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ON PATH CONTINUITY

Abstract

Topological properties of family path continuous functions are inves-
tigated. We consider weak path continuity, path limit set and properties
of σ-systems in metric spaces.

1 Notation

We apply standard symbols and notation. By R we denote the set of real
numbers, by Q (N) we denote the set of rational numbers (positive integers).
For a metric space Z, z ∈ Z and R > 0 let KZ(z,R) (or simply K(z,R)) be
the open ball with center z and radius R.

If there is no y ∈ Z and r > 0 such that K(y, r) ⊂ K(z,R) \ A, then
let γ(z,R,A) = 0. Otherwise let γ(z,R,A) = sup{r > 0 : ∃y∈XK(y, r) ⊂
K(z,R) \ A}. If lim sup

R→0+

γ(z,R,A)
R > 0, then we say that A is porous at z. We

say that A is superporous at z, if for every set B ⊂ X porous at z the set
A ∪B is porous at z.

Throughout the sequel let X, Y be metric spaces. We denote by dX , dY , τ
and ν the metric on X, on Y , family of open subsets of X, of Y respectively. If
x ∈ X, y ∈ Y , then by τ(x) and ν(y) denote the family of open neighborhoods
of x and y respectively. For A ⊂ X let cl(A), int(A), I(A) denote the closure
of A, interior of A, the set of isolated points of A respectively. A set A ⊂ X is
boundary if int(A) = ∅. For A,B ⊂ X we denote A4B = (A \B) ∪ (B \A).

An ideal on X is a collection of subsets of X containing ∅ and closed under
subsets and finite unions.

If A is the family of functions from X to Y , then bA denotes the space of
bounded elements of A with the metric of uniform convergence ds. By C(X,Y )
we denote the family of all continuous functions from X to Y . If y ∈ Y , then
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by consty we denote the constant function with value y. If f : X → Y is a
function, then by Cf we denote the set of all continuity points of the function
f . No distinction is made between a function and its graph.

Let x ∈ X. If x 6∈ I(X), then a path leading to x is a set E such that x ∈ E
and x is a point of accumulation of E [1, 3]. If x ∈ I(X), then a path leading
to x is a set E such that x ∈ E. A system of paths at x ∈ X is a nonempty
family F of subsets of X such that for each E ∈ F , E is a path leading to
x. A system of paths on X is an arbitrary mapping on X such that E(x) is a
system of paths at x, for every x ∈ X.

Let E be a system of paths on X and let f : X → Y . We shall say
that f is E-continuous at x if there exists a path E ∈ E(x) such that f � E
is a continuous function at x. By CE(X,Y ) we denote the family of all E-
continuous functions from X to Y . The set of all E-continuity points of f we
shall denote by CEf .

Let E be a system of paths on X. For x ∈ X let

FE(x) = {A ⊂ X : ∃U∈τ(x)∃E∈E(x)E ∩ U ⊂ A}.

Then FE is a system of paths too. Notice that CE(X,Y ) = CFE (X,Y ).

2 Topological Properties of Family Path Continuous Func-
tions.

Theorem 1. Let X be a connected metric space, card(X) ≥ 2. Then there
exists a system of path E such that family bC(X,R) is superporous at every
point of space bCE(X,R).

Proof. Let x0 ∈ X. For ς > 0 let Sς = {x ∈ X : dX(x, x0) = ς}. Observe,
that because X is connected and card(X) ≥ 2 there exists ς0 > 0 such that
Sς 6= ∅, for 0 < ς ≤ ς0. Let (δn)∞n=1 be such that lim

n→∞
δn = 0, 0 < δn+1 < δn <

ς0, for n = 1, 2 . . . . Let E = {x0} ∪
∞⋃

n=1
Sδn

and let E(x0) = {E}, E(x) = {X}

if x 6= x0. Let f ∈ bCE(X,R). We show that bC(X,R) is superporous at f . Let
B ⊂ bCE(X,R) be porous at f . We shall prove that bC(X,R)∪B is porous at
f . Because B is be porous at f

lim sup
H→0+

γ(f,H,B)
H

> 0. (1)

Let R > 0. We shall show that

γ(f,R, bC(X,R) ∪B) ≥ γ(f,R,B)
16

. (2)
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According to (1), there exists g ∈ bCE(X,R) and r1 >
γ(f,R,B)

2 > 0 such, that
K(g, r1) ⊂ K(f,R) and K(g, r1)∩B = ∅. Let r = r1

8 . Of course r > γ(f,R,B)
16 .

