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A GENERALIZED HENSTOCK INTEGRAL

Abstract

The present paper concerns a general version of the Henstock integral
that includes Schwabik’s generalized Perron integral and all the Stieltjes
type integrals induced by measures as well.

1 Introduction

Let k be a positive integer and a, b be fixed real numbers. For g : [a,b] — R
and for k + 1 distinct points zg, 1, . .., 2 belonging to [a,b], not necessarily
in linear order, the kth divided difference of g is defined as

: g(x)

T i (@i — )

Qr(g;xo, x1,...,x) =

If Qk(g;z0,21,-..,2x) > 0 for all choices of k+ 1 distinct points xg, z1, ..., Tk
in [a, b], then g is called k-convex on [a, b].

Let « be a given point in [a, b]. The kth Riemann derivative of g : [a,b] — R
at « (Bullen [2], p. 83) is defined by

ﬁkg(x) =k! lim lim -+ lim lim  Qx(g;xo,21,...,Tk),
|z —2|—0 |zg_1—2|—0 |z1—2|—0 |zo—2|—0
if the iterated limit exists for all choices of k + 1 distinct points zq, z1, ..., Tk

belonging to [a, b] satisfying 0 < |xg — x| < |z1 — 2| < -+ < |z — z|. The right
and left kth Riemann derivatives D g(z), D g(x) respectively are defined in
the obvious way.
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If in the above definition we take hg = 0, then, in view of Definition
2 of Russell [11], we obtain the corresponding definitions of the kth Rie-
mann*derivatives D*g(z), D g(z), D*g(x) of g at z. It is known that if
the ordinary kth derivative g(*)(z) exists, then the kth Riemann*derivative
DFg(x) exists and equals g(®)(x). In general, the converse is true for k = 1.
In view of Lemma 1(d) of Bullen [2] or Lemma 4 of Russell [11], we have

(xr — 20)Qr(g; 0, 1, .., k) = Qr—1(95 1, .. -, Tk) — Qr—1(g; 0, - - ., Tp—1)-

This shows that for a k-convex function g on [a,b] the (k — 1)th divided dif-
ference is non-decreasing with the increase of any of the component points ;.
It is shown in Russell [11] that for a k-convex function g on [a, b], Di‘l g(a),
DF~1g(b) may not exist. If g is k-convex on [a,b] and D% g(a), D*"1g(b)
exist, then it is shown in the proof of Lemma 3.2 of Das and Das [3] that for
a<z<y<b

D% lg(a) < DF'g(z) < DY 'g(x) < D¥gly) < DE'g(y) < DF g (b).

It follows that D* 'g(z) is non-decreasing on (a,b] and D% 'g(z) is non-
decreasing on [a, b). The (k—1)th Riemann* derivative D¥~!g(x) exists at each
point of continuity of either sided derivative. Since D*~2g(z) is continuous
at each point of [a,b] (see Russell [11]), we observe, in view of Verblunsky
[14], that the above (k — 1)th Riemann* derivatives can be replaced by the
corresponding (k — 1)th ordinary derivatives. It therefore follows that if g is
k-convex on [a, b], then g(*~1)(z) exists on [a, b] except possibly for a countable
set of points in [a, b].

Russell [12] obtains a definition of Stieltjes type integral which he calls the
RS} integral.

Definition 1.1 ([12], Definition 4, amended on p. 441). Let f, g : [a,b] — R.
The function f is said to be RS} integrable with respect to g on [a, b] if there
exists a real number I such that to each € > 0 there corresponds a real constant
0 > 0 such that for every partition P = {a = zo < 1 < -+ < x,, = b} of [a,}]
with max{(z; — x;-1),1 <1i < n} < the inequality

n—k
| Z FE)Qr-1(gi Tit1, - @ivk) — Qr—1(g5 @i, - Tipr—1)] — I| <€
i=0
holds independent of the choice of points &; € [z;, x;4%],4 =0,1,...,n — k.

If the integral exists we write (f,g) € RS{[a,b]. The number I is called
the RSjintegral and we write I = (RSj) f; f(z) f;i(i).
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It is shown in Russell [12] that given g, k-convex on [a,b] and g% '(a),
g" 71 (b) existing, (f,g) € RS}[a,b] if f is continuous on [a,b]. Bhattacharaya
and Das [1] show by an example that the RS integral fails to exist if the
interior of [a, b] contains a common point of discontinuity of f and nonexistence
of (k — 1)th derivative of g. Ray and Das [10] overcome this difficulty of the
RS} integral by introducing the definition of the RS; integral as follows.

