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ON t-CONVEX FUNCTIONS®

Abstract
The main results of the paper, answering an open problem raised in
[3], show that ¢t-convexity can also be characterized in terms of a lower
second-order generalized derivative. As a consequence, we obtain that
t-convexity is also a localizable convexity property.

1 Introduction

A real-valued function f : I — R defined on an interval I C R is called t-convez
if

flte+ (1 =t)y) <tf(z) + (1 —1t)f(y) for 2,y € I, (1)
where t is a fixed element of the open unit interval ]0,1[. If (1) holds with
t = 1/2, then f is said to be Jensen-conver or midpoint convex (cf. [14]).
Obviously, any convex function is t-convex, however there are nonconvex but
t-convex functions. By a result of Kuhn [9], t-convexity always implies Jensen-
convexity (cf. also [2] for a more elementary proof) but, for every irrational ¢,
there exists a Jensen-convex but not ¢-convex function.

A related functional inequality is

S =tz +ty) + flte+ (1 —t)y) < f(x) + f(y) for z,y € I.

Functions satisfying the above inequality are called t- Wright-convez (see [16]
for the origin of this notion). It is obvious that t-convex functions are also
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220 KAZIMIERZ NIKODEM AND ZSOLT PALES

t-Wright-convex, however, depending on the algebraic character of ¢, t-Wright
convexity can be equivalent and also non-equivalent to t-convexity. (See the
paper [10] of Maksa, Nikodem, and Péles for further details.)

In a recent paper [3], Gilanyi and Pales proved that ¢-Wright-convexity
can be characterized in terms of a properly chosen generalized second-order
derivative. Due to this characterization, it turns out that ¢t-Wright-convexity
is also localizable; i.e., a function is t-Wright-convex on I if and only if each
point of I possesses a neighborhood such that the function restricted to this
neighborhood is t-Wright-convex.

The main results of the paper, answering an open problems raised in [3],
show that ¢-convexity can also be characterized in terms of a lower second-
order generalized derivative. As a consequence, we obtain that ¢-convexity is
also a localizable convexity property.

2 Second-Order Divided Differences

For an arbitrary function f : I — R define the second-order divided difference
of f at three pairwise distinct points z,y, z of I by

f(x) () N f(z)
y—z)(z—2) (r—-y)(z—-y) (r—2)(y—2)

f[x’y7z] = (

Obviously, the above expression is symmetric in z,¥y,z. The Mean Value
Theorem of divided differences is recalled in the following Lemma (cf. [5], [6]).

Lemma 1. Let f : I — R be a twice differentiable function on I. Then, for
all distinct elements x,y,z of I, there exists a point & € co{x,y, 2} such that

f[xayaz] = f2(§)

It is an immediate consequence of the above Lemma that if f is a second-
degree polynomial of the form f(x) = a + bx + cx?, then f[z,vy,2] = c for all
pairwise distinct z,y, z in I.

The next result offers an identity called the chain formula for chains of
divided differences of second-order. A generalization of this result for higher-
order divided differences can be found in [8, Lemma XV.2.2, pp. 376-377.].

Lemma 2. (Chain Formula) Let zo < 1 < --- < xp, (n > 2) be arbitrary
points in I. Then, for each fixed 0 < j < n, there exist positive constants
AyeveysAp_1 with Ay + -+ A1 = 1 such that

n—1
Z Niflric1, @i, 2] = flxo, x5,y (2)

i=1
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holds for all functions f : I — R. Moreover,

($i+1 - %41)(961' - JUO)
(zn — 20)(xj — T0)
st if i = j, (3)

n 0
(ip1 — xi—1)(Tp — 4)
(zn — o) (Tn — 25)

ifl1<i<j,

A =

ifj<i<n-—1.

For the sake of completeness, we provide a simple proof for the above
lemma which uses a completely different argument than that of [8, Lemma
XV.2.2].

Proor. First of all observe that if (2) holds for some function f and f* :
I — R is a function satisfying f(z;) = f*(x;) for ¢ = 0,1,...,n, then (2) is
also satisfied by f* instead of f. To utilize this observation, we show that,
for every function f : I — R, there exist constants a, cg, c1, - .., cp—1 such that
the function f*: 1 — R defined by

n—1
) =a+ ) clz—a)" (4)
i=0
satisfies
fxz:) = f(x3) (i=0,1,...,n), (5)

where the positive part t* of a real number ¢ is defined by ¢+ := max(0,t).
Indeed, we can easily see that (5) is equivalent to the following system of linear
equations

f(xo) = a,
flx1) = a+ co(x1 — x0),
f(z2) = a+ colwa — x0) + c1(z2 — 21),

flan) = a4+ co(xe — o) + c1(x2 — 1) + -+ + Cne1 (T — Tn—1),

which can be solved recursively for a,cg,c1, ..., cn—1. Thus, due to the above
observation, (2) is satisfied for all functions f if and only if it is valid for all
functions f* of the form (4). Since the identity (2) is linear in f, it is sufficient
to show that (2) is valid for the functions

