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CONVEX FUNCTIONS WITH RESPECT TO
A MEAN AND A CHARACTERIZATION OF
QUASI-ARITHMETIC MEANS

Abstract

Let M : (0,00)®> — (0,00) be a homogeneous strict mean such that
the function h := M(-,1) is twice differentiable and 0 # h'(1) # 1.
It is shown that if there exists an M-affine function, continuous at a
point which is neither constant nor linear, then M must be a weighted
power mean. Moreover the homogeneity condition of M can be replaced
by M-convexity of two suitably chosen linear functions. With the aid
of iteration groups, some generalizations characterizing the weighted
quasi-arithmetic means are given. A geometrical aspect of these results
is discussed.

1 Introduction

A real function M defined on the Cartesian product J x J of an interval J C R
is said to be a mean if it is internal; that is, if min < M < max. A function
¢ mapping a subinterval I of J into J is called, M-affine, M-convex, and
M-concave, if, respectively,

¢ (M(z,y)) = M(p(z), p(y))
¢ (M(z,y)) (p(x), ¢(y))
¢ (M(z,y)) (), ¢(y))

forall z,y € I (cf. G. Aumann [5] where even two different means are involved;
also J. Aczél [1], and [12], [13]). For M = A where A is the arithmetic mean,
we obtain the classical notions of Jensen convexity, concavity and affinity. It
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is well known that every measurable, or one-sided bounded at a point, Jensen
affine function is of the form ¢(x) = ax + b for some real a,b. The family of
all A-affine functions is rich in the following sense. For any two distinct points
from the domain of A there exists exactly one A-affine function the graph
of which passes through these points. This fact allows the acquisition of the
epigraph of an A-convex function as the intersection of all the epigraphs of its
supporting A-affine functions. This property is also shared by functions convex
with respect to the weighed quasi-arithmetic means. (In this connection, in
the last section, we introduce a notion of “M-affinely convex function”.) In
[11] it is shown that the logarithmic mean L does not have this property,
because every L-affine function is either constant or linear (that is, of the
form ¢(z) = ax).

The main result of Section 3 says that if a mean M is homogeneous, the
function M (-, 1) is twice differentiable, and there is an M-affine function, con-
tinuous at least at one point, which is neither linear nor constant, then M
must be a power mean. In Section 4 we generalize this result replacing the
homogeneity of M by the assumption that two suitably chosen linear func-
tions are M-convex. A mean M on (0,00) is homogeneous iff for every a > 0
the linear function ¢(z) = ax is M-affine and, moreover, the family of these
functions forms a (multiplicative) iteration group. In Section 5, replacing the
homogeneity condition of M in the main result of Section 3 by the assumption
that there is a family of M-affine functions which form an iteration group,
we prove that M must be a weighted quasi-arithmetic mean, which is a new
characterization of this kind of means. In the last section, to discuss some con-
sequences of these results in relation to classically convex functions we define
a function to be “M-affinely convex”. Finally we mention a recent result by J.
Aczél and R. Duncan Luce [3], motivated by some problems in utility theory
and psychophysics, in which the functional equation H[K (s,t)] = L[h(s), h(t)]
is considered, and we formulate an open problem.

Note that some questions related to a characterization of LP-norm [9] and
the Euler gamma function [6], [7] in a natural way lead to the M-convexity
with M # A.

2 Preliminaries

Let J C R be an interval. A function M : J?2 — R is said to be a mean on J if
min(z,y) < M(z,y) < max(z,y), x,y € J. Moreover, if for all z,y € J, x # y,
these inequalities are strict, M is called a strict mean and if M (x,y) = M (y, x)
for all x,y € I, M is called symmetric.

If M :J? — Ris a mean, then M is reflexive; that is, M (x,z) =z, x € J.
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It is easy to see that every reflexive function M : J? — R which is (strictly)
increasing with respect to each variable is a (strict) mean. The reflexivity of
a mean M implies that M(I?) = I for every interval I C J, and M|;x;. is
a mean on I. This property permits to generalize the classical notions of the
convex, concave and affine functions in the following way (cf. [1], [5], [12],

[13]).
Definition 1. Let J C R be an interval, M : J2 — J ameanon J, and I C J
an interval. A function ¢ : I — J is said to be:

convez with respect to M on I, or simply, M-convex on I, if
@ (M(z,y)) < M(p(x), 0(y)), =,y €1,

M-concave on I, if the inequality is reversed and

M-affine on I, if it is both M-convex and M-concave; i.e., if,
@ (M(z,y)) = M(p(x), 0(y)), z,y € I.