Definition 1.2 ([10], Definition 2.2). Let f be bounded and g be k-convex

on [a,b] and gik_l)(aL gf_l)(b) exist. For any partition

P={a=zp<ax1 <<z =0}

of [a,b], we write gk-mesh(P) = max [g(_k_l)(xi) — gik_l)(;pi_l)} and
S(P, f.9) =" fla)lo V(i) — g* ) (@a)l/ (k- 1))
i=1
+ 3 £V @) — gF TV @i/ (k1)
i=1
where &; € (z;-1,2;), 1 =1,2,...,n.
k
The RS} integral, written as (RSZ)]; f(z) Zw‘,i(i), is the real number I if it

exists uniquely, and if for each € > 0 there corresponds a real number §(e) > 0
such that for any partition P of [a,b] with gk-mesh(P) < §, the inequality
|S(P, f,g)—I| < eis satisfied. If the integral exists, we write (£, g) € RS} [a,b].

It is shown in Ray and Das [10] that this integral exists if f is BV on [a, b],
and that (RS) C (RS}) C (LSk), where (I) stands for the class of I-integrable
functions. (For the LS}, integral the readers are referred to [1].)

Das et al. [5] obtain the Henstock version of the RS} integral as below.
Definition 1.3 ([5], Definition 2.1 and Remark 2.15). Let f be defined on
[a,b] and g be k-convex on [a,b] with gik_l)(a), gf_l)(b) existing. The HSj,
integral of f with respect to ¢ is the real number I if for every arbitrary ¢ > 0
there is a positive function 4, called a gauge, on [a, b] such that for every d-fine
partition P = {(&;,[z;-1,2,]),1 < j < g} of [a,b] with each {; € [z;_1,2,] C

(& — (&), + (&),
{30 s lalt ) — oD el - 1

+ 3 F NV (@) — gV (o)) (ke — 1)!} _ z\ <e
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If the integral exists, we write (f,g) € HSgla,b] and I = (HSy) fab f(a:)dkg(x).

dxk—1

It is proved in ([5], Theorem 3.2) that the HS} integral includes the LS
integral of Bhattacharaya and Das [1], so that we obtain

(RS;) C RS}) € (LSk) C (HSg).

Das and Sahu [7] apply the HSj integral to obtain the existence theorem
for the solutions of certain differential equations. An equivalent Denjoy type
definition of the H .S}, integral, the DS} integral, is obtained by Das and Sahu
8]
Das and Sahu [6] further introduced the definition of a general integral,
the GSH integral, in light of Schwabik’s definition of the generalized Perron
integral in Schwabik [13]. The GSH integral includes the HSj, integral in the
same way as the Schwabik integral includes the Henstock integral. For ready
references we produce the Schwabik integral [13] and the GSH integral [6].

Definition 1.4 ([13], Definition 1.2). A function U : [a,b] X [a,b] — R is
called integrable over [a, b] if there is an I € R such that given € > 0, there is
a gauge 9 : [a,b] — (0,00) such that

ISW.D) =1 = | YUy 05) = Ulrjyap-1)] 1| < e

j=1

for every é-fine partition D = {(7;, [aj_1,¢5]), j = 1,2,...,n} of [a,b]. The
real number [ is called the generalized Perron integral of U over the interval
[a,b] and will be denoted by [ DU(r,t).

We see that for f,g : [a,b] — R, letting U(7,t) = f(7)g(t) reduces the
Schwabik integral to the Henstock Stieltjes integral (H.S) f: fdg.

Definition 1.5 ([6], Definition 2.1). Let U and V' be two real valued functions
defined on [a, b] x [a,b]. The pair (U, V) is called integrable on [a, b] if there is
a real number I such that given ¢ > 0 there is a gauge J : [a, b] — (0, 00) such
that

‘ Z{[V(Tja%‘) —Ul(7j,aj-1)] + [U(ay, o) = V(e o)1} — 1‘ <e

for every d-fine partition P = {(7j, [ej_1,0;]), j = 1,2,...,n} of [a,b]. The
real number [ is called the generalized Schwabik-Henstock integral of the pair
(U, V) on the interval [a,b] and will be denoted by (GSH) [*(U, V).
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If f,g: [a,b] — R and g is k-convex with g5 *(a), g5~ '(b) existing, then
letting U(7,t) = f(1)g" ' (t) and V(,t) = f(1)g"~ 1(tf) in Deﬁmtlon 1.5 yields
the HS}y, integral of Das et al. [5].

