Parasar Mohanty, Department of Pure Mathematics, University of Waterloo, Waterloo ON, Canada N2L 3G1. email: pmohanty@math. uwaterloo.ca
Erik Talvila, Department of Mathematics and Statistics, University College of the Fraser Valley, Abbotsford BC, Canada V2S 7M8.
email: Erik.Talvila@ucfv.ca

A PRODUCT CONVERGENCE THEOREM FOR HENSTOCK-KURZWEIL INTEGRALS

Abstract

Necessary and sufficient for $\int_{a}^{b} f g_{n} \rightarrow \int_{a}^{b} f g$ for all Henstock-Kurzweil integrable functions f is that g be of bounded variation, g_{n} be uniformly bounded and of uniform bounded variation and, on each compact interval in $(a, b), g_{n} \rightarrow g$ in measure or in the L^{1} norm. The same conditions are necessary and sufficient for $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$ for all Henstock-Kurzweil integrable functions f. If $g_{n} \rightarrow g$ a.e., then convergence $\left\|f g_{n}\right\| \rightarrow\|f g\|$ for all Henstock-Kurzweil integrable functions f is equivalent to $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$. This extends a theorem due to Lee Peng-Yee.

Let $-\infty \leq a<b \leq \infty$ and denote the Henstock-Kurzweil integrable functions on (a, b) by $\mathcal{H} \mathcal{K}$. The Alexiewicz norm of $f \in \mathcal{H} \mathcal{K}$ is $\|f\|=\sup _{I}\left|\int_{I} f\right|$ where the supremum is taken over all intervals $I \subset(a, b)$. If g is a real-valued function on $[a, b]$, we write $V_{[a, b]} g$ for the variation of g over $[a, b]$, dropping the subscript when the identity of $[a, b]$ is clear. The set of functions of normalized bounded variation, $\mathcal{N B} \mathcal{V}$, consists of the functions on $[a, b]$ that are of bounded variation, are left continuous and vanish at a. It is known that the multipliers for $\mathcal{H K}$ are $\mathcal{N B} \mathcal{V}$; i.e., $f g \in \mathcal{H K}$ for all $f \in \mathcal{H} \mathcal{K}$ if and only if g is equivalent to a function in $\mathcal{N B} \mathcal{V}$. This paper is concerned with necessary and sufficient conditions under which $\int_{a}^{b} f g_{n} \rightarrow \int_{a}^{b} f g$ for all $f \in \mathcal{H} \mathcal{K}$. One such set of conditions was given by Lee Peng-Yee in [2, Theorem 12.11]. If g is of bounded variation, changing g on a countable set will make it an element of $\mathcal{N B} \mathcal{V}$. With this observation, a minor modification of Lee's theorem produces the following result.

[^0]Theorem 1. [2, Theorem 12.11] Let $-\infty<a<b<\infty$, let g_{n} and g be realvalued functions on $[a, b]$ with g of bounded variation. In order for $\int_{a}^{b} f g_{n} \rightarrow$ \int_{a}^{b} fg for all $f \in \mathcal{H K}$ it is necessary and sufficient that

$$
\left.\begin{array}{l}
\text { for each interval }(c, d) \subset(a, b), \int_{c}^{d} g_{n} \rightarrow \int_{c}^{d} g \text { as } n \rightarrow \infty, \\
\text { for each } n \geq 1, g_{n} \text { is equivalent to a function } h_{n} \in \mathcal{N B} \mathcal{V}, \tag{1}\\
\text { and there is } M \in[0, \infty) \text { such that } V h_{n} \leq M \text { for all } n \geq 1 .
\end{array}\right\}
$$

We extend this theorem to unbounded intervals, show that the condition $\int_{c}^{d} g_{n} \rightarrow \int_{c}^{d} g$ in (1) can be replaced by $g_{n} \rightarrow g$ on each compact interval in (a, b) either in measure or in the L^{1} norm, and that this also lets us conclude $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$. We also show that if $g_{n} \rightarrow g$ in measure or almost everywhere, then $\left\|f g_{n}\right\| \rightarrow\|f g\|$ for all $f \in \mathcal{H} \mathcal{K}$ if and only if $\left\|f g_{n}-f g\right\| \rightarrow 0$ for all $f \in \mathcal{H K}$.

