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ALGEBRAS WITH INNER
MB-REPRESENTATION

Abstract

We investigate algebras of sets, and pairs 〈A, I〉 consisting of an al-
gebra A and an ideal I ⊂ A, that possess an inner MB-representation.
We compare inner MB-representability of 〈A, I〉 with several proper-
ties of 〈A, I〉 considered by Baldwin. We show that A is inner MB-
representable if and only if A = S(A\H(A)), where S(·) is a Marczewski
operation defined below and H consists of sets that are hereditarily in A.
We study the question of uniqueness of the ideal in that representation.

1 The Implications

Let X be a nonempty set and let F be a nonempty family of nonempty subsets
of X. Following the idea of Burstin and Marczewski we define:

S(F) = {A ⊂ X : (∀P ∈ F)(∃Q ∈ F)(Q ⊂ A ∩ P or Q ⊂ P \A)}

and

S0(F) = {A ⊂ X : (∀P ∈ F)(∃Q ∈ F)(Q ⊂ P \A)}.
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Then S(F) is an algebra of subsets of X and S0(F) is an ideal on X. (See
[BBRW].) For an ideal I on X an algebra A of subsets of X such that I ⊂ A
we say that

• the pair 〈A, I〉 (respectively, the algebra A) has inner MB-representation
provided there exists an F ⊂ A such that A = S(F) and I = S0(F)
(respectively, A = S(F)),

• the pair 〈A, I〉 has density property provided I = S0(A \ I),

• the pair 〈A, I〉 (respectively, the algebra A) is topological provided there
exists a topology τ on X such that 〈A, I〉 = 〈S(F), S0(F)〉 (respectively,
A = S(F)), where F = τ \ {∅},

• the pair 〈A, I〉 has the hull property provided for every U ⊂ X there
is a V ∈ A such that U ⊂ V and for every W ∈ A if U ⊂ W , then
V \W ∈ I,

• the pair 〈A, I〉 is complete provided the quotient algebra A/I is com-
plete,

• the pair 〈A, I〉 has the splitting property provided for every C ⊂ D ⊂ A,
if D is an antichain (i.e., A ∩ B ∈ I for every distinct A,B ∈ D), then
there exists a mapping D 3 D 7→ ID ∈ I such that C \ IC and D \ ID

are disjoint for every C ∈ C and D ∈ D \ C.

In the graph from Theorem 2 each of these properties is denoted, respectively,
as: inner, dense, top, hull, comp, and split.

We start here with the following simple characterization of pairs with inner
MB-representation. (Compare also [Wr, lemma 1].)

Proposition 1. A pair 〈A, I〉 has an inner MB-representation if and only if
A = S(A \ I).

Proof. If A = S(A \ I), then A \ I ⊂ A \ S0(A \ I), since we always have
F ∩ S0(F) = ∅. So, S0(A \ I) ⊂ I. The other inclusion is obvious. Thus,
〈A, I〉 has an inner MB-representation.

Conversely, assume that 〈A, I〉 = 〈S(F), S0(F)〉 for some F ⊂ A. By
[BBRW, prop. 1.2] to prove that S(A \ I) = S(F) it is enough to show that
the families A \ I and F are mutually coinitial; that is, every element of each
of these families contains an element from the other.

Clearly, F ⊂ A\S0(F) = A\I, so every element of F contains an element
from A\ I. Conversely, if A ∈ A \ I, then there exists an F ∈ F with F ⊂ A,
since A /∈ I = S0(F).
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Theorem 2. We have the following implications between the properties of a
pair 〈A, I〉.

top - hull & comp -� dense & comp -� split & inner - dense & split
�����������1 hull - -inner dense

PPPPPPPPPPPq comp - split

Diagram

Moreover, none of the implications can be reversed, with possible exception of
“top =⇒ hull & comp.”

Proof. The facts that every topological pair is complete and has the hull
property are well known and easy to see. Indeed, if 〈A, I〉 is a topological
pair generated by a topology τ on X, then I consists of all nowhere dense sets
(with respect to τ) and A consists of open sets (with respect to τ) modulo I.
(See [BR].) Then, for each E ⊂ X, the closure cl(E) plays a role of its hull.
Since an open set U can be expressed as U = V \ E where V is regular open
and E is nowhere dense (see e.g. [O, thm. 4.5]), the quotient algebra A/I is
isomorphic to the Boolean algebra of regular open sets, which is complete (see
e.g. [K]). Hence A/I is complete.