The main clue in introducing the RS-, LSy-, HSk-, DSk-, GS H- integrals
of A. G. Das and his collaborators is based on the concept of gk-measure of
an open interval J = (u,v) defined by |J|gx = g 1)( ) — ggrkfl)(u) and the
gk-saltus at = € (a,b) defined by g(lC 1)( ) — g 1)( ) (see Bhattacharaya
and Das [1]). The H S}, integral is a Henstock type generalization of the RS,
integral of Ray and Das [10] that uses gk-measure and gk-saltus instead of
the RS} integral of Russell [12] that uses divided differences of the integrator
function. Obviously the H S} integral includes the RS} integral too. It is
expected that a Henstock type integral be introduced that directly uses the
divided differences of the integrator function as in the RS; integral.

Pal, Ganguly and Lee [9] make an attempt in this regard. They offer a
concept of 0*-fine division of [a,b] and obtain a general version of a Henstock
type integral. We produce below certain definitions and results from Pal et al.
[9] for ready references.

Given a positive function § : [a, b] — (0, 00), there always exists (see [9], p.
854) a &*-fine division D = {([z;, 7s41],&), i =0,1,...,n —k} of [a,b] given
by a = 9 < x1 < -+ < x, = b with associated points {&o,&1,...,&n—k}
satisfying

& € [zi, wigr] C (& —0(&),& +0(&)), i =0,1,...,n—k.

Definition 1.6 ([9], page 854 ). Let f : [a,b] — R and g : [a,b]**! — R. The
function f is said to be GRy, integrable with respect to g to real number I on
[a,b] if for every € > O there is a positive function ¢ on [a, b] such that for any
§F-fine division D = {([z;, 7i4x], &), i = 0,1,...,n — k} of [a,b] we have

‘ Z f&)g(xi, iz, xipr) — I| <e.

=0
n—k
The expression Z f&)g(xi, Tig1, - -, Tiyk) is often denoted by s(f, g; D).

=0
For k=1, g: [a,b] x [a,b] — R and « : [a,b] — R, letting g(z;,x;11) =
a(zir1) — a(x;), provides the classical Henstock-Stieltjes integral f: f da.
Pal et al. [9] claim that for ¢ : [a,b]*"! — R and « : [a,b] — R, letting

9(xis xig1, . Tig) = (Tigpr — ) Qr(s Ti, Tiga, .., Tigk)
= Qr-1(;Tix1, .-, Titk) — Qu—1(a; 4, ..., Titr)

(1)
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reduces the GRy, integral to the Henstock type generalization of the RS
integral of Russell [12].

For further development of the theory of the GRy, integral Pal et al. [9]
need the following concept of jump.
The jump of g : [a,b]*Tt — R at x, denoted by J(g; ), is defined by

J(g;z)=  lim  g(zo,21,...,2Tk)
TO—T, T —T

where x € [zg,z] and zp < 1 < -+ < x. We note here that for k = 1 and « :
[a,b] — R, letting g(xo,z1) = a(z1) — (o), yields J(g;z) = a(z+) — alz—)
or a(z+) — a(x) or a(x) — a(z—) according as o < & < 1 or kg = = <
or g < x = x1. In any case J(g;x) = 0 if « is continuous at z. For k > 1
and g as in (1), J(g; ) exists and equals 0 provided « has finite kth divided
differences or the (k — 1)th Riemann derivative (see Bullen [2], p. 83) of «
exists at x.

Prior to producing the Saks-Henstock lemma analog, Pal et al. [9] intro-
duce a concept of partial division of [a, b] as follows.
Let [a;,b;], i =1,2,..., p be pairwise non-overlapping intervals in [a, b] such
that UY_, [a;, b;] C [a,b]. The {D;}i—12. ., is said to be a §*-fine partial divi-
sion of [a, b] if each D; is a 6*-fine division of [a;, b;]. Its corresponding partial
Riemann type sum is given by > 0_ s(f, g; D;).

Theorem 1.7 ([9], Theorem 2.5 ). If (f,g) € GRi[a,b] and J(g,c) exists for
all ¢ € (a,b), then for every e > 0 there exists a positive function 6 on [a, b
such that for any 6*-fine division D of [a,b] and for any 6*-fine partial division
{Dz’}i:l,Q ..... P of [a,b]

Is(f.9: D) = Fla.b)| <  and | Y [s(f.: D) ~ Flai.b)l| < (k+ De (2

where D; is a 6 -fine division of [a;,b;] and F(u,v) denotes the GRy, integral
on [u,v] C [a,b].