Remark 1. Suppose that M : J? — J is a mean. Then

1. every constant function ¢ : J — J and the identity function ¢ = id | is
M -affine,

2. for M = min or M = max every increasing function ¢ : J — J is M-
affine. Thus, if M is not strict, then the class of M-affine functions is,
in general, essentially lager,

3. if ¢: J — Jis M-convex, strictly increasing and onto, then the inverse
function ¢! is M-concave.

Note that taking in these definitions M = A, where A : R? — R denotes
the arithmetic mean, A(z,y) = “¥, we obtain the classical Jensen affine and

2
Jensen convex functions.

Remark 2. Suppose that a mean M : (0,00)?> — (0,00) is a homogeneous
function of an order p € R; that is, M (tx,ty) = t* M (x,y), t,z,y > 0. Then

1. p=1,
2. setting h(t) := M (t,1), t > 0, we have

x
M(.’E,y)—yh(;), l’,y>0, h(l)_l
h(z)—1
(x)igl,x>0,x7é1,
z—1

0<
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and these inequalities are strict iff M is a strict mean. Moreover, if h is
differentiable at the point 1, then 0 < h'(1) <1,

3. besides the constant functions, every linear function p(z) = ¢(1)z, x €
R, is M-affine,

4. if c € (0,00) and ¢ : (0,00) — (0,00) is M-affine, then so is cp.

Remark 3. Suppose that M : J? — J is a mean and I, I, C J are intervals.
If o1 : [y — I, o : Is — J are M-affine, then clearly, the composition 5 0
is also M-affine.

Let us note the following.

Lemma 1. Let J C R be an interval and M : J?> — R a strict and continuous
mean. Suppose that M is strictly monotonic with respect to one of the variables
(in a neighborhood of the diagonal {(x,x) : x € J}). If I C J is an interval
and @, : I — J are M-affine, continuous, and o(x1) = ¥(x1), p(x2) = ¥(x2)
for some x1,x0 € I, 11 # X2, then @ = 1.

PROOF. Assume that M is strictly monotonic with respect to the first variable.
Put Iy := {x € I : p(x) = ¢(x)}. By the continuity of ¢ and 1 the set Iy is
closed in I. Assume that z; < z3. We shall show that [z1,z2] C Iy. Indeed,
in the opposite case the set [z, 23] \ Ip would be at most countable sum of
nonempty intervals. If (a,b) is one of such an intervals, then p(a) = ¥(a),
©(b) = 9(b). Hence we get

@(M(a,b)) = M(p(a), p(b)) = M(¢(a), (b)) = (M (a,b)).

Since M is a strict mean, we have a < M (a,b) < b and consequently, M (a,b) €
Ip; that is, a desired contradiction. In particular we have proved that I is
an interval. Suppose that Iy # I. Then at least one of the endpoints of
the interval Iy would be an interior point of I. Assume, for instance, that
¢ := min Iy belongs to I. Let us take xzg € Iy, 9 > c. Since M is strict, we
have ¢ < M(c,z9) < zo. The continuity of the function I 5 x — M(z, )
implies that there is a § > 0 such that [c — §,z0] C I and M (z,z¢) € [c, 0]
for all = € [¢ — §,x¢]. Hence for x € [c — 4, z9] we have

M (), p(x0)) = M(¢(x),d(w0)) = (M (x, 70))
= p(M(x,x0)) = M(p(x), p(20))-

Since M is strictly increasing with respect to the first variable, we infer that
P(x) = p(z) for all € [c — §, 0], which contradicts to the definition of
¢. (Choosing z( close enough to ¢, we can argue similarly in the case when
M is increasing with respect to the first variable in a neighborhood of the
diagonal.) O
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3 A Basic Result for Homogeneous Means

The main result of this section reads as follows.

Theorem 1. Let M : (0,00)? — (0,00) be a strict and homogeneous mean.
Suppose that the function h : (0,00) — (0,00) defined by h(z) == M(z,1), x >
0, is twice differentiable, and 0 # h'(1) # 1. If there exists an M -affine func-
tion, continuous at a point which is neither constant nor linear, then there is
a p € R such that

(wzP 4 (1 — w)yp)l/p forp#0

M(z,y) :{ o 1w

z,y >0
vy forp=0" Y ’

where w := h'(1).