(@) =1, fi(@) = (@ —20)", ..., fi1(@):=(z—2n-1)"
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Clearly, (2) holds with f = f*; and f = f; identically (because these func-
tions are polynomials of degree at most one on the interval [zg, 2, and hence
their second-order divided differences equal 0). Observe also that f; is an at
most first degree polynomial on the interval [x;_1,2;11] if k is different from
i. Therefore, substituting f = f; into (2), we obtain A, f}[zr—1, 2k, Trt1] =
filwo,zj, wy) for (k =1,...,n—1). Hence, with the choice \j, := fkﬁk[f?iizzll]
for (k =1,...,n—1), (2) holds for f = ff (k =1,...,n —1). Thus it
holds also for all functions of the form (4). Now a simple computation yields
that Ay,..., Ax are of the form (3) and then the inequalities A > 0 can be
checked directly. Finally, substituting f(z) = z? into (2), it follows that
A+ -+ X,—1 = 1 also holds. O

An obvious consequence of the previous lemma is the following result which
we call the chain inequality in the sequel.

Corollary 1. (Chain Inequality) Let f : T — R and 2o < 21 < -+ < Ty
(n > 2) be arbitrary points in I. Then, for all fixzed 0 < j < n,

1;%2171 flzio1, @i, wiga] < flzo, ), 20] < | nax flwim1, @i, wiga].

3 Convexity Triplets

It is easy to check that a function f : I — R is convex if and only if f[z,y, z] >
0 for (z,y,2) € I? with z < y < 2. Motivated by this characterization of
convexity, a triplet (z,y,z) in I® with x < y < z is called a convezity triplet
for the function f: I — Rif flx,y, 2] > 0 and the set of all convexity triplets
of f is denoted by C(f). Using this terminology, f is t-convex if and only if

(z,tz+ (1= t)y,y), (z,(1 —t)z +ty,y) € €(f) for z,y € I with = < y.

Applying the chain inequality established in Corollary 1, we can deduce
the following chain rule for convexity triplets.

Corollary 2. (Chain Rule) Let f: I - R and xg < 1 < -+ < x, (n>2) be
arbitrary points in I such that (x;—1,z;,x;41) s in C(f) foralli=1,... ,n—1.
Then

(w0, 5, 2n) € C(f) (6)

forall0 < j <n.
PrROOF. We have that flx;—1,z;,2,41] > 0forall i =1,...,n— 1. Therefore,

by the chain inequality, f[zo,x;,x,] > 0;ie., (6) holds for all j =1,...,n —
1. O
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As applications of the above Corollary, we derive two well known results on
the connection of ¢- and Jensen-convexity. The second statement of the next
Corollary was proved by Kuhn [9] by using Rodé’s theorem. An elementary
proof for this fact was first found by Dar6czy and Pales [2].

Corollary 3. Let f: I — R. If f is Jensen-convex, then it is t-convez for all
rational t in ]0,1[. Conversely, if [ is t-convex for some t €]0,1[, then it is
also Jensen-convex.

PRrOOF. For the first statement, assume f is Jensen-convex and let ¢t = j/n
where 0 < j < n are integers. Let x,y be fixed and assume that y < .

(The case x < y can be treated similarly.) Define x; by x; := %x + %y for
(t=0,...,n). Then zp =y < 1 < - -+ < z,, = z, furthermore, % =z
for all i =1,...,n — 1. Therefore, by the Jensen-convexity of f, we have that

(xi—1,®;,2;11) belongs to C(f). Hence, by the chain rule for convexity triplets,
we get that (6) holds. Thus flxo,z;,z,] > 0; ie., fly,tx + (1 —t)y,z] > 0,
which shows that f is t-convex, indeed.

To prove the converse, assume that f is ¢-convex for some t €]0,1[. To
prove the Jensen-convexity of f, let z,y € I with z < y be arbitrary. Define
the points xq, 1, T2, x3, x4 by

x+y r+y r+y

o =g, 2=t (1-t)—=, w2 1= ——, w3 = t——+(1-t)y, 24 :=y.