The process of the proof of the above theorem in [9] requires refinements of
gauge functions arising out of the overlap of the point-interval pairs. As such
from a given §*-fine division D satisfying the first inequality in (2), one cannot
choose a finite number of point interval pairs {([x;, zi+x],&)} as in D. This
results in the non-additive behavior of the GR}, integrals over subintervals of
[a, b].

To overcome this unpleasant behavior of the G Ry, integral the authors of
the present paper introduce the definition of a general integral that extends
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the idea of the generalized Perron integral of Schwabik [13] in the sense of
higher dimension. It is worth mentioning that the new integral presented here
accommodates Saks-Henstock lemma analog (see Theorem 3.1 and Corollary
3.2 below) without any jump concept which is essential for the similar result
in the GRy, integral of Pal et al. [9]. Cauchy Extension analogs have also been
obtained. It is shown that for a particular choice of the defining function the
new integral is the G Ryintegral of Pal et al. [9]. The definition of the integral
here does not involve repetition of division points and as such the approach
seems to be simpler.

2 Definitions and Elementary properties

Let a, b be fixed real numbers such that a < b, and let k£ be a fixed positive
integer. Let 10 <T11 < <Tp SX20 <21 < < Zop << ppo <
Tp1 < -+ < Ty be any system of points in [a,b]. We say that the intervals
[©i0,%ik),?=1,2,...,n form an elementary system

{(@i, i, Tig—1) : [Tio,Tik)y 0 =1,2,...,n}

in [a,b]. If each interval [x; 0, z; ] along with the interior points ;1 < ;2 <
<o < @y -1 1s tagged with & € [0, x; 1] We call the system a tagged elemen-
tary k-system and denote it by

{&sxin,mio, .. Tik—1) : [Tio, Tik), 1=1,2,...,n}.
A tagged elementary k-system
{(&sxin, i, Tip—1) © [0, Tik), 1=1,2,...,n}

is a tagged k-partition of [a,b] if U [zi0,zi k] = [a,b].
Given a positive function ¢ : [a,b] — (0,00), a tagged elementary k-system
and in particular a tagged k-partition

{(&;zin, wio, .. 5Tik—1) : [@io, ik, 1=1,2,...,n}

of [a,b] is said to be d-fine if & € [x;0,zik] C (& — 0(&),& + 0(&;)) for all
i=1,2,...,n. We shall often call such a positive function ¢ a gauge on [a, b].
We note that a J-fine tagged k-partition

{(fw Li1yLq,2y - 7$i,k71) : [xi,Ov mi,k‘]a 1= 1u 27 e un}
of [a, b] exists because it is simply a usual -fine tagged partition

{&;ilzio,zik), i=1,2,...,n}
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of [a,b] along with a set of (k — 1) points x;1 < ;2 < -+ < @ —1 in
(i0,2ik),t = 1,2,...,n. Clearly for k = 1, a 0-fine tagged k-partition is a
é-fine tagged partition.

Definition 2.1. A function U : [a,b]*™! — R is called GH} integrable on

[a, b] if there is an I € R such that given € > 0 there is a gauge ¢ on [a, b] such
that

‘ U win, . win) = UG wio, . win-1)] —I| <€
i=1
for every d-fine tagged k-partition

P={(&;xi1, iz, Tik—1) : [Tio, Tik)yt=1,2,...,n}

of [a,b]. The real number I is called the GHj, integral of U on [a,b] and we
write (GHy) [T U = 1.

If (GHy) f: U exists, we often write U € GHy[a,b]. We use the notation
S(U, P) for the Riemann type sum

n

Z[U(ﬁi;l‘i,h o @ik) — UG @i, - Tik—1)]

i=1

corresponding to the function U and the k-partition
P= {(517 Li1yLq,2y - 7xi,k71) : [:Ei,07xi,k?}7i = 17 27 e ,TL}.

Remark 2.2. For k = 1, the GH}, integral is the generalized Perron integral
of Schwabik [13]. As such the GH}, integral includes the Henstock, the gener-
alized Perron and all the Stieltjes type integrals on [a,b] induced by measure.

