because of our supposition m > 0.2n/ log3 n. Take the numbers
l1, . . . , ls in accordance with Lemma 4 and define

K ′ =
g⋃

j=1

Kj ∪
s⋃

j=1

K ′
j ,

where Kj = {k ≡ ±j(mod 2l0)}, K ′
j = {k ± (g + j) ≡ 0(mod 2l0lj)}. Note

that the residues classes ±j(mod 2l0) (j = 1, . . . , g + s), are all distinct since
g + s ≤ l0/2 + s < l0 − 1. Therefore, the sets Kj , K ′

j are pairwise disjoint.
Further, by Lemma 1, ∥∥∥ ∑

k∈Kj

Ak

∥∥∥ ≤ 2,
∥∥∥ ∑

k∈K′
j

Ak

∥∥∥ ≤ 2.

Hence, ∥∥∥ ∑
k∈K′

Ak

∥∥∥ ≤ 2(g + s) ≤ 10 log log log n.

Also, it is not difficult to check that

||Kj | − n/l0| ≤ 1, ||K ′
j | − n/(l0lj)| ≤ 1.

Therefore,

|K ′| = ng/l0 +
s∑

j=1

n/(l0lj) + O(log log log n).

Taking (2) and (3) into account, we get

ng/l0 +
s∑

j=1

n/(l0lj) ≤ m− 0.1n/ log3 n

ng/l0 +
s∑

j=1

n/(l0lj) ≥ m− 0.1n/ log3 n− 0.05n/ log3 n.
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Combining three last inequalities, we obtain

m ≥ |K ′| ≥ m− 0.2n/ log3 n,

as required. This completes the proof of Theorem 3.

3 Spencer’s Theorem and Its Corollaries

Let u be a vector u = (u1, . . . , un) ∈ Rn and let |u|∞ = maxk |uk|. J. Spencer
[Sp] actually proved the following theorem.

Theorem A. Let r ≤ n be a positive integer, uj ∈ Rn, |uj |∞ ≤ 1. Then for
some choice of signs

| ± u1 ± · · · ± ur|∞ ≤ C3(r log(2n/r))1/2.

Corollary 1. Let r ≤ n be positive integers and K ⊂ {1, . . . , n}, |K| = r.
Consider a trigonometric polynomial∑

k∈K

Ak(x), Ak(x) = dk cos(kx + φk).

Then there are sets K+ ⊂ K and K− ⊂ K such that

K+ ∪K− = K, K+ ∩K− = ∅, |K+| = [|K|/2] (4)

and ∥∥∥ ∑
k∈K+

Ak −
∑

k∈K−

Ak

∥∥∥ ≤ C4(r log(2n/r))1/2 max
k∈K

|dk|. (5)

Proof. Let d = maxk∈K |dk|. We apply Theorem A to the vectors uk ∈
R20n+1, k ∈ K, defined as

uk =
(
<(Ak(πl/(5n))/d)l=0,...,10n−1,=(Ak(πl/(5n))/d)l=0,...,10n−1, 1

)
.

Then there exist numbers σk = ±1 (k ∈ K) such that∥∥∥ ∑
k∈K

σkAk

∥∥∥ ≤ 3
√

2C3(r log((40n + 2)/r))1/2d (6)

and ∣∣∣ ∑
k∈K

σk

∣∣∣ ≤ C3(r log((40n + 2)/r))1/2. (7)
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For the proof of (6) we use that for any trigonometric polynomial T of order
n

‖T‖ ≤ 3 max
l=0,...,10n−1

|T (πl/(5n))|

(see, for example, [Kl]). Without loss of generality we can assume that∑
k∈K σk ≤ 0. Take K ′

+ = {k ∈ K : σk = 1}, K ′
− = {k ∈ K : σk = −1}. We

have
2|K ′

+| = |K|+
∑
k∈K

σk ≤ 2[|K|/2].

