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ON PATH CONTINUITY

Abstract

Topological properties of family path continuous functions are inves-
tigated. We consider weak path continuity, path limit set and properties
of o-systems in metric spaces.

1 Notation

We apply standard symbols and notation. By R we denote the set of real
numbers, by Q (N) we denote the set of rational numbers (positive integers).
For a metric space Z, z € Z and R > 0 let Kz(z,R) (or simply K(z, R)) be
the open ball with center z and radius R.

If there is no y € Z and r > 0 such that K(y,r) C K(z,R) \ 4, then
let v(z,R,A) = 0. Otherwise let v(z, R, A) = sup{r > 0 : yexK(y,r) C
K(z,R)\ A}. If limsup V(Z’T{%’A) > 0, then we say that A is porous at z. We

R—0t
say that A is superporous at z, if for every set B C X porous at z the set

AU B is porous at z.

Throughout the sequel let X, Y be metric spaces. We denote by dx, dy, 7
and v the metric on X, on Y, family of open subsets of X, of Y respectively. If
x € X,y €Y, then by 7(z) and v(y) denote the family of open neighborhoods
of = and y respectively. For A C X let cl(A),int(A), I(A) denote the closure
of A, interior of A, the set of isolated points of A respectively. A set A C X is
boundary if int(A) = ). For A, B C X we denote AA B=(A\ B)U(B\ A).

An ideal on X is a collection of subsets of X containing () and closed under
subsets and finite unions.

If A is the family of functions from X to Y, then b.A denotes the space of
bounded elements of .4 with the metric of uniform convergence ds. By C(X,Y)
we denote the family of all continuous functions from X to Y. If y € Y, then
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by const, we denote the constant function with value y. If f: X — Y is a
function, then by C¢ we denote the set of all continuity points of the function
f- No distinction is made between a function and its graph.

Let z € X. If & ¢ I(X), then a path leading to x is a set E such that x € F
and z is a point of accumulation of E [1, 3]. If z € I(X), then a path leading
to x is a set F such that z € E. A system of paths at x € X is a nonempty
family F of subsets of X such that for each E € F, F is a path leading to
x. A system of paths on X is an arbitrary mapping on X such that £(x) is a
system of paths at z, for every x € X.

Let £ be a system of paths on X and let f : X — Y. We shall say
that f is £-continuous at x if there exists a path F € £(x) such that f [ E
is a continuous function at z. By Cg(X,Y) we denote the family of all &-
continuous functions from X to Y. The set of all £-continuity points of f we
shall denote by C%.

Let £ be a system of paths on X. For x € X let

.7:5(.76) = {A Cc X: ElUET(x)EIEEE(J;)E NnU C A}
Then F¢ is a system of paths too. Notice that Ce(X,Y) = Cx. (X, Y).

2 Topological Properties of Family Path Continuous Func-
tions.

Theorem 1. Let X be a connected metric space, card(X) > 2. Then there
exists a system of path £ such that family bC(X,R) is superporous at every
point of space bCg (X, R).

PROOF. Let zp € X. For ¢ > 0 let S¢ = {x € X : dx(z,20) = ¢}. Observe,
that because X is connected and card(X) > 2 there exists ¢op > 0 such that
Se £ 0, for 0 < ¢ <. Let (6,)52; be such that lim 6, =0,0 < d,41 < Iy, <

Go, forn=1,2.... Let E = {xo} U U Ss,, and let E(xg) = {E}, E(x) = {X}

if x # xg. Let f € bCe(X,R). We show that bC(X,R) is superporous at f. Let
B C bCe(X,R) be porous at f. We shall prove that bC(X,R) U B is porous at
f. Because B is be porous at f

lim sup W1 B) > 0. (1)
H—0t H
Let R > 0. We shall show that
B
2(f, R bC(X,R)UB) > LWL D) (2)
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According to (1), there exists g € bCe(X,R) and ry > V(fR B) > 0 such, that

K(g,m1) C K(f,R) and K(g,71)NB = . Let r = % Ofcourse r > M
We shall show that there exists h € bCg (X, R) such that

K(h,r) C K(f,R) and K(h,r)N (bC(X,R)U B) = 0. (3)