For k > 1, we set
U(ritita, ... te) = f(T)a(ty,ta, ... tk)

for f:[a,b] = R, a: [a,b]* — R so as to obtain a kth Riemann Stieltjes type
sum

Zf(fi)[a(fﬂi,h e Tik) — a0, Tig—1)].

i=1
If the integral exists, we often write (f, a) € GHyla, b] and the integral will be
denoted by (GHy) f; fda. In particular, for f : [a,b] — R, and h: [a,b] — R,
letting

Ulriti,ta,. . te) = f(7)Qr—1(hit1, b2, ..., tk)
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where Qg_1(h;t1,ta,...,t;) is the (kK — 1)th divided difference of h, leads to
the kth Riemann-Stieltjes sum

n

s(f,h; P) = Z F&)[Qr—-1(hszi1, ... xik) — Qu—1(h;Tio, ..., Tik—1)]

=1

corresponding to the k-partition

P={(&;xi1, i, Tik—1) : [Tio,Tik)t=1,2,...,n}

of [a, b] (cf. Russell [12], Das and Lahiri [4]). We note further that the resulting
integrals do not involve the repeated terms as in [12], [9] and in some others.

Definition 2.3. A function U : [a,b]**! — R" is called GH}, integrable on
[a, b] if there exists an I € R™ such that given e > 0, there exists a gauge ¢ on
[a,b] such that

Isw,p) -1 = || i[U(gi; Ty @ik) = Ul a0, osmin-1)] = 1| < €
=1

for any é-fine tagged k-partition
P = {(517 xi,lvxi,Qa cee 7xi,k71) : [xi,()vxi,k},i = 17 2’ e ,TL}.

of [a,b]. The integral I € R™ is called the GH}, integral of U on [a,b] and we
write (GHy) f; U=1.

If the integral exists, we often write U € GHyla,b]. Here the norm ||.|| is
any norm in R”, for example, the Euclidean one.

Note 2.4. Following Schwabik[13] it is not difficult to show that an R"™-valued
function U : [a,b)*Tt — R™, U = (Uy,Us,...,U,), is GHy, integrable if and
only if every component U,,,m = 1,2,...,n, is GH}y integrable in the sense
of Definition 1.1.

Theorem 2.5. The function U : [a,b]*Tt — R™ is GH}, integrable on [a,b] if
and only if for every e > 0 there is a gauge 6 on [a,b] such that

I1S(U, ) = S(U, Po)|| < €

for any -fine tagged k-partitions Py, Py of [a,b).
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PRrOOF. By Note 2.4, it is sufficient to prove the theorem for a real valued
function U : [a, b]**! — R. We prove the sufficient part. The necessary part is
immediate. Denote by M the set of all s in R such that for every d-fine tagged
k-partition P of [a,b] we have s < S(U, P). Assume that Py is an arbitrary
o-fine tagged k-partition of [a,b]. By the hypothesis, for every d-fine tagged
k-partition P of [a,b] we have

S(U,Py) — e < S(U, P) < S(U, Py) +e.

Therefore (—oo, S(U, Py) —€) C M C (—o0,S(U, Py) + €) and so the set M is
non-empty and bounded above. Consequently sup M exists and

S(U,Py) —e<supM < S(U, Py) + ¢,
so that for every o-fine tagged k-partition P of [a, b]
|S(U,P) —sup M| < |S(U,P)—S(U, Py)| +|S(U, Py) — sup M| < 2¢
holds. Hence U € GHyla,b] and (GHy) [L U = sup M. O

For any k-partition P = {(&;%i1,---,%ik—1); [Ti0:sTik], 1=1,2,...,n}
of [a,b] and for arbitrary ¢1,co € R we evidently have

S(ClU—I—CQV,P) = clS(U,P) +CQS(‘/,P)

for the Riemann sums of the functions U : [a,b]**1 — R™ V : [a,b]kT! — R".
We immediately obtain the following linear property.

Theorem 2.6 (Linear Property). If U,V € GHla,b] and c¢1, co € R, then
a1 U + eV € GHgla,b] and

b b b
(GHk)/ (61U+CQV) :Cl(GHk)/ U+CQ(GHk)/ V.
Theorem 2.7. If U € GHyla,b], then for every [c,d] C [a,b], U € GHg[c, d).
Proor. Consider any two J-fine tagged k-partitions P;, P of [c, d], namely
Pj = {(gzjﬂle? ceey x{,k—l) : [xg,oa‘xik]vi = ]-7 27 s 7qj}7x]i,0 =c, mgj7k =d
for j = 1,2. Assume that a < ¢ < d < b. Let

Ps = {(gfa xih s 7x:1?,k—1) : [Iimzik]?i =12,... ap}v'rio = a7x13),k =cC
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be a d-fine tagged k-partition of [a, c] and let