PROOF. Let ¢ : (0,00) — (0,00) be continuous at a point xo, and M-affine
function; i.e.,

o (M(z,y)) = M(p(2), (), ©,y > 0. (1)

Suppose that ¢ is nontrivial; that is, it is neither linear nor constant in (0, c0).
By Remark 2 we have 0 < h/(1) < 1. The continuity of A’ implies that h is
strictly monotonic in a neighborhood of 1. It follows that in a neighborhood of
the diagonal M is locally strictly increasing with respect to both variables. To
show it note that there is an € > 0 such that 0 < R'(t) < 1, t € (1 —¢,1 4 ¢).
Let us fix an arbitrary y > 0. Since, by the homogeneity of M,

M(z,y) = yh (:;) L2,y > 0, 2)

we have 5

M T
—_ =h (= 0
Oz (x7y) (y>7 z,y >0,

and, consequently, there is an € > 0 such that %—Af(x, y) > 0 for all z,y >0
such that 1 — e < 2 < 1+ . which proves that M(-,y) is increasing in a
neighborhood of y for every y > 0. Similarly, since

oM T T x
()2 (2 0
82/( v) <y) vy o\Yy Y

and, h(1) = 1, we infer that, there is an & > 0 such that %—A;(x,y) > 0 for all
x,y > 0 such that 1 —e < £ < 1+ . This proves that our mean M is strictly
increasing with respect to both variables in a neighborhood of the diagonal.
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Suppose that ¢ is continuous at a point o > 0. Choose y > 0, y # xg, such
that M is strictly increasing with respect to both variables in a joint neighbor-
hood of the points (xq, o), (z0,y), (y,y). Assume, for instance, that xo < y.
Then g < M(zo,y) < y. Take an arbitrary point zy € (zo, M(zo,y)). By
the continuity and the strict increasing monotonicity of the function M (z, ),
there is a unique yo € (xg,y) such that zg = M(zo,y0) and the function
M (-, yp) is strictly increasing in a neighborhood of z¢. Let (z,,) be an arbitrary
sequence such that z, — zg as n — oo and z,, € (xg, M (z9,y)) for all n € N.
Hence, for every n there is a unique x,, € (zo,y) such that M(z,,y0) = zn.
Moreover we have z, — zp as n — oo. In fact, in the opposite case, for a
subsequence of (z,, ), by the continuity of M, we would get

lim M (zn,,y0) = M(Z,y0) = 20,

k—oo
for some T # g, which contradicts to the strict monotonicity of M (-,yo) in
[z0,y]. Now, making use of the M-affinity of ¢, the continuity of M, and the
continuity of ¢ at xg, we get

Hm o(z) = Hm (M (2, 40)) = Lm M(p(zn), ¢ (yo))
= M(p(20), ¢(%0)) = (M (z0,90)) = ¢(20)

which proves that ¢ is right-continuous at zy. Assuming that y < M (zg,y) <
Zp in the same way we can show that ¢ is left-continuous at zy. Thus we have
shown that ¢ is continuous in a neighborhood of the point zy. (The argument
used in the proof of the continuity is similar to that applied in [10].)

Let (a,b) denote the maximal open interval of the continuity of ¢ such
that o € (a,b). Suppose that b < oo. Since M is strictly increasing in a
neighborhood of (b,b), choosing zo sufficiently close to b, and the numbers
20, Y0, To < b < 29 < yo, we can argue as in the previous step to show that
@ is continuous in a right neighborhood of b. This contradicts the definition
of b and proves that b = co. A similar argument shows that a = 0. Thus ¢ is
continuous on (0, co0) is completed.