Then, for ¢« = 1 and for ¢ = 3, we obviously have z; = tx;—1 + (1 — t)x;41-
Furthermore xo = (1 — t)x1 + tzs. Hence, due to the t-convexity of f,
(Xi—1, @i, 2i11) € C(f) for ¢ = 1,2,3. Thus, by the chain rule, we get that
(0,2, 24) € C(f); i.e., f is Jensen-convex. O

4 Main Results

Our main results offer mean value theorems in terms of the lower 2nd-order
generalized derivatives defined by

8%f(&) := liminf 2f[x,u,y] for £ €I, (7)
(.9)—(£,6)
& u€co{z,y}

5 f(&) = liminf 2f[z, tw+ (1 —t)y,y] for £ € I, ®)
(gyy)?(éé)
€co{zx,y

where, in the second definition, ¢ €]0,1[ is a fixed parameter. Clearly,

STf(E) > 8% F(€) (9)
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for all £ € I and t €]0,1]. One can also easily show that if f is twice continu-
ously differentiable at &, then 82 f(£) = 82 f(€) = f"(€).

Theorem 1. (Mean Value Inequality for ¢-convexity) Let I C R be an interval,
f:I—TR,te€0,1], and let x,y € I with x # y. Then there exists a point
¢ € co{z,y} such that

(@) + (1= () — flta+(1—ty) _ 521(¢)
t(1—t)(z — y)? = fle,te+ (1 =t)y,y] > 5

PROOF. In the sequel, a triplet (x,u, z) € I will be called a t-triplet if either
u=tr+ (1—-t)yoru=(1-t)xz+ty. Let z and y be distinct elements of
I. Without loss of generality, we may assume that x < y. In what follows, we
intend to construct a sequence of t¢-triplets (2, un, yn) such that

. (10)

=20 <21 <2< .., Y=Y 2 Y1 S Y2 > .., Ty < Up < Yp (n €N),
(11)
Y — 2| < (max(t,1—1))"|y — 2| (n € N), (12)
and
fle,u,y] = flro, uo, yo] > fler, ui, y1] > flaea,us,yo] > ... . (13)

Define (xg, uo,yo) = (x,tx + (1 — t)y, y) and assume that we have constructed
(Tn, Un, Yn). Now set

Zn,0 ‘= Tn, 2Zn,1 = (1*t)xn+tuna Zn,2 = Unp, Zp3 = tun‘i’(l*t)ynv Zn,4 = Yn-

Then, clearly, (2,0, 2n,1; 2n,2) and (2,2, Zn,3, Zn,a) are t-triplets. On the other
hand, we have that u,, = sz, + (1 — s, )yn, where either s,, =t or s, = 1—1¢.
Thus,
SnZn,1 t (1 - Sn)zn,3 = Sn((l - t)xn + t(snxn + (1 - Sn)yn))
+ (1 - 5n)<t(5nmn + (1= s0)yn) + (1 - t)yn) = Un;

that is, (2,1, 2n,2, #n,3) is also a t-triplet.

Using the Chain Inequality, we get that there exists an index i € {1,2,3}
such that f[xna Unp, yn] > f[zn,i—la Zn,is Zn,i+1]- Finauy, let

(zn—&-la Un+1, yn+1) = (Zn,i—ly Zn,iy Zn,i—i—l)-

The sequence so constructed clearly satisfies (11) and (13). We prove (12) by

induction. It is obvious for n = 0. Assume that it holds for n. Then

[Yn+1 — Tnt1] < max [2n 41 — 2ni—1| = max(l — s,,, 1 — ¢, 8,,)|yn — |
1<4i<3

))n—i-l

max(t, 1 —t)|y, — @, < (max(¢,1—¢ ly — x|.
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Thus (12) is also verified.

Due to the monotonicity properties of the sequences (), (y,) and also
(12), there exists a unique element & € [z,y] such that ();2g[zn, yn] = {£}-
Then, by (13), we get that

62
Flsu,y) > Hoinf flan wnya] > liminf  flo,to+ (1 — tyw,w] = 20E).
n—oo (v,w)—=(£,8) 2
Eeco{v,w}
which completes the proof of the theorem. O

Corollary 4. (Mean Value Inequality for convexity) Let I C R be an interval,
f:I —= R, and let z,u,y € I with x < u < y. Then there exists a point

82f(¢
¢ € [x,y] such that flz,u,y] > LLE.