Take an arbitrary set K1 ⊂ K ′
− such that |K1| = [|K|/2] − |K ′

+|. By (7),
|K1| ≤ C3(r log((40n + 2)/r))1/2/2. Hence,∥∥∥ ∑

k∈K1

Ak

∥∥∥ ≤ C3(r log((40n + 2)/r))1/2d/2. (8)

Denote K+ = K ′
+ ∪K1, K− = K ′

− \K1. The conditions (4) are satisfied. By
(6) and (8) we get∥∥∥ ∑

k∈K+

Ak −
∑

k∈K−

Ak

∥∥∥ ≤ 6C3

(
r log((40n + 2)/r)

)1/2
d.

Therefore, (5) also holds, and Corollary 1 is proved.

Corollary 2. Let r ≤ n be positive integers and K ⊂ {1, . . . , n}, |K| = r.
Consider a trigonometric polynomial∑

k∈K

αkAk(x), Ak(x) = dk cos(kx + φk),

where αk are real numbers. Then there are numbers βk ∈ {[αk], [αk] + 1} such
that ∥∥∥ ∑

k∈K

αkAk −
∑
k∈K

βkAk

∥∥∥ ≤ C4(r log(2n/r))1/2 max
k∈K

|dk|.

In fact, the deduction of Corollary 2 from Corollary 1 is exhibited in [Kl].

Corollary 3. Let r, n be positive integers, r ≤ n/5 and K ⊂ {1, . . . , n},
|K| = r. Consider a trigonometric polynomial∑

k∈K

Ak(x), Ak(x) = dk cos(kx + φk).
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Then there exists a bijection σ : {1, . . . , r} → K such that for any m = 1, . . . , r
the inequality∥∥∥ m∑

j=1

Aσ(j) −
m

r

∑
k∈K

Ak

∥∥∥ ≤ (4C4 + 4)(r log(2n/r))1/2 max
k∈K

|dk| (9)

holds.

Proof. Let d = maxk∈K |dk|. We fix n and use induction on r. If r ≤ 8 then
we take an arbitrary bijection σ. For any m ≤ r we have∥∥∥ m∑

j=1

Aσ(j) −
m

r

∑
k∈K

Ak

∥∥∥ ≤ md +
m

r
(rd) ≤ 2md

≤ 2rd = (2r)1/2(2r)1/2d ≤ 4(r log(2n/r))1/2d,

and (9) holds. Let us assume that 9 ≤ r ≤ n/5 and that the statement of the
corollary is satisfied for all r′ < r.

By Corollary 1, we split the sets K into the sets K+ and K−. The inequality
(5) can be rewritten as∥∥∥ ∑

k∈K+

Ak −
1
2

∑
k∈K

Ak

∥∥∥ ≤ C4

2
(r log(2n/r))1/2d.

We have ∥∥∥ ∑
k∈K+

Ak −
[r/2]

r

∑
k∈K

Ak

∥∥∥ ≤ C4

2
(r log(2n/r))1/2d

+
(

1
2
− [r/2]

r

) ∥∥∥ ∑
k∈K

Ak

∥∥∥
≤C4

2
(r log(2n/r))1/2d +

1
2r

(rd)

=
C4

2
(r log(2n/r))1/2d + d/2

≤C4 + 1
2

(r log(2n/r))1/2d.

(10)

By the induction supposition, there exist bijections σ+ : {1, . . . , [r/2]} →
K+ and σ− : {1, . . . , r − [r/2]} → K− such that for any m ≤ [r/2]∥∥∥ m∑

j=1

Aσ+(j) −
m

r1

∑
k∈K+

Ak

∥∥∥ ≤ (4C4 + 4)(r1 log(2n/r1))1/2d, r1 = [r/2], (11)
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and for any m ≤ r − [r/2]∥∥∥ m∑
j=1

Aσ−(j) −
m

r1

∑
k∈K−

Ak

∥∥∥ ≤ (4C4 + 4)(r1 log(2n/r1))1/2d, r1 = r − [r/2].

(12)
We take σ(j) = σ+(j) for j ≤ [r/2] and σ(j) = σ−(r + 1− j) for j > [r/2].