The implication “inner =⇒ dense” results immediately from Proposition 1
and the definitions. All other implications follow from the following impli-
cations proved in Baldwin’s paper [Ba]: “hull =⇒ inner,” “comp =⇒ split,”
“split & inner =⇒ comp,” and “dense & comp =⇒ hull.”

The fact that the implications “top =⇒ hull” and “top =⇒ comp” cannot
be reversed follows from Baldwin’s examples from [Ba], where he shows that
the properties hull and complete are independent of each other.

An example showing that “dense & split” does not imply “inner” is de-
scribed in Example 3. This takes care of nonreversability of the implications
“split & inner =⇒ dense & split,” “inner =⇒ dense,” and “comp =⇒ split.”

Example 4 shows that the implications “hull =⇒ inner” cannot be reversed.

The following example answers a question of Baldwin [Ba, question 2]
whether every pair with density and splitting properties must be inner. Also,
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Baldwin had the example of a family with a splitting property which is not
complete only under the assumption of the continuum hypothesis, while the
example below is in ZFC.

Example 3. If X is an infinite set, A is an algebra of subsets of X which
are either finite or cofinite, and I = {∅}, then the pair 〈A, I〉 has density and
splitting properties but is neither inner nor complete.

Proof. The pair 〈A, I〉 has density property since S0(A \ {∅}) = {∅} = I.
It does not have inner MB-representation by Proposition 1 and the fact that
S(A\{∅}) = P(X). The splitting property is satisfied trivially, since I = {∅}.

The pair 〈A, I〉 is not complete by the implications from Theorem 2.

The following example answers a question of Baldwin [Ba, question 1]
whether every pair with inner MB-representation must have a hull property.
In what follows we use the standard set theoretic notation as in [Ci]. Let X
be an infinite set of cardinality κ. We say that a family F0 ⊂ [X]κ is almost
disjoint provided |F1 ∩ F2| < κ for every distinct F1, F2 ∈ F0.

Example 4. There exists a maximal almost disjoint family F0 ⊂ [X]κ such
that for F = {F4A : F ∈ F0 & A ∈ [X]<κ} the pair 〈S(F), S0(F)〉 has inner
MB-representation but neither is complete nor it has the hull property.

Proof. In [BC, fact 4] it was proved that for every F as in the theorem the
algebra S(F) contains F (so it has inner MB-representation) and S0(F) =
[X]<κ.

Let {A,B} be a partition of X into the sets of cardinality κ and let G ⊂
[X]κ be a partition of X into κ many sets such that |G∩A| = |G∩B| = κ for
every G ∈ G. Let F0 ⊂ [X]κ be a maximal almost disjoint family extending G
such that for every F ∈ F0 either F ⊂ A or F ⊂ B. Such an F0 exists by the
Zorn lemma. It is easy to see that F0 is a maximal almost disjoint family in
[X]κ.

To see that 〈S(F), S0(F)〉 does not have the hull property notice that
A ⊂ X does not have a hull. Indeed, take a V ∈ S(F) containing A. Then for
every G ∈ G ⊂ F there is an FG ∈ F contained in G such that FG is either
disjoint or contained in V . Thus, FG = G \ AG for some AG ∈ [X]<κ, since
elements of F0 are almost disjoint. This implies also that FG = G \ AG must
be a subset of V , since it cannot be disjoint with V ⊃ A. In other words, for
every G ∈ G there exists an xG ∈ G ∩ (V \ A). So, Y = {xG : G ∈ G} ∈ [B]κ,
and by the maximality, there exists an F ∈ F0 such that |F ∩ Y | = κ. Then,
for W = V \F ∈ S(F) we have A ⊂ W ⊂ V , while V \W = F ∩Y /∈ [X]<κ =
S0(F). Thus, there is no hull for A with respect to 〈S(F), S0(F)〉.

Problem 5. Is every complete pair 〈A, I〉 with the hull property topological?
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2 Notes on Algebras with Inner MB-Representations

According to Proposition 1 if a pair 〈A, I〉 has inner MB-representation, then
it has a canonical one — by a family F = A \ I. But what if we only
consider inner MB-representability of an algebra A? If A has an inner MB-
representation, say A = S(F), then by Proposition 1 for I = S0(F) we have
A = S(A\I). Is there a canonical ideal I with this property? Is such an ideal
unique?

To give a positive answer to the first of these questions we need the fol-
lowing fact. Note that, in general, F2 ⊂ F1 does not imply S(F2) ⊂ S(F1).
For instance, if X = {0, 1, 2}, F2 = {{0}}, and F1 = {{0}, {1, 2}}, then
{2} ∈ S(F2) \ S(F1).