Since the constant and linear functions are M-affine, Lemma 1 implies that
¢ is strictly monotonic and there is no interval I C (0,00) such that ¢|; is
constant or linear. Moreover equation (1) can be written in the form

@ (yh (;)) = p(y)h (ig;) ;Y > 0. (3)

The function ¢, being monotonic, is differentiable almost everywhere. Let z >
0 be a differentiability point of . Relation (3) and the assumed differentiability
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of h imply that, for arbitrarily fixed y > 0, the function ¢ is differentiable at
a point yh (%) . Consequently, ¢ is differentiable everywhere.
Differentiation of both sides with respect to x and y gives, respectively,

A () e 0
PO

o (2) - (22) 2280 -

(Note that the continuity of the right-hand side of (4) with respect to y im-

and

()

plies the continuity of ¢’ (yh (%)) with respect to y and, consequently, the
continuity of ¢’.) Suppose that ¢'(z¢) = 0 for some xy > 0. Since b’ is con-
tinuous at 1 and /(1) # 0, relation (4) implies that ¢’ (yh (%)) — 0 for all

y from a neighborhood of the point xy. Moreover, the function y — yh (%

maps every interval neighborhood of zy on a nontrivial interval. In fact, in
the opposite case, this function would be constant on some neighborhood of
xo; 1.e., h (%0) = £. Since h(1) = 1, we infer that ¢ = 2o and h(t) =t in a
neighborhood of the point 1. Consequently, M (z,y) = « in a neighborhood of
the point (zg,x0). This is a contradiction because M is a strict mean. Hence
¢’ () = 0 in a neighborhood of xg, and ¢ would be constant in this neigh-
borhood. By Lemma 1, ¢ would be constant on (0, 00). This contradicts the
assumption that ¢ is nontrivial. Thus we have shown that ¢’ # 0 in (0, c0).
Let (a,8) C (0,00) be the maximal interval such that 1 € («, ) and
R'(t) # 0 for all t € (o, 8). Take arbitrary ¢t € (o, 8) and z,y > 0 such that

= t. Since ¢’ # 0, from (4) we infer that ‘;Ezg € (o, 3). Now from (5) and

v
(4) we obtain

vz SO (E) v
h () ) (M(56) )
CNET h'((iét@;))))i(tj) te(@iy>0. (6)
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Setting H(t) := g,((tt)) t, t € (o, 3), we get

_ ), (elty) 0. B):
H{E) = @’(ty)H<<p(y)>’ telaf)iy>0, (@)

and, of course, H is differentiable in («, 3). Suppose that there is a ¢ty € («, 5),
to # 1, such that H(tg) = 0. Then we would have H (“”(t("z)’)) = 0 for all

y > 0. Hence either H(t) = 0 in a neighborhood of ¢y, or % = to for
all y > 0. The first case cannot occur because, by the definition of H, we
would have h(t) = ct in a neighborhood of ¢y, and, consequently, by (2),
M(z,y) = yh (%) = kx for some k > 0 and for all =,y > 0 such that
Z belongs to the neighborhood of ty. Since M is a strict mean, we have k
< L. Hence, by (1), p(kz) = ¢ (M(x,y)) = M(p(x), ¢(y)) = kp(x); that is,
% = @ for all z > 0. Thus ¢ coincides with a linear function at the
points z and kz. By Lemma 1, the function ¢ must be linear, which is the
desired contradiction. In the second case we would have ‘P(toy) = W(;y) for all
y > 0, and again, ¢ would be a linear function. Thus we have shown that
()#Oforallte(oz,ﬁ), t#1.

Setting y = 1 here we get ¢'(t) = ga’(l)HI({“”(g)), t e (o, ), t # 1. Whence,
the differentiability of H implies that ¢ is twice differentiable in («, 3) \ {1}.
Taking (7) into account, we infer that ¢ is twice differentiable in (0, 0o). Dif-
ferentiating both sides of (7) with respect to t € («, 3) we obtain

i Wy L (ety)\ | YWy L (ety)
i =g (2 )+ S (%ar)

for all t € (o, 8); y > 0. Taking ¢ := 1 here and replacing y by =, we get

H)22 D) 1,28 4 gy — o, 2 > 0. (8)

Since h(1) = 1 and, by assumption, h'(1) # 1, we have

Mo 12,

= we ' =
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—1 =0, x > 0, and, consequently, there would exist a ¢ > 0

Hence z “:;((;”))
such that ¢(z) = cx, x > 0, which is a contradiction.
Putting p := 1— 1;{1((11))’ we can write equation (8) in the following equivalent
form " . .
AR N el
o(x) x

¢'(x)
For p = 1 the only functions satisfying this differential equations are linear.