One might think the conditions (1) imply $g_{n} \rightarrow g$ almost everywhere. This is not the case, as is illustrated by the following example [1, p. 61].
Example 2. Let $g_{n}=\chi_{\left(j 2^{-k},(j+1) 2^{-k}\right]}$ where $0 \leq j<2^{k}$ and $n=j+2^{k}$. Note that $\left\|g_{n}\right\|_{\infty}=1, g_{n} \in \mathcal{N B} \mathcal{V}, V g_{n} \leq 2$, and $\left|\int_{c}^{d} g_{n}\right| \leq\left\|g_{n}\right\|=2^{-k}<2 / n \rightarrow 0$, so that (1) is satisfied with $g=0$. For each $x \in(0,1]$ we have $\inf _{n} g_{n}(x)=0$, $\sup _{n} g_{n}(x)=1$, and for no $x \in(0,1]$ does $g_{n}(x)$ have a limit. However, $g_{n} \rightarrow 0$ in measure since if $T_{n}=\left\{x \in[0,1]:\left|g_{n}(x)\right|>\epsilon\right\}$, then for each $0<\epsilon \leq 1$, we have $\lambda\left(T_{n}\right)<2 / n \rightarrow 0$ as $n \rightarrow \infty$ (λ is Lebesgue measure).

We have the following extension of Theorem 1.
Theorem 3. Let $[a, b]$ be a compact interval in \mathbb{R}, let g_{n} and g be real-valued functions on $[a, b]$ with g of bounded variation. In order for $\int_{a}^{b} f g_{n} \rightarrow \int_{a}^{b} f g$ for all $f \in \mathcal{H K}$ it is necessary and sufficient that
$\left.\begin{array}{l}g_{n} \rightarrow g \text { in measure as } n \rightarrow \infty, \\ \text { for each } n \geq 1, g_{n} \text { is equivalent to a function } h_{n} \in \mathcal{N B} \mathcal{V}, \\ \text { and there is } M \in[0, \infty) \text { such that } V h_{n} \leq M \text { for all } n \geq 1 .\end{array}\right\}$
If $(a, b) \subset \mathbb{R}$ is unbounded, then change the first line of (2) by requiring $g_{n} \chi_{I} \rightarrow$ $g \chi_{I}$ in measure for each compact interval $I \in(a, b)$.

Proof. By working with $g_{n}-g$ we can assume $g=0$. First consider the case when (a, b) is a bounded interval. If $\int_{a}^{b} f g_{n} \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$, then using Theorem 1 and changing g_{n} on a countable set, we can assume $g_{n} \in \mathcal{N} \mathcal{B} \mathcal{V}$, $V g_{n} \leq M,\left\|g_{n}\right\|_{\infty} \leq M$ and $\int_{c}^{d} g_{n} \rightarrow 0$ for each interval $(c, d) \subset(a, b)$. Suppose g_{n} does not converge to 0 in measure. Then there are $\delta, \epsilon>0$ and
an infinite index set $\mathcal{J} \subset \mathbb{N}$ such that $\lambda\left(S_{n}\right)>\delta$ for each $n \in \mathcal{J}$, where $S_{n}=\left\{x \in(a, b): g_{n}(x)>\epsilon\right\}$. (Or else there is a corresponding set on which $g_{n}(x)<-\epsilon$ for all $n \in \mathcal{J}$.) Now let $n \in \mathcal{J}$. Since g_{n} is left continuous, if $x \in S_{n}$, there is a number $c_{n, x}>0$ such that $\left[x-c_{n, x}, x\right] \subset S_{n}$. Hence, $V_{n}:=\left\{[c, x]: x \in S_{n}\right.$ and $\left.[c, x] \subset S_{n}\right\}$ is a Vitali cover of S_{n}. So there is a finite set of disjoint closed intervals, $\sigma_{n} \subset V_{n}$, with $\lambda\left(S_{n} \backslash \cup_{I \in \sigma_{n}} I\right)<\delta / 2$. Write $(a, b) \backslash \cup_{I \in \sigma_{n}} I=\cup_{I \in \tau_{n}} I$ where τ_{n} is a set of disjoint open intervals with $\operatorname{card}\left(\tau_{n}\right)=\operatorname{card}\left(\sigma_{n}\right)+1$. Let

$$
P_{n}=\operatorname{card}\left(\left\{I \in \tau_{n}: g_{n}(x) \leq \epsilon / 2 \text { for some } x \in I\right\}\right)
$$