We shall show that there exists h ∈ bCE(X,R) such that

K(h, r) ⊂ K(f,R) and K(h, r) ∩ (bC(X,R) ∪B) = ∅. (3)

If K(g, r) ∩ bC(X,R) = ∅, then we take h = g. Otherwise let ξ ∈ K(g, r) be
a continuous function. There exists δ > 0 such that ξ(KX(x0, δ)) ⊂ (ξ(x0) −
r, ξ(x0) + r). Let (σn)∞n=1 be such that δn+1 < σn < δn (for n = 1, 2, . . . ) and

n0 be such that δn0 < δ. Define ξ1 :
∞⋃

n=n0

(Sσn
∪Sδn

) → [ξ(x0)− 3r, ξ(x0)+3r]

by

ξ1(x) =


ξ(x) if x ∈

∞⋃
n=n0

Sδn ,

ξ(x0) + 3r if x ∈
∞⋃

n=n0

Sσn
.

Observe that ξ1 is continuous. The set
∞⋃

n=n0

(Sδn ∪ Sσn) is closed in X \ {x0}.

Thus there exists ξ2 : X \ {x0} → [ξ(x0)− 3r, ξ(x0)+3r], continuous and such

that ξ2(x) = ξ1(x) for x ∈
∞⋃

n=n0

(Sδn
∪ Sσn

) Let h : X → R be given by

h(x) =

{
ξ2(x) for x ∈ cl(KX(x0, δn0)) \ {x0}
ξ(x) otherwise.

Observe that h � (X \ {x0}) is continuous. Indeed, let H = X \KX(x0, δn0),
F = cl(KX(x0, δn0)) \ {x0}. Then F,H are closed in X \ {x0}, F ∩H ⊂ Sδn0

and ξ � Sδn0
= ξ2 � Sδn0

. Thus h � (X \ {x0}) = (ξ2 � F ) ∪ (ξ � H) is
continuous. Clearly h is E-continuous at x0. Hence h � (E ∩KX(x0, δn0)) =
ξ � (E ∩KX(x0, δn0)) and ξ is continuous. Thus h ∈ bCE(X,R).

We have |h(x)−ξ(x)| < 4r, for x ∈ X. Indeed, if x 6∈ cl(KX(x0, δn0))\{x0},
then clearly h(x) = ξ(x). If x ∈ cl(KX(x0, δn0)) \ {x0}, then h(x) = ξ2(x) and
|ξ2(x) − ξ(x)| ≤ |ξ2(x) − ξ(x0)| + |ξ(x0) − ξ(x)| < 4r. Let ζ ∈ K(h, r) and
x ∈ X. Then |ζ(x)− g(x)| ≤ |ζ(x)−h(x)|+ |h(x)− ξ(x)|+ |ξ(x)− g(x)| < 6r.
Hence K(h, r) ⊂ K(g, 3r1

4 ).
To finish the proof observe that K(h, r) ∩ (bC(X,R) ∪ B) = ∅. Indeed,

K(h, r) ∩ B ⊂ K(g, r1) ∩ B = ∅. Thus it suffices to prove that K(h, r) ∩
bC(X,R) = ∅. Let ψ ∈ K(h, r). Then ψ(x0) < h(x0) + r = ξ(x0) + r,
and ψ(x) > h(x) − r = ξ(x0) + 2r for x ∈

⋃∞
n=n0

Sσn . The point x0 is a

point of accumulation of
∞⋃

n=n0

Sσn . Thus ψ is not continuous at x0. We
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obtain that for R > 0, γ(f,R, bC(X,R) ∪ B) ≥ γ(f,R,B)
16 . Consequently

lim sup
R→0+

γ(f,R,bC(X,R)∪B)
R > 0. Thus bC(X,R) is superporous at every point

of space bCE(X,R).

Theorem 2. For every system of paths E the space bCE(X,R) is connected.