If K(g,7) NbC(X,R) = 0, then we take h = g. Otherwise let £ € K(g,r) be
a continuous function. There exists § > 0 such that £(Kx(zg,9)) C (§(zo) —
r,&(xo) + 7). Let (0,,)22, be such that 0,41 < oy <y, (forn=1,2,...) and

ng be such that 6,, < 0. Define & : | (S, USs,) — [£(x0) —3r,&(x0) + 3]
by -

&(x) ifx e Ej Ss,

§i(x) = Yo
E&(zo)+3r fze U S,

n=no

Observe that &; is continuous. The set |J (S5, U S5, ) is closed in X \ {zo}.

n=ngo

Thus there exists {3 : X \ {xo} — [£(x0) — 37, &(z0) + 37], continuous and such
that &(z) =& (z) forx € |J (S5, US,,) Let h: X — R be given by

n=no

h(z) = {52(;5) for x € cl(Kx(z0,0n,)) \ {0}

&(x)  otherwise.

Observe that h [ (X \ {zo}) is continuous. Indeed, let H = X \ Kx (20, 0n,),
F = cl(Kx(x0,0n,)) \ {z0}. Then F, H are closed in X \ {xo} FNHCS;,
and § [ Ss,, = & [ Ss,,- Thus b [ (X \ {wo}) = (&2 [ F)U(§ | H) is
continuous. Clearly h is £-continuous at xg. Hence h | (EN Kx(x0,0pn,)) =
&1 (BN Kx(xo,0n,)) and & is continuous. Thus h € bCe (X, R).

We have |h(z)—£(x)| < 4r, for x € X. Indeed, if z & cl(Kx (o, 0n,))\{Z0},
then clearly h(z) = &(x). If z € cl(Kx(20,0n,)) \ {z0}, then h(z) = & (x) and
[€a() — &(@)] < [&2(2) — E(o)| + [€(w0) — &(2)| < 4r. Let ¢ € K(h,r) and
7€ X. Then |{(2) — g(2)] < IC(x) — h(2)] + |h(z) — €(@)| + |e(x) — g(x)| < 6.
Hence K (h,r) C K(g,22).

To finish the proof observe that K (h,r) N (bC(X,R) U B) = @. Indeed,
K(h,r) N B C K(g,r1) N B = (. Thus it suffices to prove that K(h,r) N
bC(X,R) = 0. Let ¢ € K(h,r). Then ¢(zg) < h(zo) + 7 = &(x0) + 7,
and ¥(z) > h(z) —r = &(xo) + 2r for x € J,—, Ss,. The point zg is a

xo n=no
o0

point of accumulation of |J S,,. Thus ¢ is not continuous at zy. We
n

n=no
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obtain that for R > 0, v(f,R,bC(X,R) U B) > A’(f’lilg’B). Consequently

lim sup%m > 0. Thus bC(X,R) is superporous at every point
R—0t+
of space bCg(X,R). O

Theorem 2. For every system of paths & the space bCg(X,R) is connected.

PROOF. We shall prove that for every function g € bCe(X,R) there exists
connected set Hy, C bCg(X,R) such that consty € Hy, and g € H,. Fix
g € bCg(X,R). Define a function ¢, such that ¢4(t) = t-g for t € [0,1].
Let Hy = ¢4([0,1]). Observe that ¢4 is a continuous function. Hence H, is
connected subset of bCs(X,R). We have in addition consty = ¢(0) € H, and
g=o(1) € H,. O

3 The Set of Continuity Points of Path Continuous Func-
tions.

Let £ be a system of paths in metric space X. How big is the set of continuity
points of a E-continuous function? Consider the following system of paths.
Forz,y cRletz ~yifx—y € Q, and for z € R, let E(z) = {[z]~} for z € R
(where [z]~.. denote equivalence class of ). We have {[z]~ : z € R} = {4y }a<c
where Ag # As for 8 # §. Let (z4)a<c be a transfinite sequence of all reals
and f : R — R be such that f [ A, = const,. Of course f is E-continuous
and Darboux, but Cy = (.

The next theorems show that for a path system with path N-residual or
N-second category with A'-Baire property (where A is some ideal of boundary
subsets of X) the set of continuity points of a path continuous functions must
be somehow big.

Let N C 2% be an ideal of boundary subsets of X and A, B C X. We say
that A is N-residual in B if B\ A € N.