Lemma 6. If I1 ⊂ I2 are ideals contained in an algebra A, then we have
S(A \ I2) ⊂ S(A \ I1).

Proof. Let A ∈ S(A \ I2). To show that A ∈ S(A \ I1) take a P ∈ A \ I1.
We need to find a Q ∈ A \ I1 for which

either Q ⊂ P ∩A or Q ⊂ P \A. (1)

If P ∈ A \ I2, then clearly there is a Q ∈ A \ I2 ⊂ A \ I1 satisfying (1). So
assume that P /∈ A \ I2. Then P ∈ I2 \ I1. So, P ∩A and P \A belong to I2

and at least one of them does not belong to I1. This set can be taken as Q,
since I2 \ I1 ⊂ A \ I1.

For an algebra A of subsets of X, the ideal of hereditary sets in A is defined
as H(A) = {A ∈ A : P(A) ⊂ A}.

Proposition 7. Let I be an ideal on a set X, let A be an algebra on X and
assume that I ⊂ A = S(A \ I) 6= P(X). Then for every ideal J such that
I ⊂ J ⊂ H(A) we have A = S(A \ J ).

Proof. Notice that any ideal J ⊂ A is a proper subset of A since A 6= P(X).
It is easy to see that for any such ideal we have A ⊂ S(A \ J ). Indeed, if
A ∈ A and P ∈ A \ J , then either Q = P \A belongs to A \ J or Q = P ∩A
belongs to A \ J . Now, by Lemma 6, we have

A ⊂ S(A \H(A)) ⊂ S(A \ J ) ⊂ S(A \ I) = A.

This finishes the proof.
The proposition implies immediately the following corollary, which shows,

in particular, that the ideal I = H(A) is canonical ideal in representation
A = S(A \ I).
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Corollary 8. An algebra A 6= P(X) has an inner MB-representation if and
only if A = S(A \H(A)).

Notice that Corollary 8 immediately implies [BBC, thm. 13], since condi-
tions (I) and (II) from that theorem say that H(A) = A ∩ [X]<κ while (III)
says that S(A \ H(A)) \ A 6= ∅. In particular, Corollary 8 implies easily that
the following algebras do not have inner MB-representation:

• The algebra B of Borel subset of R, since S(B \H(B)) = S(B \ [R]≤ω) is
a classical Marczewski’s algebra. (Compare [BBC, cor. 14].)

• The interval algebra A (i.e., generated by all intervals [a, b), where a, b ∈
R), since H(A) = {∅} and so S(A \H(A)) is an algebra of subsets of R
with nowhere dense boundary. (Compare [BBC, prop. 12].)

• The algebra A generated by all open intervals (a, b) (a, b ∈ R), since
H(A) = [R]<ω and so S(A \ H(A)) is an algebra of subsets of R with
nowhere dense boundary.

Next, we will address the question of uniqueness of the ideal in the repre-
sentation A = S(A \H(A)). We will start with the following proposition.

Proposition 9. Let A be an algebra, let J ⊂ I ⊂ A be ideals, and Y ∈ A.

(a) If every P ⊂ Y from A \ J contains a subset in I \ J , then P(Y ) ⊂
S(A \ J ).

(b) If I ∩ P(Y ) = J ∩ P(Y ), then S(A \ I) ∩ P(Y ) = S(A \ J ) ∩ P(Y ).

Proof. (a): Let A ∈ P(Y ) and take P ∈ A\J . We need to find a Q ∈ A\J
for which

either Q ⊂ P ∩A or Q ⊂ P \A.

If P ∈ I \J , then either P ∩A or P \A belongs to I \J ; so we may take this
set as a Q. So, assume that P ∈ A \ I, then there is a P0 ∈ I \ J contained
in P . Thus, as before, either P0 ∩ A or P0 \ A belongs to I \ J and we may
take this set as a Q.

Part (b) is obvious.

For an algebra A ⊂ P(X) and the ideals I and J such that J ⊂ I ⊂ A a
set Y ∈ A will be called 〈I,J 〉-special if I ∩ P(X \ Y ) = J ∩ P(X \ Y ) and
each set P ⊂ Y such that P ∈ A \ J has a subset in I \ J .