Proof. We shall prove that for every function g ∈ bCE(X,R) there exists
connected set Hg ⊂ bCE(X,R) such that const0 ∈ Hg and g ∈ Hg. Fix
g ∈ bCE(X,R). Define a function φg such that φg(t) = t · g for t ∈ [0, 1].
Let Hg = φg([0, 1]). Observe that φg is a continuous function. Hence Hg is
connected subset of bCE(X,R). We have in addition const0 = φ(0) ∈ Hg and
g = φ(1) ∈ Hg.

3 The Set of Continuity Points of Path Continuous Func-
tions.

Let E be a system of paths in metric space X. How big is the set of continuity
points of a E-continuous function? Consider the following system of paths.
For x, y ∈ R let x ∼ y if x− y ∈ Q, and for x ∈ R, let E(x) = {[x]∼} for x ∈ R
(where [x]∼ denote equivalence class of x). We have {[x]∼ : x ∈ R} = {Aα}α<c

where Aβ 6= Aδ for β 6= δ. Let (xα)α<c be a transfinite sequence of all reals
and f : R → R be such that f � Aα = constα. Of course f is E-continuous
and Darboux, but Cf = ∅.

The next theorems show that for a path system with path N -residual or
N -second category with N -Baire property (where N is some ideal of boundary
subsets of X) the set of continuity points of a path continuous functions must
be somehow big.

Let N ⊂ 2X be an ideal of boundary subsets of X and A,B ⊂ X. We say
that A is N -residual in B if B \A ∈ N .

Theorem 3. Let N be an ideal of the boundary subsets of X and let E be a
system of paths, such that for x ∈ X, E ∈ E(x), the set E is N -residual in
some neighborhood of x. If f : X → Y is E-continuous, then Cf = X.

Proof. Let x ∈ X. Fix x ∈ X and ε > 0. Let Ex ∈ E(x) be such that
f(Ux ∩ Ex) ⊂ K(f(x), ε

2 ) and Ux \ Ex ∈ N where Ux ∈ τ(x). We shall show
that f(Ux) ⊂ K(f(x), ε). Let t ∈ Ux. Then there exists Et ∈ E(t), Ut ∈ τ(t)
such that Ut ⊂ Ux, f(Ut ∩ Et) ⊂ K(f(t), ε

2 ) and Ut \ Et ∈ N . The set Ut is
nonempty and open. Thus Ut 6∈ N . Observe that Ut = (Ut ∩ (Ex ∩ Et)) ∪
(Ut \ (Ex ∩ Et)). Hence Ut ∩ Ex ∩ Et 6= ∅. Let u ∈ Ut ∩ Ex ∩ Et. Then
f(u) ∈ K(f(x), ε

2 ) ∩K(f(t), ε
2 ). Hence f(t) ∈ K(f(x), ε).
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We say that A is N -residual at point x ∈ X if for every neighborhood U
of x there exists a nonempty open set W ⊂ U such that W \A ∈ N .

Theorem 4. Suppose X and Y are two complete metric spaces, N is an ideal
of boundary subsets of X and E is a system of paths. If for every x ∈ X,
E ∈ E(x), the set E is N -residual at x and f : X → Y is E-continuous, then
Cf is residual in X.

Proof. Let E be such a system of paths. We shall show that every E-
continuous function is quasi continuous. Let x ∈ X, U ∈ τ(x) and V ∈
ν(f(x)). There exists ε > 0 such that K(f(x), ε) ⊂ V , Ux ∈ τ(x), Ux ⊂ U
and E ∈ E(x) such that f(Ux ∩ Ex) ⊂ K(f(x), ε

2 ). Let Wx ⊂ Ux be open
and nonempty such that Wx \ Ex ∈ N . Then Wx ⊂ U . We shall show
that f(Wx) ⊂ V . For t ∈ Wx there exists Ut ∈ τ(t) and Et ∈ E(t) such
that Ut ⊂ Wx, f(Ut ∩ Et) ⊂ K(f(t), ε

2 ). Let Wt be a nonempty open subset
of Ut, such that Wt \ Et ∈ N . Because Wt 6∈ N and Wt \ (Et ∩ Ex) ⊂
(Wt \ Et) ∪ (Wx \ Ex) ∈ N . Hence there exists u ∈ Wt ∩ Et ∩ Ex. We
have dY (f(t), f(x)) ≤ dY (f(t), f(u)) + dY (f(u), f(x)) < ε

2 + ε
2 = ε. Hence

f(t) ∈ K(f(x), ε) ⊂ V . Because X,Y are complete and f is quasi continuous
we obtain that Cf is a dense Gδ set; hence residual in X.