Each interval $I \in \tau_{n}$ that does not have a or b as an endpoint has contiguous intervals on its left and right that are in σ_{n} (for each of which $g_{n}>\epsilon$). The interval I then contributes more than $(\epsilon-\epsilon / 2)+(\epsilon-\epsilon / 2)=\epsilon$ to the variation of g_{n}. If I has a as an endpoint, then since $g_{n}(a)=0, I$ contributes more than ϵ to the variation of g_{n}. If I has b as an endpoint, then I contributes more than $\epsilon / 2$ to the variation of g_{n}. Hence,

$$
V g_{n} \geq\left(P_{n}-1\right) \epsilon+\epsilon / 2=\left(P_{n}-1 / 2\right) \epsilon
$$

(This inequality is still valid if $P_{n}=1$.) But, $V g_{n} \leq M$; so $P_{n} \leq P$ for all $n \in \mathcal{J}$ and some $P \in \mathbb{N}$. Then we have a set of intervals, U_{n}, formed by taking unions of intervals from σ_{n} and those intervals in τ_{n} on which $g_{n}>\epsilon / 2$. Now, $\lambda\left(\cup_{I \in U_{n}} I\right)>\delta / 2, \operatorname{card}\left(U_{n}\right) \leq P+1$ and $g_{n}>\epsilon / 2$ on each interval $I \in U_{n}$. Therefore, there is an interval $I_{n} \in U_{n}$ such that $\lambda\left(I_{n}\right)>\delta /[2(P+1)]$. The sequence of centers of intervals I_{n} has a convergent subsequence. There is then an infinite index set $\mathcal{J}^{\prime} \subset \mathcal{J}$ with the property that for all $n \in \mathcal{J}^{\prime}$ we have $g_{n}>\epsilon / 2$ on an interval $I \subset(a, b)$ with $\lambda(I)>\delta /[3(P+1)]$. Hence, $\limsup _{n \geq 1} \int_{I} g_{n}>\delta \epsilon /[6(P+1)]$. This contradicts the fact that $\int_{I} g_{n} \rightarrow 0$, showing that indeed $g_{n} \rightarrow 0$ in measure.

Suppose (2) holds. As above, we can assume $g_{n} \in \mathcal{N B} \mathcal{V}, V g_{n} \leq M$, $\left\|g_{n}\right\|_{\infty} \leq M$ and $g_{n} \rightarrow 0$ in measure. Let $\epsilon>0$. Define

$$
T_{n}=\left\{x \in(a, b):\left|g_{n}(x)\right|>\epsilon\right\}
$$

Then

$$
\begin{aligned}
\left|\int_{a}^{b} g_{n}\right| & \leq \int_{T_{n}}\left|g_{n}\right|+\int_{(a, b) \backslash T_{n}}\left|g_{n}\right| \\
& \leq M \lambda\left(T_{n}\right)+\epsilon(b-a) .
\end{aligned}
$$

Since $\lim \lambda\left(T_{n}\right)=0$, it now follows that $\int_{c}^{d} g_{n} \rightarrow 0$ for each $(c, d) \subset(a, b)$. Theorem 1 now shows $\int_{a}^{b} f g_{n} \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.

Now consider integrals on \mathbb{R}. If $\int_{-\infty}^{\infty} f g_{n} \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$, then it is necessary that $\int_{a}^{b} f g_{n} \rightarrow 0$ for each compact interval $[a, b]$. By the current theorem, $g_{n} \rightarrow g$ in measure on each $[a, b]$. And, it is necessary that $\int_{1}^{\infty} f g_{n} \rightarrow$ 0 . The change of variables $x \mapsto 1 / x$ now shows it is necessary that g_{n} be equivalent to a function that is uniformly bounded and of uniform bounded variation on $[1, \infty]$. Similarly with $\int_{-\infty}^{1} f g_{n} \rightarrow 0$. Hence, it is necessary that g_{n} be uniformly bounded and of uniform bounded variation on \mathbb{R}.