ProOF. Choose t €]0, 1] so that « = tz + (1 —t)y. Then, by Theorem 1, there
exists £ € [z, y] such that (10) holds. Therefore, by (9),

21 8#1(©
t 2 = 2 =

f[a:,u,y] :f[x,tx+(1—t)y,y] >

If one replaces f by —f in the above results, then mean value inequality for
the upper 2nd-order generalized derivatives can be deduced that are defined
via (7) and (8) with “limsup” instead of “liminf”.

As an immediate consequence of the above theorem, we get the following
characterization of convexity and t-convexity.

Corollary 5. Lett €]0,1[. A function f : I — R is t-convezx (resp. convez)
on I if and only if 57 f(€) > 0 (resp. 6°f(€) >0) for € € 1.

Proor. If f is t-convex, then, clearly Q?f > 0. Conversely, if Q?f is nonneg-
ative on I, then, by the previous Theorem flx,tz + (1 — t)y,y] > 0 for all
x,y € I i.e., fist-convex. A similar argument shows that the convexity of f
is characterized by the nonnegativity of 6°f. O

Another obvious but interesting consequence of Corollary 5 is that the
t-convexity property (and also convexity) is localizable in the following sense.

Corollary 6. Lett €]0,1[. A function f : I — R is t-convezx (resp. convez)
on I if and only if, for each point € € I, there exists a neighborhood U of £
such that f is t-convex (resp. convex) on INU.

The localizability of convexity for upper semicontinuous functions was also
proved in [11]. In the literature, there are some other definitions for local
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convexity and local Jensen-convexity. For instance, following Cardinali and
Papalini [1], we call a function f: I — R J*-convex at a point p € I if there

is a neighborhood U of p such that f(#) < w for z € U. Another

definition is motivated by Kostyrko [7]. We say that a function f: I — R is
locally Jensen-convex at a point p € [ if there exists a positive number § such

that " h
f(p)gf(p— )-;f(er )

Note, however, that neither J*-convex functions, nor locally Jensen-convex
functions in the sense of Kostyrko need not be Jensen-convex. For instance, the
function g : R — R defined by g(z) := |z| for —1 < z < 1 and then extended
periodically to R is J*-convex but not Jensen-convex. The function A : R — R
defined as h(z) := = — [z] for noninteger = and h(x) := 1/2 for integer x is
locally Jensen-convex in the sense of Kostyrko but it is not Jensen-convex (cf.
7).

The following corollary derives t-convexity from a formally weaker prop-
erty, namely from the local v-th order approximate t-convexity. A function
f:1 — R is called approzimately t-convezx of order -y on I (where v > 0) if
there exists a nonnegative constant ¢ such that

fltr+ (1 =t)y) <tf(z)+ (1 =8)f(y) + =tz —y[’ (14)

for all z,y € I. If the above inequality holds for all ¢ € [0, 1] with a constant
c independent of ¢, then we say that f is an epprozimately convex function of
order ~y. If each point of I has a neighborhood such that f restricted to this
neighborhood is approximately t-convex (resp. convex) of order v, then we say
that f is locally approximately ¢-convex (resp. convex) of order .

Approximately convex functions of first-order were introduced by Pales in
[12]. First-order approximately Jensen-convex functions were investigated by
Hazy and Pales [4].

The next result shows that local approximate t-convexity (resp. local ap-
proximate convexity) of order higher than 2 is equivalent to ¢-convexity (resp.
convexity). It is also related to a result of Rolewicz [15], stating that if a
function f is y-paraconvex; that is,

flz+ (1 =t)y) <tf(z)+ 1A -1)f(y) +cle -y

for z,y € I, t € [0,1] and v > 2, then it is convex.

for 0 < h < 6.

Corollary 7. Let t €]0,1[. Assume that, for some v > 2, f: I - R is a
locally approzimately t-convex (resp. convex) function of order v. Then f is
t-convex (resp. convex).
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Proor. We prove the statement concerning t-convexity. Let £ € I be arbi-
trary. By the assumption, there exists a neighborhood U of £ and ¢ > 0 such
that (14) holds for all x,y € U N I. Then

foste+ (1—ty.y] = tf(z)+(1 ;(i)f%)(;fgf)a;r (1—1t)y) S el g1

for x,y € I with  # y. Thus, upon taking the liminf as (x,y) — (&,§), we
get that

éff(f) = liminf 2f[z,tx+ (1 —t)y,y] > liminf —2clz —y[?~2 =0.

(z.y)—(&:6) (z,y)—(&:€)
feco{z,y} ¢eco{z,y}
Therefore, by Corollary 5, f is t-convex. O

We note that, in Corollary 7, the lower bound 2 for v cannot be improved,
because the function f(z) = —x? is obviously approximately convex of order
2 and not t-convex for any t €]0, 1].
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