Solving this differential equation for p # 1 we obtain
1. if 0 # p # 1, then, for some a,b € R, a > 0, b > 0,
o(x) = (az” +b)'/? | 2> 0; (9)

2. if p =0, then, for some a,b € R, 0 £ a # 1, b# 0,
o(x) =bx?, x >0, (10)

(we have excluded here the constant and linear functions).

Now we shall find the form of the mean M in each of these two cases. In

the first case, when 0 # p # 1, from (3) we have
P} 1/p
(az? +b) ), z,y > 0.

] ) =t (227

Replacing a'/Pz and a'/Py, here respectively by z and y we obtain

({yh (i)}p +b)1/p = (P +b)""h ((;”ZIZ)I/Z)> Y > 0.

Multiplying both sides by an arbitrary ¢ > 0 (cf. Remark 2, part 4) we get,
for all z,y > 0,
(cz)P + cpb>1/p>

({cyh (Cx)r + cpb)l/p = ((cy)? + ") /P h (((cy)p o

Replacing cx, cy, cPb, here respectively, by x,y and r, we obtain

¥4 1/p p
h((mpir) >] for all r,z,y > 0.
yP +r

@) =00
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Hence, for all r,z,y > 0,

e = [ (£)] = )

h (( +)/>] e

yP+r
Taking into account that the right hand side does not depend on r > 0, and
the relation h(1) = 1, we obtain, for all z,y > 0,

P
P +r 1/p
h<(y”+r> -
zP+r
P 1/p p [h((yp+r
=yP lim h <<M> ) + lim

(M (z,y)]"”

T—00

lim {(yp +7)

r—00 yp +r r—00

=y’ = h'(1)(y" —a").

Consequently, M (z,y) = (wa? + (1 — w)yp)l/p, x,y > 0, where w := h/(1).
Since w € (0,1), M is a weighted power mean.
Now consider the second case when p = 0. From (3) we have

b [yh (“”)} = by®h (bx) , 2,y > 0.
Yy by®

Putting ¢ := % for z,y > 0, we obtain the functional equation
[h ()] =h("), t>0.

Define F' : R — R by F :=logohoexp. Then F(0) = 0, F is differentiable at 0,
F(0) = h'(1), and F satisfies the functional equation F(au) = aF(u), u € R.
Since this equation is equivalent to a ™ 'F(u) = F(a"'u), (u € R), we can
assume, without loss of generality, that |a| < 1. Hence, by induction, F(a"u) =
a"F(u) for all u € R and n € N. Thus F(u) = 29"y, 4 € R, n € N. Letting

a™u
n — oo we get F(u) = F'(0)u, u € R, and, consequently, h(t) = t“, ¢ > 0.
Of course we have 0 < w < 1. Thus in this case M (z,y) = z%y*~%, z,y > 0,

where w := h/(1) which proves that M is a weighted geometric mean. O

Remark 4. Note that in the case p # 0 every function ¢ of the form (9) with
positive a and b is M-affine, and in the case p = 0, every function of the form
(10) with positive a and b is M-affine.
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Remark 5. Let M : (0,00)? — (0,00) be a homogeneous mean and let h, h* :
(0,00) — (0,00) be defined by h(x) := M(z,1), h*(z) := M(1,z), = > 0.
Then h*(z) = zh (%), « > 0. If moreover h is differentiable at the point 1
and h/(1) = 0, then (h*)l (1) =1 and vice versa.

To show that the assumption 0 # h'(1) # 1 is essential consider the fol-
lowing.

Remark 6. Let M : (0,00)% — (0,00) be a homogeneous mean. Suppose that
h:(0,00) — (0,00) defined by h(z) := M(z,1), x > 0, is twice differentiable
(in a neighborhood of 1) and h'(1) =0, RA"(1) #0. If ¢ : (0,00) — (0,00) is a
twice differentiable M -affine function, then either ¢ is linear or constant. The
same remains true if twice differentiability is replaced by nth differentiability
and ' (1) = h"(1) = ... = h(®=D(1) = 0, h(™ (1) # 0.

Proor. Differentiating twice both sides of (3) with respect to x we obtain

GG 3 (0 (G ()
Y Y
_ <P(9€)) @) ( (96))
(so(y) v(y) (v) o
Taking here y := = and making use of the assumptions h'(1) = 0, h”(1) # 0,
we get b (1) ¢ () ([‘pl(ﬂ - %) = 0. If ¢ is not constant, then [‘i;%))] =1

o(z) x)
and, consequently, ¢ is linear. The same argument works in the case n > 3 as
after n times differentiation of both sides of (3) and the substitution y := x
only two summands do not disappear and we again get the above differential
equation. O

As a consequence of Theorem 1 we obtain the following.