Py = {( ?;x:{l?' .- 7x?,k—1) : ['riovx?,k]vi =12,... ’7‘}"73411,0 =d, xé,k =b

be a d-fine tagged k-partition of [d, b]. Clearly the union P; U P; U P, consti-
tute a d-fine tagged k-partition Pj of [a,b]. Similarly the union P3; U Py U Py
constitute a 0-fine tagged k-partition Pj of [a,b]. So using the necessary part
of Theorem 2.5, we have ||S(U, P{) — S(U, Py)|| < €. Then

IS, Pr) = S(U, )| = [|S(U, P)) = S(U, Py)]|| <e.
Therefore by the sufficient part of Theorem 2.5, U € GHy[e, d]. O

Corollary 2.8. If U € GHgla,b] and if a < ¢ < b, then U € GHgla, (|,
U € GHy[e,b] and (GHy) [U = (GHy,) [SU + (GHy) [*U.

PRrROOF. By Theorem 2.7, U € GHgla,c] and U € GHyle,b]. For arbitrary
€ > 0 there exists a positive function ¢ : [a,b] — (0, 00) such that for every o-
fine tagged k-partition P; of [a, ] and P, of [¢, b] and consequently P = PyUP,
of [a, b], we have

Isw.p) - @) [ Ul < e/3:

a

b
IS(U. Py) — (GHy) / Ul < /3

b
IS(U, P) — (GHy) / Ul < /3.

Then
c b b
|(GHy) / U+ (GHy) / U~ (GHy) / ol
ac C ba
<|(GHy) / U~ S, P+ II(GHy) / U~ S, Py

+ ||[(GHg) /bU —SWU,P)| <€/3+¢€/3+¢/3=¢.

As € > 0 is arbitrary, we have (GHy,) fab U= (GHy) [U + (GHy) fcb v O

Prior to the next result we produce a definition.
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Definition 2.9. Let U : [a,b]**! — R and let ¢ € [a,b]. By J(U,¢) we mean
the iterated limit

lim lim - lm Ulety,ta,. .., t),
|t —c|—0 |tk —1—c|—0 [t1—c|—0
if it exists for all choices of ti,ta,...,t; in [a,b] satisfying 0 < |t1 — ¢| <

[to —c| < -+ < |t — ¢|.

Equivalently, J(U, c) exists if for every € > 0 there is a positive number
0(c) such that |U(e;ty,ta, ... tx) — J(U,c)| < € for all t1,ta,...,t, € [a,D]
satisfying 0 < [t; —¢| < |[ta —¢| < -+ < [tx, — | < 0(c).

For ¢ <t <ty < --+ <ty <b, we define J*(U,¢) and similarly J~ (U, c)
forc>t1 >ty >+ > 1 > a.

In particular, if we set U(7,t) = f(7)g(¢), then J(U,7) = f(7) ‘ lir‘n Og(t).
t—7|—
If U(T; tl,tg, e 7tk) = f(T)Qkfl(g;tl,tQ, N 7tk)7 then

J(U,7) = f(r)D*g(r)/(k — 1),

provided the (k — 1)th Riemann derivative, ﬁkflg(T), exists. We note that if
any t; coincides with 7 for some i, we have J(U,7) = f(1)D*lg(7)/(k — 1)!,
where D¥~1g(7) is the (k—1)th Riemann* derivative (see Russell [11], p. 548).
We further note that DF~1g(r) = D*~1g(7) whenever lA?k_lg(T) exists.

For f:[a,b] = R, a: [a,b]* — R and U(7;ty,...,t,) = f(T)a(ts,..., ),
we shall sometimes use the notation J(f,a;c) for J(U,c) when a < ¢ < b,
JY(f,a;¢) for JT(U,c) when a < ¢ < b and J ™ (f,a;¢) for J~(U,c) when
a<c<hbh.

Theorem 2.10. Let ¢ € (a,b) and let J(U, c) exist. If U € GHgla,c] and U €
GHy[e,b), then U € GHy[a,b] and (GHy,) [* U = (GHy) [SU + (GHy) [ U.

PROOF. Let € > 0 be arbitrary. There exist 4, : [a,¢] — (0,00) and 2 :
[c,b] — (0,00) such that for any d;-fine tagged k-partition P; of [a, ] and for
any do-fine tagged k-partition P of [c,b], we have

c b
IS(U, Pr) — (GHk)/ Ul <e, ||S(U, P) — (GHk)/ Ul <e.
Since J(U, ¢) exists, there is > 0 such that for max [t; —c| <mn,
<<

U(c;ty,ta,. .. tk) — J(U, o) < €/6. (3)
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We define a positive function § on [a, b] by
min{d; (z),c — z} ifa<z<e
d(xz) = ¢ min{d2(z),x — ¢} ife<az<b
min{di(c), d2(c),n} ifx=c.