Suppose (2) holds with $g_{n} \rightarrow g$ in measure on each compact interval in \mathbb{R}. Write $\int_{-\infty}^{\infty} f g_{n}=\int_{-\infty}^{a} f g_{n}+\int_{a}^{b} f g_{n}+\int_{b}^{\infty} f g_{n}$. Use Lemma 24 in [4] to write $\left|\int_{-\infty}^{a} f g_{n}\right| \leq\left\|f \chi_{(-\infty, a)}\right\| V_{[-\infty, a]} g_{n} \leq\left\|f \chi_{(-\infty, a)}\right\| M \rightarrow 0$ as $a \rightarrow-\infty$. We can then take a large enough interval $[a, b] \subset \mathbb{R}$ and apply the current theorem on $[a, b]$. Other unbounded intervals are handled in a similar manner.

Remark 4. If (2) holds, then dominated convergence shows $\left\|g_{n}-g\right\|_{1} \rightarrow 0$. And, convergence in $\|\cdot\|_{1}$ implies convergence in measure. Therefore, in the first statement of (2) and in the last statement of Theorem 3, 'convergence in measure' can be replaced with 'convergence in $\|\cdot\|_{1}$ '. Similar remarks apply to Theorem 6.

Remark 5. The change of variables argument in the second last paragraph of Theorem 3 can be replaced with an appeal to the Banach-Steinhaus Theorem on unbounded intervals. See [3, Lemma 7]. A similar remark holds for the proof of Theorem 8.

The sequence of Heaviside functions $g_{n}=\chi_{(n, \infty]}$ shows (2) is not necessary to have $\int_{-\infty}^{\infty} f g_{n} \rightarrow 0$ for all $f \in \mathcal{H K}$. For then, $\int_{-\infty}^{\infty} f g_{n}=\int_{n}^{\infty} f \rightarrow 0$. In this case, $g_{n} \in \mathcal{N B V}$ and $V g_{n}=1$. However, $\lambda\left(T_{n}\right)=\infty$ for all $0<\epsilon<1$. Note that for each compact interval $[a, b]$ we have $\int_{a}^{b} g_{n} \rightarrow 0$ and $g_{n} \rightarrow 0$ in measure on $[a, b]$.

It is somewhat surprising that condition (2) is also necessary and sufficient to have $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.
Theorem 6. Let $[a, b]$ be a compact interval in \mathbb{R}, let g_{n} and g be real-valued functions on $[a, b]$ with g of bounded variation. In order for $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$ it is necessary and sufficient that

$$
\left.\begin{array}{l}
g_{n} \rightarrow g \text { in measure as } n \rightarrow \infty, \tag{3}\\
\text { for each } n \geq 1, g_{n} \text { is equivalent to a function } h_{n} \in \mathcal{N B} \mathcal{V}, \\
\text { and there is } M \in[0, \infty) \text { such that } V h_{n} \leq M \text { for all } n \geq 1 .
\end{array}\right\}
$$

If $(a, b) \subset \mathbb{R}$ is unbounded, then change the first line of (3) by requiring $g_{n} \chi_{I} \rightarrow$ $g \chi_{I}$ in measure for each compact interval $I \in(a, b)$.

Proof. Certainly (3) is necessary in order for $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.
If we have (3), let I_{n} be any sequence of intervals in (a, b). We can again assume $g=0$. Write $\tilde{g}_{n}=g_{n} \chi_{I_{n}}$. Then

$$
\left\|\tilde{g}_{n}\right\|_{\infty} \leq\left\|g_{n}\right\|_{\infty}, V \tilde{g}_{n} \leq V g_{n}+2\left\|g_{n}\right\|_{\infty} \text { and } \tilde{g}_{n} \rightarrow 0 \text { in measure. }
$$

The result now follows by applying Theorem 3 to $f \tilde{g}_{n}$.
Unbounded intervals are handled as in Theorem 3.
By combining Theorem 3 and Theorem 6 we have the following.
Theorem 7. Let $(a, b) \subset \mathbb{R}$. Then $\int_{a}^{b} f g_{n} \rightarrow \int_{a}^{b}$ fg for all $f \in \mathcal{H K}$ if and only if $\left\|f g_{n}-f g\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.

