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Abstract

Necessary and sufficient for
R b

a
fgn →

R b

a
fg for all Henstock–Kurzweil

integrable functions f is that g be of bounded variation, gn be uni-
formly bounded and of uniform bounded variation and, on each com-
pact interval in (a, b), gn → g in measure or in the L1 norm. The
same conditions are necessary and sufficient for ‖f(gn − g)‖ → 0 for all
Henstock–Kurzweil integrable functions f . If gn → g a.e., then conver-
gence ‖fgn‖ → ‖fg‖ for all Henstock–Kurzweil integrable functions f
is equivalent to ‖f(gn − g)‖ → 0. This extends a theorem due to Lee
Peng-Yee.

Let −∞ ≤ a < b ≤ ∞ and denote the Henstock–Kurzweil integrable func-
tions on (a, b) by HK. The Alexiewicz norm of f ∈ HK is ‖f‖ = supI |

∫
I
f |

where the supremum is taken over all intervals I ⊂ (a, b). If g is a real-valued
function on [a, b], we write V[a,b]g for the variation of g over [a, b], dropping
the subscript when the identity of [a, b] is clear. The set of functions of nor-
malized bounded variation, NBV, consists of the functions on [a, b] that are of
bounded variation, are left continuous and vanish at a. It is known that the
multipliers for HK are NBV; i.e., fg ∈ HK for all f ∈ HK if and only if g is
equivalent to a function in NBV. This paper is concerned with necessary and
sufficient conditions under which

∫ b

a
fgn →

∫ b

a
fg for all f ∈ HK. One such

set of conditions was given by Lee Peng-Yee in [2, Theorem 12.11]. If g is of
bounded variation, changing g on a countable set will make it an element of
NBV. With this observation, a minor modification of Lee’s theorem produces
the following result.
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Theorem 1. [2, Theorem 12.11] Let −∞ < a < b < ∞, let gn and g be real-
valued functions on [a, b] with g of bounded variation. In order for

∫ b

a
fgn →∫ b

a
fg for all f ∈ HK it is necessary and sufficient that

for each interval (c, d) ⊂ (a, b),
∫ d

c
gn →

∫ d

c
g as n →∞,

for each n ≥ 1, gn is equivalent to a function hn ∈ NBV,
and there is M ∈ [0,∞) such that V hn ≤ M for all n ≥ 1.

 (1)

We extend this theorem to unbounded intervals, show that the condition∫ d

c
gn →

∫ d

c
g in (1) can be replaced by gn → g on each compact interval in

(a, b) either in measure or in the L1 norm, and that this also lets us conclude
‖f(gn−g)‖ → 0. We also show that if gn → g in measure or almost everywhere,
then ‖fgn‖ → ‖fg‖ for all f ∈ HK if and only if ‖fgn − fg‖ → 0 for all
f ∈ HK.

One might think the conditions (1) imply gn → g almost everywhere. This
is not the case, as is illustrated by the following example [1, p. 61].

Example 2. Let gn = χ
(j2−k,(j+1)2−k] where 0 ≤ j < 2k and n = j+2k. Note

that ‖gn‖∞ = 1, gn ∈ NBV, V gn ≤ 2, and |
∫ d

c
gn| ≤ ‖gn‖ = 2−k < 2/n → 0,

so that (1) is satisfied with g = 0. For each x ∈ (0, 1] we have infn gn(x) = 0,
supn gn(x) = 1, and for no x ∈ (0, 1] does gn(x) have a limit. However, gn → 0
in measure since if Tn = {x ∈ [0, 1] : |gn(x)| > ε}, then for each 0 < ε ≤ 1, we
have λ(Tn) < 2/n → 0 as n →∞ (λ is Lebesgue measure).

We have the following extension of Theorem 1.

Theorem 3. Let [a, b] be a compact interval in R, let gn and g be real-valued
functions on [a, b] with g of bounded variation. In order for

∫ b

a
fgn →

∫ b

a
fg

for all f ∈ HK it is necessary and sufficient that

gn → g in measure as n →∞,
for each n ≥ 1, gn is equivalent to a function hn ∈ NBV,
and there is M ∈ [0,∞) such that V hn ≤ M for all n ≥ 1.

 (2)

If (a, b) ⊂ R is unbounded, then change the first line of (2) by requiring gn
χ

I →
gχ

I in measure for each compact interval I ∈ (a, b).

Proof. By working with gn− g we can assume g = 0. First consider the case
when (a, b) is a bounded interval. If

∫ b

a
fgn → 0 for all f ∈ HK, then using

Theorem 1 and changing gn on a countable set, we can assume gn ∈ NBV,
V gn ≤ M , ‖gn‖∞ ≤ M and

∫ d

c
gn → 0 for each interval (c, d) ⊂ (a, b).