Corollary 1. Let M : (0,00)> — (0,00) be a strict, symmetric, and ho-
mogeneous mean. Suppose that the function h : (0,00) — (0,00) defined by
h(z) := M(x,1), © > 0, is twice differentiable. If there exists an M -affine
function, continuous at a point which is neither constant nor linear, then there
is a p € R such that

2P LyyP 1/p
Mg = | (F55) Jorp#0
Ty forp=0.
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4 A Generalization Involving M-Convex Functions

Theorem 2. Let M : (0,00)? — (0,00) be a strict continuous mean. Suppose

that:
1. there are a,b > 0, a <1 < b, 11252 ¢ Q, such that the linear functions
(0,00) 3 z — ax, (0,00) > & — bz are both M-convex (or both M-

concave),

2. the function h(z) == M(xz,1), x > 0, is twice differentiable, and 0 #
(1) #£ 1.
If there exists an M -affine function, continuous at least at one point, which
is neither constant nor linear, then there is a p € R such that

M) = {%x’;z(l o) forp 0

) 'T)y > 07
vy forp=20
where w := h'(1).

PrOOF. The assumed convexity of the functions (0,00) 3 x — ax and (0, 00) >
x — bx implies that
aM(z,y) < M(az,ay), bM(z,y) < M(bz,by), x,y > 0.
Hence, by induction, for all n,m € N and z,y > 0,
a™M(z,y) < M(a™z,a™y); b"M(x,y) < M (" z,b"y),
whence
a™b" M (z,y) < M(a™b"x,a™b™y); m,n, € N,z,y > 0.

The assumptions on ¢ and b imply that the set {a™bd" : m,n, € N} is dense
in (0,00). The continuity of M implies that tM(z,y) < M(tz,ty); t,z,y > 0,
which, obviously yields the homogeneity of M. Now our theorem follows from
Theorem 1. O

5 Non-Homogeneous Means - A Characterization of
Weighted Quasi-Arithmetic Means

By Remark 3, if g : J — J is M-affine, then, for every n € N, its nth iterate
g™ is M-affine If, moreover, g is invertible, then the inverse ¢! is M-affine on
g(J), and the family of iterates {g* : k € Z} is a group consisting of M-affine
functions.

We begin with recalling the following.
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Definition 2. Let J C R be an interval. A one-parameter family {g* : u € R}
of continuous functions ¢* : J — J such that g*“ o ¢ = ¢**%, u,v € R;
g" =id|; is said to be an iteration group (cf. M. Kuczma [8], p.197-198). If for
every z € J the function (—o0,00) 3 u — ¢g“(z) is continuous or measurable,
the iteration group is called, respectively, continuous or measurable.

Remark 7. Suppose that {g* : u € R} is an iteration group in an interval .J.
Then the function F : J x R —J |, F(z,u) := g*(z), satisfies the translation
equation F(F(z,u),v) = F(z,u+v), x € J, u,v € R. If J is open and
{g" : t € R} is a continuous iteration group, then (J. Aczél, [2], p. 248), there
is a surjective homeomorphic function v : J — R, determined uniquely up
to an additive constant (cf. [2], p. 246), such that F(z,u) = v~ 1 (y(x) + u),
x € J, u € R and, consequently, g*(z) =y~ 1(y(x) +u), z € J, u € R. Setting
a = exp oy we can write this iteration group in the form g% (z) = a~!(e%a(x)),
x € J;u € R, where a: J — (0, 00) is a surjective homeomorphism determined
uniquely up to a multiplicative positive constant. The function « is referred
to as a generator of the iteration group. Note that the family {f* : ¢t > 0}
defined by f* := ¢'°8* t > 0, is a “multiplicative” iteration group; that is,
féoft=f3t s,t>0,and

fi(z) = a (ta(z)), t > 0,2 € J. (11)

In the sequel it is convenient to write the iteration groups in their multiplicative
forms.

Let us mention that M. C. Zdun [14] proved that every measurable iteration
group is continuous.

A motivation for the present section is the following obvious comment.