Consider any J-fine tagged k-partition

P={(&;xi1, ,Tig—1): [Tio,Tik), i =1,2,...,n}

71

of [a,b]. Clearly c is a tag for some interval [z, 0, Zmk], 1 < m < n. No
other interval except [®m,0,Zm k] can include c¢. If S(U, P) denotes the ap-
proximating sum of U corresponding to the d-fine tagged k-partition P, we

have
m—1
SU,P) =Y (Ui win,-. xik) — Ul& i, - Tigo1)]
=1
+ [U(c; LTm,1y--- ;xm,k) - Ul Lm0y - 7xm,k—1)}

+ > Ui, min) = UG i, o Tig-1)].

Consider the sets of k-points
c=0(c) <Tm-1k = Ym0 < Ym1 < < Ymk = G,

C=2Zm0 < Zm1 <+ < Zmk = Tmt1,0 < ¢+ 6(c).

Then the parts of the partition P fori =1,2,..., m—1 together with the single
system {(¢; Ym.1s- -+ Ym.k—1) : [Um,0,¢]} constitute a d;1-fine tagged k-partition
P of [a, c]. Also the parts of the partition P for i = m+1,...,n together with
{(¢;2m1,- s Zmk—1) : [¢, Zm ]} constitute a Jo-fine tagged k-partition P of

[c, b]. We have then using (3)

|S(U, P)=S(U, P1) — S(U, )|
:”[U(C; Tm,1y--- 7$m,k) - U(C; Lm,05 - - - 7-7Jm,k71)]

— U Ymas-- s Ymp =€) —U(C Ymos - s Ym k—1)]

=06 2m,1, - 2mp) = UG 2mo = ¢, zmp—1)]]| <€
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So
c b
IS(U, P) — (GHy) / U - (GHy) / ol

c b
<|IS(U, Py) — (GHy) / Ull + |1S(U, Py) — (GHy) / Ul
+||S(U, P) = S(U, Py) — S(U, P)|| < 3e.

Since P is arbitrary d-fine tagged k-partition of [a,b], it follows that U €
GHyla,b), and (GHy) [PU = (GHy) [CU + (GHy) [ U. O
Remark 2.11. Apparently there seems to be a contrast between Corollary
2.8 and Theorem 2.10. In Corollary 2.8, the equality holds without the limit
concept on U at ¢ whereas it is essential in establishing the equality in Theorem
2.10. In fact, if U is given to be GHj, integrable on [a,b], we are free to
consider any point ¢ € (a,b) as a partition point z,,0,m < n, of a J-fine
tagged k-partition

P = {(517 Lidye-- 7xi,kfl) : [xi,Ou CUi,]€]77; = 1? 27 cee 7”}

of [a,b]. For k = 1, Theorem 2.10 analog does not require the existence of
J(U,c) (see Schwabik [13]).

3 Some Fundamental Results

Theorem 3.1 (Saks-Henstock analog ). Let U : [a,b]*"t — R" be GHj
integrable on [a,b]. Given € > 0 assume that the gauge § on [a,b], d : [a,b] —
(0,00) is such that for every d-fine tagged k-partition

P = {(«Ei;xi)l, . 7;51‘,]@,1) . [.’171"0,1]1"]9]7 Z = 1, 27 - ,n}

of la, b]
H zn:[U(gﬁxi,l, ey xi,k) — U(fl, Ti0y--- ,:Ci)kfl)] — (GHk) /b UH < €.
i=1 a

If {Misyins- - Yik—1) : Wi0sYik), 1 =1,2,...,m} where a < y10, Yi—1,6 <
Yioli =2,...,m), Yymr < b, represents a d-fine elementary k-system in [a,b],
then

Yi,k

H Z[U(m;yi,h o Yik) = UMisYios - Yik—1) — (GHk)/ U]H < 2e.
i=1 Yi,0

Yi,
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PROOF. If y; 1, < yiq1,0 for somei =1,2,...,m; Ym41,0 = b, then by Theorem
2.7, U € GHglYik,Yi+1,0])- Given € > 0 there exists a gauge d; on [y; k, Yi+1,0]
such that 6;(z) < d(z) for all € [yik,Yit+1,0] and for every d;-fine tagged
k-partition P’ of [y; k,Yi+1,0] we have

€
m+1

) Yi+1,0
|S(U. P') — (GHy) / Ul <

(4)