Suppose gn does not converge to 0 in measure. Then there are δ, ε > 0 and
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an infinite index set J ⊂ N such that λ(Sn) > δ for each n ∈ J , where
Sn = {x ∈ (a, b) : gn(x) > ε}. (Or else there is a corresponding set on which
gn(x) < −ε for all n ∈ J .) Now let n ∈ J . Since gn is left continuous,
if x ∈ Sn, there is a number cn,x > 0 such that [x − cn,x, x] ⊂ Sn. Hence,
Vn := {[c, x] : x ∈ Sn and [c, x] ⊂ Sn} is a Vitali cover of Sn. So there is
a finite set of disjoint closed intervals, σn ⊂ Vn, with λ(Sn \ ∪I∈σnI) < δ/2.
Write (a, b)\∪I∈σnI = ∪I∈τnI where τn is a set of disjoint open intervals with
card(τn) = card(σn) + 1. Let

Pn = card({I ∈ τn : gn(x) ≤ ε/2 for some x ∈ I}).

Each interval I ∈ τn that does not have a or b as an endpoint has contiguous
intervals on its left and right that are in σn (for each of which gn > ε). The
interval I then contributes more than (ε− ε/2)+ (ε− ε/2) = ε to the variation
of gn. If I has a as an endpoint, then since gn(a) = 0, I contributes more than
ε to the variation of gn. If I has b as an endpoint, then I contributes more
than ε/2 to the variation of gn. Hence,

V gn ≥ (Pn − 1)ε + ε/2 = (Pn − 1/2)ε.

(This inequality is still valid if Pn = 1.) But, V gn ≤ M ; so Pn ≤ P for all
n ∈ J and some P ∈ N. Then we have a set of intervals, Un, formed by taking
unions of intervals from σn and those intervals in τn on which gn > ε/2. Now,
λ(∪I∈UnI) > δ/2, card(Un) ≤ P + 1 and gn > ε/2 on each interval I ∈ Un.
Therefore, there is an interval In ∈ Un such that λ(In) > δ/[2(P + 1)]. The
sequence of centers of intervals In has a convergent subsequence. There is
then an infinite index set J ′ ⊂ J with the property that for all n ∈ J ′ we
have gn > ε/2 on an interval I ⊂ (a, b) with λ(I) > δ/[3(P + 1)]. Hence,
lim supn≥1

∫
I
gn > δε/[6(P + 1)]. This contradicts the fact that

∫
I
gn → 0,

showing that indeed gn → 0 in measure.
Suppose (2) holds. As above, we can assume gn ∈ NBV, V gn ≤ M ,

‖gn‖∞ ≤ M and gn → 0 in measure. Let ε > 0. Define

Tn = {x ∈ (a, b) : |gn(x)| > ε}.

Then ∣∣∣∣∣
∫ b

a

gn

∣∣∣∣∣ ≤
∫

Tn

|gn|+
∫

(a,b)\Tn

|gn|

≤ Mλ(Tn) + ε(b− a).

Since lim λ(Tn) = 0, it now follows that
∫ d

c
gn → 0 for each (c, d) ⊂ (a, b).

Theorem 1 now shows
∫ b

a
fgn → 0 for all f ∈ HK.
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Now consider integrals on R. If
∫∞
−∞ fgn → 0 for all f ∈ HK, then it

is necessary that
∫ b

a
fgn → 0 for each compact interval [a, b]. By the current

theorem, gn → g in measure on each [a, b]. And, it is necessary that
∫∞
1

fgn →
0. The change of variables x 7→ 1/x now shows it is necessary that gn be
equivalent to a function that is uniformly bounded and of uniform bounded
variation on [1,∞]. Similarly with

∫ 1

−∞ fgn → 0. Hence, it is necessary that
gn be uniformly bounded and of uniform bounded variation on R.

Suppose (2) holds with gn → g in measure on each compact interval in R.
Write

∫∞
−∞ fgn =

∫ a

−∞ fgn +
∫ b

a
fgn +

∫∞
b

fgn. Use Lemma 24 in [4] to write
|
∫ a

−∞ fgn| ≤ ‖fχ
(−∞,a)‖V[−∞,a]gn ≤ ‖fχ

(−∞,a)‖M → 0 as a → −∞. We can
then take a large enough interval [a, b] ⊂ R and apply the current theorem on
[a, b]. Other unbounded intervals are handled in a similar manner.

Remark 4. If (2) holds, then dominated convergence shows ‖gn − g‖1 → 0.
And, convergence in ‖ · ‖1 implies convergence in measure. Therefore, in the
first statement of (2) and in the last statement of Theorem 3, ‘convergence in
measure’ can be replaced with ‘convergence in ‖ · ‖1’. Similar remarks apply
to Theorem 6.

Remark 5. The change of variables argument in the second last paragraph of
Theorem 3 can be replaced with an appeal to the Banach–Steinhaus Theorem
on unbounded intervals. See [3, Lemma 7]. A similar remark holds for the
proof of Theorem 8.