Theorem 3. Let N be an ideal of the boundary subsets of X and let £ be a
system of paths, such that for v € X, E € E(x), the set E is N -residual in
some neighborhood of x. If f : X — Y is £-continuous, then Cy = X.

PRrROOF. Let x € X. Fix x € X and € > 0. Let E, € &(x) be such that
fU:NE,) C K(f(x),5) and U, \ E, € N where U, € 7(x). We shall show
that f(Uy) C K(f(z),€). Let t € U,. Then there exists E, € E(t), Uy € 7(t)
such that Uy C U, f(Uy N E;) C K(f(t),5) and Uy \ E; € N. The set Uy is
nonempty and open. Thus U; € . Observe that U, = (U; N (E, N E)) U
(U \ (Ex NEy)). Hence UyNE, NEy # 0. Let w € U;N E, N E;. Then

f(u) € K(f(z),5) N K(f(t),5)- Hence f(t) € K(f(x),e€). u



ON PaTH CONTINUITY 251

We say that A is N -residual at point z € X if for every neighborhood U
of x there exists a nonempty open set W C U such that W\ A € N.

Theorem 4. Suppose X andY are two complete metric spaces, N is an ideal
of boundary subsets of X and £ is a system of paths. If for every x € X,
E € E(z), the set E is N -residual at x and f : X — Y is E-continuous, then
Cy is residual in X.

PrROOF. Let &£ be such a system of paths. We shall show that every &-
continuous function is quasi continuous. Let x € X, U € 7(z) and V €
v(f(x)). There exists € > 0 such that K(f(z),e) C V, U, € 7(z), U, C U
and E € &(x) such that f(U, N E;) C K(f(x),5). Let W, C U, be open
and nonempty such that W, \ E, € N. Then W, C U. We shall show
that f(W,) C V. For t € W, there exists Uy € 7(¢t) and E; € £(¢) such
that Uy ¢ W, f(UsNE;) C K(f(t),5). Let W; be a nonempty open subset
of Ui, such that Wy \ E; € N. Because Wy € N and W, \ (F; N E,) C
(Wi \ Ey) U (W, \ E;) € N. Hence there exists u € W; N E; N E,. We
have dy (f(t), f(x)) < dy(f(t), f(u)) + dy (f(u), f(z)) < §+ § = €. Hence
f(t) € K(f(z),e) C V. Because X,Y are complete and f is quasi continuous
we obtain that Cy is a dense G5 set; hence residual in X. O

The assumption that X,Y are complete is essential. In fact let X = Q,
with natural metric and N = {f}. For z € Qlet E(z) = {E C Q: z €
E & E is N-residual at z} and let f : Q@ — R be a function that for every
x € Q, f is continuous from right and not continuous from left at z. For
q € Q the set [g,00) N Q is N-residual at the point q. Because f is continuous
from the right at every point ¢ € Q, f is £-continuous, however Cy = ().

We call the set A N-second category at z, if for every neighborhood U of
z, ANU & N.

We will say, that A C X has the N-Baire property if there exist open set G
and N € N such, that A = GA N. The family of all sets having the N-Baire
property, where A is an ideal is denoted by Q.

Theorem 5. Let X, Y be complete metric space with I(X) = 0 and let N be
the ideal of boundary subsets of X such that forx € X, {z} e N. If € is a
system of paths such that for every x € X and E € E(x), E has the N -Baire
property and is N -second category at x, then the set of continuity points of f
is restdual in X.

PrOOF. We shall show that if E has the A/-Baire property and is N -second
category at x, then it is N-residual at x. Indeed, let € X and E € &(z).
Then there exist sets G € 7 and N € N such, that E = GAN. Let U € 7(z).
IfFGNU =0, then UNE =UN(N\G) C N € N. This proves, that
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W = GNU # 0. Note that W € 7, W C U and W\E C G\(GAN) C N € N.
Thus E is N-residual at z. O

The assumption of the N-Baire property is essential. In fact let N be a
family of meager subsets of R. Let B be a Bernstein set (i.e., such set that
for every perfect set ', BNF # () # F \ B). Define a system of paths £ by
E(x) ={B}ifx € Band E(x) = {R\ B} if ¢ ¢ B. Then for every z € X and
E € &(z), E is N-second category at x. Note that the characteristic function
of B is an everywhere discontinuous function which is £-continuous.