The assumption that X,Y are complete is essential. In fact let X = Q,
with natural metric and N = {∅}. For x ∈ Q let E(x) = {E ⊂ Q : x ∈
E & E is N -residual at x} and let f : Q → R be a function that for every
x ∈ Q, f is continuous from right and not continuous from left at x. For
q ∈ Q the set [q,∞)∩Q is N -residual at the point q. Because f is continuous
from the right at every point q ∈ Q, f is E-continuous, however Cf = ∅.

We call the set A N -second category at x, if for every neighborhood U of
x, A ∩ U 6∈ N .

We will say, that A ⊂ X has the N -Baire property if there exist open set G
and N ∈ N such, that A = G4N . The family of all sets having the N -Baire
property, where N is an ideal is denoted by ΩN .

Theorem 5. Let X, Y be complete metric space with I(X) = ∅ and let N be
the ideal of boundary subsets of X such that for x ∈ X, {x} ∈ N . If E is a
system of paths such that for every x ∈ X and E ∈ E(x), E has the N -Baire
property and is N -second category at x, then the set of continuity points of f
is residual in X.

Proof. We shall show that if E has the N -Baire property and is N -second
category at x, then it is N -residual at x. Indeed, let x ∈ X and E ∈ E(x).
Then there exist sets G ∈ τ and N ∈ N such, that E = G4N . Let U ∈ τ(x).
If G ∩ U = ∅, then U ∩ E = U ∩ (N \ G) ⊂ N ∈ N . This proves, that
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W = G∩U 6= ∅. Note that W ∈ τ , W ⊂ U and W \E ⊂ G\(G4N) ⊂ N ∈ N .
Thus E is N -residual at x.

The assumption of the N -Baire property is essential. In fact let N be a
family of meager subsets of R. Let B be a Bernstein set (i.e., such set that
for every perfect set F , B ∩ F 6= ∅ 6= F \ B). Define a system of paths E by
E(x) = {B} if x ∈ B and E(x) = {R \B} if x 6∈ B. Then for every x ∈ X and
E ∈ E(x), E is N -second category at x. Note that the characteristic function
of B is an everywhere discontinuous function which is E-continuous.

4 Weak path continuity and path limit set.

Let E be a system of paths on X and let f : X → Y . We shall say that f is
weak E-continuous at x if for all U ∈ ν(f(x)), we have f−1(U) ∈ FE(x). If f
is weak E-continuous at x for all x ∈ X, we say that f is weak E-continuous.

Let E be a system of paths on X. For f : X → Y and x ∈ X consider the
E-limit set

lsE(f, x) = {y ∈ Y : ∀V ∈ν(y)∃E∈E(x)∃U∈τ(x)f(U ∩ E \ {x}) ⊂ V }.

Note that f is weak E-continuous at x iff f(x) ∈ lsE(f, x),
Let us notice that for every system of path E and f : X → Y the set

lsE(f, x) is closed. Moreover the following assertion is true.

Theorem 6. Let X be uncountable, locally connected separable metric space
and Y be connected space with card(Y ) ≥ 2. Then F ⊂ Y is closed in Y
iff there exists a system of paths E and a function f : X → Y such that
lsE(f, x) = F for x ∈ X \ I(X)

Proof. First notice that if 0 < κ ≤ c, then there is a family {Kα : α < κ} of
disjoint sets dense in X \I(X) such that X =

⋃
α<κKα. Let 0 < κ ≤ c, B be a

countable base of X such that every B ∈ B is a connected set and B0 = {U ∈
B : card(U) > 1}. Hence X is uncountable. Then B0 6= ∅. The family B0 is
a base of X \ I(X). Let B0 = {Un : n = 1, 2, . . .}. Because X is a separable
metric space and Un is connected, card(Un) = c, (for n = 1, 2, . . .). Of course
X \ I(X) is separable. Therefore there exists a set H0 countable and dense in
X \ I(X). If α < c and {Hβ : β < α} is the family of disjoint, countable dense
sets in X \I(X), then card(Un) = c. Hence Un\

⋃
β<αHβ 6= ∅, for n = 1, 2, . . ..