Remark 8. The family {f*:¢ > 0} of linear functions f*: (0,00) — (0, 00),
fi(z) :=tz, x > 0 is a continuous (multiplicative) iteration group. Moreover,
a mean M : (0,00)? — (0,00) is homogeneous if, and only if, every function
of this family is M-affine.

Now we prove this assertion.

Theorem 3. Let J C R be an open interval and M : J? — J a strict mean.
Suppose that there exists a continuous iteration group {f' : t > 0} of the
form (11) which consists of M-affine functions. Furthermore, suppose that
h: (0,00) — (0,00) defined by h(u) := a(M(a=t(u),1), u > 0 is twice dif-
ferentiable, and 0 # h'(1) # 1. If there exists an M-affine function, continu-
ous at a point, that is neither constant nor an element of the iteration group
{ft:t >0}, then

M(z,y) = 57" (wh(z) + (1 —w)B(y)), v,y € J
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for some continuous and strictly monotonic function § : J — (0,00) and
w = h'(1); that is, M is a weighted quasi-arithmetic mean.

PROOF. By assumption each function of the iteration group {f* : ¢ > 0} is
M-affine; ie., f'(M(z,y)) = M (f'(z), f{(y)), t > 0,z,y € J. There exists
(cf. Remark 7) a surjective homeomorphism « : J — (0, 00) such that fi(z) =
a ta(x)), t > 0,z € J. Hence

o ta(M(z,y)) = M (o (ta(z)),a " (ta(y))), t > 0,2,y € J.

Take arbitrary u,v > 0. There are z,y € J such that # = o~ (u) and y =
a~1(v). Setting these numbers into the above formula, we obtain

a(M (o (tu), o (tv))) = ta(M (o™ (u), M (e (v))), t,u,v >0,

which shows that the function K : (0,00)? — (0,00) defined by K (u,v) :=
a(M(a=Y(u),a 1 (v))), u,v > 0, is homogeneous. It is also obvious that K
is a strict mean. By Theorem 1, K is a weighted power mean with a power
p € R and the weight w = h’(1). Whence

ot [(wla@)]? + (1 - w)la(y))?] forp+0

, x,y € J.
o tHa(z) Y aly) =] forp=0

M(Ly){

To complete the proof it is enough to take B(x) := «a(z)P, x € J, in the case
p # 0, and [ := Inoa in the case p = 0. O

Remark 9. If M is a weighted quasi-arithmetic mean with generator 3, then
the family {6*1 otof:t> O} is an iteration group and every function of this
family is M-affine.

The following counterpart of Theorem 2 for non-homogeneous means is a
characterization of the weighted quasi-arithmetic means.

Theorem 4. Let J C R be an open interval and M : J?> — J a strict con-
tinuous mean. Suppose that there is a homeomorphism « : J — (0,00) such
that

1. for some a,b > 0, a < 1 < b, the number 11:3);2

functions a1 o (aa) and o~ o (ba) are both M-convex (or both M-
concave);

s irrational and the

2. the function h : (0,00) — (0,00) defined by h(x) := a(M(a~ (z),1)), >
0, is twice differentiable and 0 # h'(1) # 1.
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If there exists an M -affine function, continuous at a point which is neither
constant nor of the form a~! o (ta) for at > 0, then

M(z,y) = 57" (wh(z) + 1 —w)By),  =y€,

for some continuous and strictly monotonic function 8 : J — (0,00) and
w = h'(1); that is, M is a weighted quasi-arithmetic mean.

PRrOOF. By the M-convexity of the functions a~! o (aa) and a=! o (ba) we
have
a”Haa(M(z,y))) < M(a" a(a™ (2)),a” a(a™ (y)))

and
a”t(ba(M(z,y))) < M(a" (b(a™ (), e (bla" (y)))

for all z,y > 0. Hence, taking into account that a1 o (aa) and a~! o (ba) are
increasing, by induction, we obtain, for all m € N and z,y > 0,

a Hama(M(z,y))) < M(a" (@™ (o H(2)), o (a™ (a7 (y)),
and for all n € N and z,y > 0,
a” (V" a(M(z,y))) < M(a™ (0" (™" (2),a™ (0" (a™ ' (y))).
From these two inequalities we get, for all m,n € N and z,y > 0,
a H(a""a(M(z,y))) < M(a™ (a™0" (a7 (2)),a” (@b (a7 (y))).