4 Weak path continuity and path limit set.

Let £ be a system of paths on X and let f: X — Y. We shall say that f is
weak &-continuous at x if for all U € v(f(z)), we have f~1(U) € Fe(x). If f
is weak £-continuous at x for all xz € X, we say that f is weak &-continuous.

Let &€ be a system of paths on X. For f: X — Y and x € X consider the
E-limit set

ZSS(f7 JJ) = {y eY: vVGu(y)HEGS(x)HUET(I)f(U nE \ {.’E}) - V}

Note that f is weak E-continuous at z iff f(x) € Isg(f, x),
Let us notice that for every system of path £ and f : X — Y the set
Isg(f,x) is closed. Moreover the following assertion is true.

Theorem 6. Let X be uncountable, locally connected separable metric space
and Y be connected space with card(Y) > 2. Then F C Y is closed in' Y
iff there exists a system of paths € and a function f : X — Y such that
Ise(f,x) =F forx e X\ I(X)

PROOF. First notice that if 0 < k < ¢, then there is a family {K, : « < k} of
disjoint sets dense in X \ /(X) such that X = J,_,. Ko. Let 0 <x < ¢, Bbea
countable base of X such that every B € B is a connected set and By = {U €
B : card(U) > 1}. Hence X is uncountable. Then By # (. The family By is
a base of X \ I(X). Let By = {U, : n =1,2,...}. Because X is a separable
metric space and U, is connected, card(U,,) = ¢, (for n = 1,2,...). Of course
X \ I(X) is separable. Therefore there exists a set Hy countable and dense in
X\I(X). If o < cand {Hg : B < a} is the family of disjoint, countable dense
sets in X\ I(X), then card(Uy) = ¢. Hence Un\Uj-, Hp # 0, forn=1,2,....
Let (for n = 1,2,... ) @, € U\ Up, Hp and Ho = {5, 1 n = 1,2,...} .
Clearly H, is countable, dense in X \ I(X) and Hg N H, = 0 for f < a.
Define Kg = Hp, for 0 < f < x and Ko = X \ Uycqe, Ha- Let ' CY be a
closed set. If F =0, let A and B be disjoint sets dense in X \ I(X) such that
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AUB=X, s1,82 €Y, 81 # s2, f : X = Y be such that f(z) =s; forxz € A
and f(z )—52 for x € B and E(x) = {X}, for z € X. Then Ils¢(f,z) = 0, for
x e X\ I(X).

Suppose now that F # (). Let x = card(F). Hence Y is separable and
card(Y) < c¢. Therefore k < ¢. Let {K, : @ < k} be a family of disjoint sets
each dense in X \ I(X) and such that X = |J K, and &E(z) = {K, U {z}:

a<k

a < K}, (x € X). Let (Ya)a<r be sequence of all elements of F. We define
f:X =Y by f() = yo for z € Ko, a < k. Clearly lsg(f,z) = F for
z e X\ I(X). 0O

5 o-Systems of Paths.

In paper [2] K. Banaszewski considered bilateral o-systems of paths in R. We
now define analogous notion; namely, o-systems of paths in metric spaces and
give some characterization. We also prove the notion of weak path continuity
is the same as the notion of path continuity for such systems.

The system of path &£ is called a o-system of paths iff for every xz € X,
and every sequence (x,)5%; with nlLIIéO z, =z if Hy, € Fe(zy), (n=1,2,...),

then Jo—; H, U {x} belong to Fg(x).

Theorem 7. The system of paths € is a o-system of paths iff for every func-
tion f: X =Y (whereY is metric , card(Y') > 2) the set f [Cf is closed in
I

PROOF. Suppose that £ is a o-system, f : X — Y, lim z, = z where
zn € f [C’f (forn =1,2,...) and z € f. We shall show that z € f | C%

Let z, = (xn, f(xn)), 2 = (z, f(2)), where z € X, z,, € C’f (forn=1,2,...),
lim z, =z, lim f(x,) = f(z). If there exists ny € N such that z,, = =,

n—oo

then of course = € C}? and consequently z € f | C]‘g . Thus we can assume
that z, # x and f(z,) € K(f(z),5;), forn=1,2,... . Fix n € N. Because
f is E-continuous at x,, there are U, € 7(x,) and E, € &(x,) such that
f(U.NE,) C K(f(22), 5-). We can assume that (forn =1,2,... )z & cl(Uy,).