Let (for n = 1, 2, . . . ) xn ∈ Un \
⋃

β<αHβ and Hα = {xn : n = 1, 2, . . .} .
Clearly Hα is countable, dense in X \ I(X) and Hβ ∩ Hα = ∅ for β < α.
Define Kβ = Hβ , for 0 < β < κ and K0 = X \

⋃
0<α<κHα. Let F ⊂ Y be a

closed set. If F = ∅, let A and B be disjoint sets dense in X \ I(X) such that
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A ∪B = X, s1, s2 ∈ Y , s1 6= s2, f : X → Y be such that f(x) = s1 for x ∈ A
and f(x) = s2 for x ∈ B and E(x) = {X}, for x ∈ X. Then lsE(f, x) = ∅, for
x ∈ X \ I(X).

Suppose now that F 6= ∅. Let κ = card(F ). Hence Y is separable and
card(Y ) ≤ c. Therefore κ ≤ c. Let {Kα : α < κ} be a family of disjoint sets
each dense in X \ I(X) and such that X =

⋃
α<κ

Kα and E(x) = {Kα ∪ {x} :

α < κ}, (x ∈ X). Let (yα)α<κ be sequence of all elements of F . We define
f : X → Y by f(x) = yα for x ∈ Kα, α < κ. Clearly lsE(f, x) = F for
x ∈ X \ I(X).

5 σ-Systems of Paths.

In paper [2] K. Banaszewski considered bilateral σ-systems of paths in R. We
now define analogous notion; namely, σ-systems of paths in metric spaces and
give some characterization. We also prove the notion of weak path continuity
is the same as the notion of path continuity for such systems.

The system of path E is called a σ-system of paths iff for every x ∈ X,
and every sequence (xn)∞n=1 with lim

n→∞
xn = x if Hn ∈ FE(xn), (n = 1, 2, . . . ),

then
⋃∞

n=1Hn ∪ {x} belong to FE(x).

Theorem 7. The system of paths E is a σ-system of paths iff for every func-
tion f : X → Y (where Y is metric , card(Y ) ≥ 2) the set f � CEf is closed in
f .

Proof. Suppose that E is a σ-system, f : X → Y , lim
n→∞

zn = z where

zn ∈ f � CEf (for n = 1, 2, . . . ) and z ∈ f . We shall show that z ∈ f � CEf .
Let zn = (xn, f(xn)), z = (x, f(x)), where x ∈ X, xn ∈ CEf (for n = 1, 2, . . . ),
lim

n→∞
xn = x, lim

n→∞
f(xn) = f(x). If there exists n0 ∈ N such that xn0 = x,

then of course x ∈ CEf and consequently z ∈ f � CEf . Thus we can assume
that xn 6= x and f(xn) ∈ K(f(x), 1

2n ), for n = 1, 2, . . . . Fix n ∈ N. Because
f is E-continuous at xn, there are Un ∈ τ(xn) and En ∈ E(xn) such that
f(Un∩En) ⊂ K(f(xn), 1

2n ). We can assume that (for n = 1, 2, . . . ) x 6∈ cl(Un).

There are E ∈ E(x) and G ∈ τ(x) such that E ∩G ⊂
∞⋃

n=1
(En ∩Un)∪ {x}. We

shall show that f � E is continuous at x.
Fix ε > 0. Let n0 > 1 be such that 1

n0
< ε. Let (for n < n0) Wn be an

open neighborhood of x, such that Wn ∩Un = ∅. Let U = G∩
⋂

n<n0

Wn. Then

U is an open neighborhood of x and E ∩ U ⊂
∞⋃

n=n0

(En ∩ Un) ∪ {x}. Hence
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f(En ∩ Un) ⊂ K(f(xn), 1
2n ) and (xn) ∈ K(f(x), 1