From Proposition 9 we easily derive the following corollary.
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Corollary 10. Let A be an algebra on X and let J ⊂ I ⊂ A be ideals. If
Y ∈ A is an 〈I,J 〉-special set, then

S(A \ J ) = {C ∪D : C ∈ P(Y ) & D ∈ P(X \ Y ) ∩ S(A \ J )}.

From Proposition 9 (a) applied to Y = R we immediately obtain the fol-
lowing facts.

• If L is the algebra of Lebesgue measurable subsets of R, N is the ideal
of measure zero sets, and N0 is the ideal generated by Fσ sets from N ,
then S(L \ J ) = P(R) for every ideal J contained either in N0 or in
N ∩ [R]<2ω

.

• If B is the algebra of subsets of R with the Baire property and M is the
ideal of meager sets, then S(B \ J ) = P(R) for every ideal J contained
either in N0 or in M∩ [R]<2ω

.

From Corollary 10 we immediately see that, most of the time, H(A) is not
the only ideal I for which A = S(A\I). The easiest way to see it is to notice
the following conclusion from Corollary 10.

Corollary 11. If A is an algebra on X, J ⊂ I ⊂ A are ideals, A = S(A\I)
and there exists a Y ∈ I such that I ∩ P(X \ Y ) = J ∩ P(X \ Y ), then
S(A \ I) = S(A \ J ).

Finally we note that the existence of an 〈I,J 〉-special set is by no means
necessary for the conclusion of Corollary 11.

Example 12. There exists an algebra A and an ideal J ( H(A) for which
A = S(A \ H(A)) = S(A \ J ) while there is no 〈H(A),J 〉-special set Y ∈
H(A).

Proof. In the papers [R] and [NR] the authors investigated the family D of
perfect subsets of [ω]ω, where [ω]ω is endowed with the Ellentuck topology;
that is, the topology generated by the sets [x, y] = {z ∈ [ω]ω : x ⊂ z ⊂ y},
where x ∈ [ω]<ω and y ∈ [ω]ω. A subset of [ω]ω is called a chain if it consists
of sets incomparable with respect to inclusion. A chain is called a Sorgenfrey
chain if its subspace topology is homeomorphic to the Sorgenfrey topology on
(0, 1]. It is shown in [NR, thm. 3.4] that if P ∈ D does not contain a countable
perfect set, then P contains a perfect uncountable Sorgenfrey chain.

Let G be the family of all perfect Sorgenfrey chains and let A = S(D).
By [NR, thm. 3.5] and [R, cor. 1.10], we have A = S(D) = S(G) and J =
S0(D) ( S0(G) = H(A). We will show that



272 M. Balcerzak, A. Bartoszewicz and K. Ciesielski

(a) A = S(A \ J ), and

(b) A = S(A \H(A)), but

(c) there is no 〈H(A),J 〉-special set Y ∈ H(A).

To prove (a) observe that D ⊂ S(D) since, for any two perfect sets P
and Q, at least one of the sets P ∩ Q, P \ Q has a perfect part. Now, from
D ⊂ S(D) and D∩S0(D) = ∅ it follows that D and A\J = S(D) \S0(D) are
mutually coinitial which, by [BBRW, prop. 1.2], implies (a). The clause (b)
results from (a) and Proposition 7.

To prove (c), by way of contradiction assume that there is a 〈H(A), S0(D)〉-
special set Y ∈ H(A). Then H(A)∩P([ω]ω \Y ) = S0(D)∩P([ω]ω \Y ). Since
H(A) = S0(G), we have

S0(G) ∩ P([ω]ω \ Y ) = S0(D) ∩ P([ω]ω \ Y ). (2)

Next observe that

(d) each set from D ∩ P([ω]ω \ Y ) contains a set from G.

Indeed, let D ∈ D ∩ P([ω]ω \ Y ). Since D ⊂ S(D) \ S0(D), it follows from
S(D) = S(G) and (2) that

D ∈ (S(D) \ S0(D)) ∩ P([ω]ω \ Y ) = (S(G) \ S0(G)) ∩ P([ω]ω \ Y ).

Hence by [BBRW, prop 1.1(4)], there is a G ∈ G such that G ⊂ D as desired.
Since G consists of uncountable sets, from (d) we derive that no countable

perfect set in [ω]ω is contained in [ω]ω \ Y . From [NR] it follows that each
nonempty open set in [ω]ω contains a set from G. Thus Y , which is in H(A) =
S0(G), has the empty interior. Consequently, [ω]ω \ Y is dense and so, by [R,
thm. 1.5], it contains a countable perfect set Q. However, this contradicts the
previous observation.
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