If m ≤ [r/2] then we have, by (10) and (11),∥∥∥ m∑
j=1

Aσ(j)−
m

r

∑
k∈K

Ak

∥∥∥ ≤ ∥∥∥ m∑
j=1

Aσ+(j) −
m

r1

∑
k∈K+

Ak

∥∥∥
+

∥∥∥m

r1

∑
k∈K+

Ak −
m

r

∑
k∈K

Ak

∥∥∥
≤

∥∥∥ m∑
j=1

Aσ+(j) −
m

r1

∑
k∈K+

Ak

∥∥∥
+

∥∥∥ ∑
k∈K+

Ak −
[r/2]

r

∑
k∈K

Ak

∥∥∥
≤(4C4 + 4)(r1 log(2n/r1))1/2d

+
C4 + 1

2
(r log(2n/r))1/2d, r1 = [r/2].

(13)

Further, for r1 = [r/2] we have

(r1 log(2n/r1))1/2 ≤
(r

2
log(2n/r × 9/4)

)1/2

<

(
r

2
× 3

2
log(2n/r)

)1/2

<

(
3
4
r log(2n/r)

)1/2

<
7
8
(r log(2n/r))1/2.

Substituting the last inequality into (13) we get the required∥∥∥ m∑
j=1

Aσ(j) −
m

r

∑
k∈K

Ak

∥∥∥ ≤ (4C4 + 4)(r log(2n/r))1/2d.

If m > [r/2], then, similarly to (13), we have∥∥∥ m∑
j=1

Aσ(j) −
m

r

∑
k∈K

Ak

∥∥∥ =
∥∥∥ r−m∑

j=1

Aσ−(j) −
r −m

r

∑
k∈K

Ak

∥∥∥
≤(4C4 + 4)(r1 log(2n/r1))1/2d

+
C4 + 1

2
(r log(2n/r))1/2d, r1 = r − [r/2].

(14)
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For r1 = [r/2] we have

(r1 log(2n/r1))1/2 ≤
(

5r

9
log(2n/r × 2)

)1/2

<

(
5r

9
× 4

3
log(2n/r)

)1/2

<

(
3
4
r log(2n/r)

)1/2

<
7
8
(r log(2n/r))1/2.

and after substitution of the last inequality into (14) we complete the proof of
Corollary 3.

4 Proof of Theorem 4

We use Vallée Poussin sums defined for positive integers n > m as

Vm,n(x) =
m∑

k=0

Ak(x) +
n∑

k=m+1

n− k

n−m
Ak(x).

It is known that for any f ∈ C(T) there is a function n : N → N such that
n(m) > m for all m, limm→∞ n(m)/m = 1 and limm→∞ ‖Vm,n − f‖ = 0.
(This follows, for example, from [D] or from [St].) We define the increasing
sequence of positive integers {Nλ}λ∈N by N1 = 1, Nλ+1 = n(Nλ) for λ ≥ 1.

We fix λ ≥ 1, take m = Nλ, n = Nλ+1 and use Corollary 2 for Kλ =
{m + 1, . . . , n}, αk = n−k

n−m . We find that there are numbers βk ∈ {0, 1},
k ∈ K, such that ∥∥∥Vm,n −

m∑
k=0

Ak −
∑
k∈K

βkAk

∥∥∥
� (((n−m)/n) log((2n)/(n−m)))1/2 → 0 (λ →∞).

Also, by the choice of the sequence {Nλ}}, we have limλ→∞ ‖Vm,n − f‖ = 0.
Therefore, letting Lλ = {1, . . . ,m} ∪ {k ∈ Kλ : βk = 1} we get∥∥∥f − d0 −

∑
k∈Lλ

Ak

∥∥∥ → 0 (λ →∞). (15)

To complete the proof, it is enough, by (15), to find a good permutation
of the terms of the polynomials

∑
k∈Lλ+1\Lλ

Ak. We construct a permutation
in such a way that the numbers from Lλ \ Lλ−1 precede the numbers from
Lλ+1 \ Lλ for all λ for all λ ∈ N; we consider that L0 = ∅. The permutation
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can be constructed by Corollary 3, the partial sums can be estimated similarly
to (15), and we are done.

The author is grateful to the referee for a careful reading of the paper. Due
to his (or her) remarks, a series of misprints have been corrected.
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