The sequence of Heaviside functions gn = χ
(n,∞] shows (2) is not necessary

to have
∫∞
−∞ fgn → 0 for all f ∈ HK. For then,

∫∞
−∞ fgn =

∫∞
n

f → 0. In
this case, gn ∈ NBV and V gn = 1. However, λ(Tn) = ∞ for all 0 < ε < 1.
Note that for each compact interval [a, b] we have

∫ b

a
gn → 0 and gn → 0 in

measure on [a, b].
It is somewhat surprising that condition (2) is also necessary and sufficient

to have ‖f(gn − g)‖ → 0 for all f ∈ HK.

Theorem 6. Let [a, b] be a compact interval in R, let gn and g be real-valued
functions on [a, b] with g of bounded variation. In order for ‖f(gn − g)‖ → 0
for all f ∈ HK it is necessary and sufficient that

gn → g in measure as n →∞,
for each n ≥ 1, gn is equivalent to a function hn ∈ NBV,
and there is M ∈ [0,∞) such that V hn ≤ M for all n ≥ 1.

 (3)

If (a, b) ⊂ R is unbounded, then change the first line of (3) by requiring gn
χ

I →
gχ

I in measure for each compact interval I ∈ (a, b).
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Proof. Certainly (3) is necessary in order for ‖f(gn−g)‖ → 0 for all f ∈ HK.
If we have (3), let In be any sequence of intervals in (a, b). We can again

assume g = 0. Write g̃n = gn
χ

In
. Then

‖g̃n‖∞ ≤ ‖gn‖∞, V g̃n ≤ V gn + 2‖gn‖∞ and g̃n → 0 in measure.

The result now follows by applying Theorem 3 to fg̃n.
Unbounded intervals are handled as in Theorem 3.

By combining Theorem 3 and Theorem 6 we have the following.

Theorem 7. Let (a, b) ⊂ R. Then
∫ b

a
fgn →

∫ b

a
fg for all f ∈ HK if and only

if ‖fgn − fg‖ → 0 for all f ∈ HK.

Note that ‖f(gn − g)‖ ≥ | ‖fgn‖ − ‖fg‖ | ; so if ‖f(gn − g)‖ → 0, then
‖fgn‖ → ‖fg‖. Thus, (3) is sufficient to have ‖fgn‖ → ‖fg‖ for all f ∈ HK.
However, this condition is not necessary. For example, let [a, b] = [0, 1]. Define
gn(x) = (−1)n. Then ‖gn‖∞ = 1 and V gn = 0. Let g = g1. For no x ∈ [−1, 1]
does the sequence gn(x) converge to g(x). For no open interval I ⊂ [0, 1] do
we have

∫
I
(gn−g) → 0. And, gn does not converge to g in measure. However,

let f ∈ HK with ‖f‖ > 0. Then ‖f(gn − g)‖ = 0 when n is odd and when n
is even, ‖f(gn − g)‖ = 2‖f‖. And yet, for all n, ‖fgn‖ = ‖f‖ = ‖fg‖.

It is natural to ask what extra condition should be given so that ‖fgn‖ →
‖fg‖ will imply ‖fgn − fg‖ → 0. We have the following.

Theorem 8. Let gn → g in measure or almost everywhere. Then ‖fgn‖ →
‖fg‖ for all f ∈ HK if and only if ‖fgn − fg‖ → 0 for all f ∈ HK.

Proof. Let [a, b] be a compact interval. If ‖fgn‖ → ‖fg‖, then g is equivalent
to h ∈ NBV [2, Theorem 12.9] and for each f ∈ HK there is a constant Cf such
that ‖fgn‖ ≤ Cf . By the Banach–Steinhaus Theorem [2, Theorem 12.10], each
gn is equivalent to a function hn ∈ NBV with V hn ≤ M and ‖hn‖∞ ≤ M .
Let (c, d) ⊂ (a, b). By dominated convergence,

∫ d

c
gn →

∫ d

c
g. It now follows

from Theorem 1 that
∫ b

a
fgn →

∫ b

a
fg for all f ∈ HK. Hence, by Theorem 7,

‖fgn − fg‖ → 0 for all f ∈ HK.
Now suppose (a, b) = R and ‖fgn‖ → ‖fg‖ for all f ∈ HK. The change of

variables x 7→ 1/x shows the Banach–Steinhaus Theorem still holds on R. We
then have each gn equivalent to hn ∈ NBV with V hn ≤ M and ‖hn‖∞ ≤ M .
As with the end of the proof of Theorem 3, given ε > 0 we can find c ∈ R such
that |

∫ c

−∞ fgn| < ε for all n ≥ 1. The other cases are similar.

Acknowledgment. An anonymous referee provided reference [3] and pointed
out that in place of convergence in measure we can use convergence in ‖ · ‖1
(cf. Remark 4).
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