2n ). Then f(En ∩ Un) ⊂

K(f(x), 1
n ) for n = 1, 2, . . . . Thus f(E ∩ U) ⊂ f(

∞⋃
n=n0

(En ∩ Un) ∪ {x}) ⊂
∞⋃

n=n0

K(f(x), 1
n ) = K(f(x), 1

n0
) ⊂ K(f(x), ε). We obtain that x ∈ CEf and

z ∈ f � CEf .
Let Y be metric, card(Y ) ≥ 2. Suppose that for every function f : X → Y

the set f � CEf is closed in f . Let x ∈ X, (xn)∞n=1, (Hn)∞n=1 be a sequence
such that lim

n→∞
xn = x and Hn ∈ FE(xn), for n = 1, 2, . . . . We shall show

that there exist E ∈ E(x) and U ∈ τ(x) such, that E ∩U ⊂
∞⋃

n=1
Hn ∪{x}. Let

y0, y1 ∈ Y , y0 6= y1. We define f : X → Y by

f(t) =

y0 if t ∈
∞⋃

n=1
Hn ∪ {x},

y1 otherwise.

Let En ∈ E(xn), Un ∈ τ(xn) be such that En ∩ Un ⊂ Hn (for n ∈ N). Then f
is constant on En ∩Un. Thus xn ∈ CEf (for n ∈ N). Hence f(xn) = y0 = f(x)
(for n ∈ N) and lim

n→∞
xn = x. Then lim

n→∞
(xn, f(xn)) = (x, f(x)). Because

f � CEf is closed in f , we obtain that x ∈ CEf . Thus there is E ∈ E(x)
such that f � E is continuous at x. Let ε = dY (y0, y1) and U be an open
neighborhood of x such that f(U ∩E) ⊂ K(f(x), ε) = K(y0, ε). Then E∩U ⊂
f−1(y0) =

∞⋃
n=1

Hn ∪ {x}.

Corollary 1. Let E be σ-system on X and f : X → Y . If f � CEf is dense in
f , then f is E-continuous.

Theorem 8. Let X,Y be a metric spaces f : X → Y and E be a σ-system of
paths on X. Then f is E-continuous iff it is weak E-continuous.

Proof. If f is E-continuous and x ∈ X, then

f(x) ∈ {y ∈ Y : ∃E∈E(x)∀V ∈ν(y)∃U∈τ(x)f(U ∩ E \ {x}) ⊂ V } ⊂ lsE(f, x).

Hence f is weak E-continuous at x.
Suppose that f : X → Y is weak E-continuous and let x ∈ X. We can

assume that x 6∈ I(X). For every n ∈ N there exists Fn ∈ E(x) and Gn ∈ τ(x)
such that f(Fn ∩ Gn) ⊂ K(f(x), 1

2n ). Because x is a point of accumulation
of Fn, there exists xn ∈ K(x, 1

n ) ∩ Gn ∩ Fn \ {x} (for n = 1, 2, . . . ). Clearly
lim

n→∞
xn = x. We can assume that dX(xn+1, x) < dX(xn, x) for n = 1, 2, . . . .
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Let (for n = 1, 2, . . . ) rn = dX(xn, x), δn = rn − rn+1. Observe that rn >
0, δn > 0 and

K(x, rn) ∩
∞⋃

k=1

K(xk, δk) ⊂
∞⋃

k=n

K(xk, δk), for n = 1, 2, . . . . (4)

Because f is weak E-continuous, (for every k ∈ N) there exists Ek ∈ E(xk) and
Uk ∈ τ(xk) such that Uk ⊂ K(xk, δk), f(Ek ∩ Uk) ⊂ K(f(xk), 1

2k ). Observe
that

Ek ∩ Uk ⊂ f−1(K(f(x),
1
k

)), for k = 1, 2, . . . . (5)

Because E is σ-system of paths, there exist a set E ∈ E(x) and U ∈ τ(x) such

that E ∩ U ⊂
∞⋃

k=1

(Ek ∩ Uk) ∪ {x}. For every k ∈ N, Uk ⊂ K(xk, δk) from (4)

and (5) we obtain E ∩U ∩K(x, rn) \ {x} ⊂
∞⋃

k=n

(Ek ∩Uk) ⊂ f−1(K(f(x), 1
n ) ).

Because lim
n→∞

rn = 0, f � E is continuous in x.
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