Note that $\left\|f\left(g_{n}-g\right)\right\| \geq\left|\left\|f g_{n}\right\|-\|f g\|\right|$; so if $\left\|f\left(g_{n}-g\right)\right\| \rightarrow 0$, then $\left\|f g_{n}\right\| \rightarrow\|f g\|$. Thus, (3) is sufficient to have $\left\|f g_{n}\right\| \rightarrow\|f g\|$ for all $f \in \mathcal{H} \mathcal{K}$. However, this condition is not necessary. For example, let $[a, b]=[0,1]$. Define $g_{n}(x)=(-1)^{n}$. Then $\left\|g_{n}\right\|_{\infty}=1$ and $V g_{n}=0$. Let $g=g_{1}$. For no $x \in[-1,1]$ does the sequence $g_{n}(x)$ converge to $g(x)$. For no open interval $I \subset[0,1]$ do we have $\int_{I}\left(g_{n}-g\right) \rightarrow 0$. And, g_{n} does not converge to g in measure. However, let $f \in \mathcal{H} \mathcal{K}$ with $\|f\|>0$. Then $\left\|f\left(g_{n}-g\right)\right\|=0$ when n is odd and when n is even, $\left\|f\left(g_{n}-g\right)\right\|=2\|f\|$. And yet, for all $n,\left\|f g_{n}\right\|=\|f\|=\|f g\|$.

It is natural to ask what extra condition should be given so that $\left\|f g_{n}\right\| \rightarrow$ $\|f g\|$ will imply $\left\|f g_{n}-f g\right\| \rightarrow 0$. We have the following.
Theorem 8. Let $g_{n} \rightarrow g$ in measure or almost everywhere. Then $\left\|f g_{n}\right\| \rightarrow$ $\|f g\|$ for all $f \in \mathcal{H} \mathcal{K}$ if and only if $\left\|f g_{n}-f g\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.
Proof. Let $[a, b]$ be a compact interval. If $\left\|f g_{n}\right\| \rightarrow\|f g\|$, then g is equivalent to $h \in \mathcal{N B} \mathcal{V}\left[2\right.$, Theorem 12.9] and for each $f \in \mathcal{H} \mathcal{K}$ there is a constant C_{f} such that $\left\|f g_{n}\right\| \leq C_{f}$. By the Banach-Steinhaus Theorem [2, Theorem 12.10], each g_{n} is equivalent to a function $h_{n} \in \mathcal{N B} \mathcal{V}$ with $V h_{n} \leq M$ and $\left\|h_{n}\right\|_{\infty} \leq M$. Let $(c, d) \subset(a, b)$. By dominated convergence, $\int_{c}^{d} g_{n} \rightarrow \int_{c}^{d} g$. It now follows from Theorem 1 that $\int_{a}^{b} f g_{n} \rightarrow \int_{a}^{b} f g$ for all $f \in \mathcal{H} \mathcal{K}$. Hence, by Theorem 7, $\left\|f g_{n}-f g\right\| \rightarrow 0$ for all $f \in \mathcal{H} \mathcal{K}$.

Now suppose $(a, b)=\mathbb{R}$ and $\left\|f g_{n}\right\| \rightarrow\|f g\|$ for all $f \in \mathcal{H} \mathcal{K}$. The change of variables $x \mapsto 1 / x$ shows the Banach-Steinhaus Theorem still holds on \mathbb{R}. We then have each g_{n} equivalent to $h_{n} \in \mathcal{N B} \mathcal{V}$ with $V h_{n} \leq M$ and $\left\|h_{n}\right\|_{\infty} \leq M$. As with the end of the proof of Theorem 3, given $\epsilon>0$ we can find $c \in \mathbb{R}$ such that $\left|\int_{-\infty}^{c} f g_{n}\right|<\epsilon$ for all $n \geq 1$. The other cases are similar.

Acknowledgment. An anonymous referee provided reference [3] and pointed out that in place of convergence in measure we can use convergence in $\|\cdot\|_{1}$ (cf. Remark 4).

References

[1] G. B. Folland, Real analysis, New York, Wiley, 1999.
[2] P.-Y. Lee, Lanzhou lectures on integration, Singapore, World Scientific, 1989.
[3] W. L. C. Sargent, On some theorems of Hahn, Banach and Steinhaus, J. London Math. Soc., 28 (1953), 438-451.
[4] E. Talvila, Henstock-Kurzweil Fourier transforms, Illinois J. Math., 46 (2002), 1207-1226.

[^0]: Key Words: Henstock-Kurzweil integral, convergence theorem, Alexiewicz norm
 Mathematical Reviews subject classification: 26A39, 46E30
 Received by the editors December 2, 2002
 Communicated by: Peter Bullen
 *Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