There are E € £(x) and G € 7(x) such that ENG C U (E,NU,)U{z}. We
n=1

shall show that f [ E is continuous at x.
Fix € > 0. Let ng > 1 be such that -~ < e. Let (for n < ng) W, be an
open neighborhood of z, such that W, N U =0. Let U=GnN ()| W,. Then

n<ng

U is an open neighborhood of z and ENU C |J (E, NU,) U {z}. Hence

n=nogo
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f(E,NU,) C K(f(zn),5) and (z,) € K(f(z),5). Then f(E, NU,) C

K(f(2), 1) forn = 1,2,... . Thus f(ENU) € f( U (EaNU,) U {a}) C

n=ngo

U K(f(x),+) = K(f(z), =) C K(f(z),€). We obtain that 2 € C§ and
n=no
ze f1C5.
Let Y be metric, card(Y') > 2. Suppose that for every function f: X — Y
the set f | C’f is closed in f. Let x € X, (2,)22,, (Hn)22, be a sequence
such that lim z, = x and H,, € Fg(x,), for n = 1,2,... . We shall show

n—oo

that there exist E € £(x) and U € 7(z) such, that ENU C |J H, U{z}. Let
n=1
Yo, Y1 € Y, yo # y1. We define f: X — Y by

yo ifte U HnU{z},
n=1

y1 otherwise.

ft) =

Let E, € E(xy), U, € 7(z,) be such that £, NU, C H, (for n € N). Then f
is constant on E,, NU,. Thus z,, € C'jf (for n € N). Hence f(zn) = yo = f(x)
(for n € N) and lim z, = 2. Then lim (z,, f(z,)) = (z, f(z)). Because

1 C]‘? is closed in f, we obtain that x € Cf. Thus there is E € &(x)
such that f [ E is continuous at x. Let € = dy(yo,y1) and U be an open
neighborhood of x such that f(UNE) C K(f(x),e) = K(yo,€). Then ENU C

F (o) = f:lenu{x}. 0

Corollary 1. Let £ be o-system on X and f: X — Y. If f [CJ‘Z: is dense in
f, then f is £-continuous.

Theorem 8. Let X,Y be a metric spaces f: X — Y and E be a o-system of
paths on X. Then f is E-continuous iff it is weak &-continuous.

PROOF. If f is E-continuous and x € X, then

f(.’l?) € {y ey: 3E'GS(I)VVGL/(y)HUGT(I)JC(UV nKe \ {.Z'}) - V} - l85<f7 .’17)

Hence f is weak £-continuous at x.

Suppose that f : X — Y is weak £-continuous and let x € X. We can
assume that z € I(X). For every n € N there exists F,, € £(z) and G,, € 7(x)
such that f(F, N Gn) C K(f(z),5-). Because z is a point of accumulation
of F,,, there exists z, € K(z, 1) NG, NF,\ {z} (for n =1,2,...). Clearly

lim z, = . We can assume that dx(z,4+1,2) < dx(zp,z) for n =1,2,....

n—oo
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Let (for n = 1,2,... ) r, = dx(@p, ), 05 = 1 — Tny1. Observe that r, >
0,6, >0 and

K(x,r) N | K(zx,0%) € | K(@,6k), forn=1,2,... . (4)
k=1 k=n

Because f is weak E-continuous, (for every k € N) there exists Ej, € £(zy) and
Uy € 7(zx) such that Uy C K(xg,0k), f(Ex NUg) C K(f(xk), 2*119) Observe
that

ExnU, C YK (f(2), %)), for k=1,2,... . (5)

Because £ is o-system of paths, there exist a set E € £(x) and U € 7(z) such
that ENU C | (Ex NUg) U{a}. For every k € N, Uy, C K(x,d;) from (4)
k=1

and (5) we obtain ENU N K (z,rm)\ {2} C : (BoU) C f~YK(f(x),1)).

Because lim r, =0, f | E is continuous in z. O

n—oo
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