Now the density of the set {a™bd" : m,n, € N} in (0,00) and the continuity of
M imply that, for all ¢,z,y > 0,

o~ (ta(M(z,y))) < M(a™ (ta™ (z),a™ (ta™ (1))

that is, for every ¢t > 0 the function a~! o (ta) is M-convex. Since, for every
t > 0, the function a~! o (ta) is increasing, its inverse, a~! o (t71a) is M-
concave (cf. Remark 3). It follows that a~! o (ta) is M-affine for every ¢ > 0.
Since the family {f!: ¢ > 0} with f! := a~!o (ta) is an iteration group, our
result follows from Theorem 3. O

6 Some Conclusions for M-Convex and “M-Affinely Con-
vex” Functions

Let us introduce the following notion.
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Definition 3. Let J C R and I C J be intervals and M : J? — J a mean.
A function f : I — J is said to be M-affinely convex if for every xg € I
there is an M-affine function ¢ : J — J such that f(z¢) = p(z¢) and ¢(x) <
f(z) for all z € I.

For a function f : I — J denote by E(f) the epigraph of f; i.e., the set
E(f) ={(z,y) e I xR: f(z) <y}
Remark 10. A function f : I — J is M-affinely convex if, and only if,
there is a family ® of M-affine functions ¢ : I — J such that E(f) =
M{E(p) : p € O},

Theorem 5. Suppose that M : J> — J is a mean in an interval J which is in-
creasing with respect to each variable. Then every M -affinely convex function
is M -convez.

PRrROOF. Let I C J be an interval and suppose that f : I — J is M-affinely
convex. Take z,y € I. By Definition 3 there is an M-affine function ¢ :
J — J such that f(M(x,y)) = o(M(z,y)) and o(u) < f(u) for all u € I.
Hence, by the M-affinity of ¢ and the increasing monotonicity of M, we have
FM(z,y)) = o(M(z,y)) = M(p(x),0(y)) < M(f(2), f(y))- 0

Remark 11. Given a continuous and strictly monotonic function g : J — R
and w € (0,1), denote by Mg : J?> — J the quasi-arithmetic mean

Mg(z,y) = 57" (wB(@) + (1 —w)B(y)), v,y € J.

Suppose that a function f : I — J is measurable (or the closure of the graph
of f does not have interior points). Then, obviously,

1. if B is increasing, then f is Mg-convex iff the function S o fo 87! is
convex,

2. if 3 is decreasing, then f is Mg-convex iff the function Bo fo 371 is
concave.

Now it is easy to see that
o fis Mg-convex iff it is Mg-affinely convex.
We obtain the following an immediate consequence of Theorem 1.

Proposition 1. Let M : (0,00)% — (0,00) be a strict homogeneous non power
mean. If h := M(-,1) is twice continuously differentiable and 0 # h'(1) # 1,
then the following conditions are equivalent:
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1. a function f : (0,00) — (0,00) is M-affinely convez.

2. f is either constant or linear or f(z) = max(a,cx), = € (0,00), for some
a,c > 0.

Example 1. The logarithmic mean L : (0,00)? — (0, 00),

_a-y
L(m7y) = {logz_logy ior €T f y
z orr =1y

is homogeneous and non-power. By Theorem 1 (cf. also [11]), every continuous
at a point L-affine function is either constant or linear. Since the function
exp |(O,oo) is L-convex (cf. 10]), taking into account the above Proposition, we
infer that the notions of L-convexity and L-affine convexity are not equivalent.

7 Open Problems and Final Remarks

In Theorems 1-4 we assume twice differentiability of the mean. It is an open
question wether these results remain true under weaker regularity conditions.
Let us mention that in a recent paper [3], J. Aczél, R. Duncan Luce moti-
vated by some problems in utility theory and psychophysics, considered the
functional equation H (K (s,t)) = L(H(s),H(t)), s >t > 1, where K and L
are homogeneous functions, which is more general than (1). Assuming that H
is twice differentiable and strictly increasing, and the functions K and L are
twice differentiable, the authors determine the forms of H and K. According

to a personal communication, this functional equation will be also considered
in [4].

Acknowledgement 1. I am greatly indebted to the referee for several valu-
able comments, in particular for a simplification of some calculations in the
proof of Theorem 1.
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