If y; 1 = Yi+1,0, we consider S(U, P*) = 0. The expression

m

S UM vis - vik) = Ui vios - vik—1)] + »_ S(U, P

i=1 i
represents a G'Hj integral sum which corresponds to a certain é-fine tagged
k-partition of [a, b] and consequently

m

H S U vias - vik) = Ui yios - vik—1)]
=1

b
+3 sw. Py - (GHk)/ UH <e
i a
Hence in view of Corollary 2.8 and the inequalities (4), (5)

m Yi,k
H S UM vins - vin) = Ui i Yik1) — (GHk)/ Ul H
=1 d

Yi,0

m
SH S UM vias - vik) = UM yios - Yik—1)]
i=1

s [[o«Sfpuri-en [

<€+ mn € < 2e. O
m

+1

Corollary 3.2. Let U : [a,b]¥Tt — R" be GHy, integrable on [a,b]. Then to
each € > 0 there exists a gauge § on [a,b] such that for every §-fine tagged
k-partition

P = {(é-i;xi,lu e 7‘7’.7;,](271) . [xi,07xi,k]7 1= 17 27 e 7TL}

of [a,b]
zn: €505, swi0) = Ui mio, . wine1) = (GH) / vl <
=1

Ti,0
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PROOF. We prove the result for real valued function U : [a,b]**! — R. The
general case for R™ follows from Note 2.4. Since U € GHyla,b], for every
e > 0 there is a positive function § on [a, b] such that for every d-fine tagged
k-partition

P={(&;xi1, -, Tik—1): [Ti0o, Tik), 1 =1,2,...,n}

of [a,b] we have, in view of Corollary 2.8

n Tik

‘ Z[U(€i§xi,17 e 7-Ti,k) — U(éi;fﬂi,O, N ,l’i’kfl) — (GHk)/ U]) <

=1 Ti,0

Let 1 denote that part of the above sum for which
Tik
U(&;wins- - zip) — Ui @io, - Tik—1) — (GHk)/ U] >0,
Zi,0

and let X~ denote that part for which the above left expression is less than 0.
Then utilizing Theorem 3.1, we obtain

Z?:1|[U(§i;9€i,1, o) — UG5 i0, - Tik—1) — (GHk)/ UH

Zi,0

:2*-2*:|E+|+|E*|<%+§:e. O

Theorem 3.3 (Cauchy Extension analog). Let U : [a,b]**! — R", k > 1, be
such that U € GHyla,c] for every c € [a,b) and let lin})(GHk) JSU =1 exist

finitely. If J=(U,b) exists finitely, then U € GH[a,b] and (GHy) fabU =1.

PROOF. Let € > 0 be arbitrary. There is a number 7; > 0 such that for every
ce(b—m,b)

H(GH;Q/ U IH <e (6)
Let {cp}p2o be an increasing sequence in [a,b),co = a with ¢, — b so that
U € GHgla, cp| for every p=1,2,... . So for every p = 1,2,..., there exists

a gauge 9, : [a, ¢p] — (0,00) such that for any d,-fine tagged k-partition P, of
[a, ¢,] we have

HS(U, P,) — (GHy) / UH </l p=1,2,.... (7)
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For any § € [a, b) there is exactly one p(§) = 1,2, ... for which & € [cpe)—1, Cpe)]-
Given £ € [a,b) choose 6(€) > 0 such that (&) < dp(e) (&) and

(€ = 0(),€+0(9) N[a,b) < [a, cpiey).
Assume that c is given in [a,b) and that
pP= {(&;miy s Tig—1); [®io, Tik), i =1,2,...,n—1}
is a 0-fine tagged k-partition of [a,c]. If p(&;) = p, then
[@i.0, k] C (& = 0(8:), & +0(&)) C la, cp)-

Also we have [z;0,2; %] C (& — 0p(&i), & + 0p(&i)). Let

Z [U(&s@in, - min) = U3 @i0,- s Tig—1) — (GHk)/ U]
= xi,0
p(&:i)=p
be the sum of those terms in
n—1 Tik
S Ui, min) = UG @i, o Tik-1) — (GHk)/ U]
i=1 Zi,0

for which the tag ¢; satisfies the relation & € [cp—1,¢p]. Since (7) holds we
obtain, by Saks-Henstock analog (Theorem 3.1),

n—1 Tik
: €
H Z [U(iswin,- - min) — Ul @io0s - Tik—1) — (GHk)/ U]H <5
i=1 Ti,0
p(&:)=p

(8)

Since U € GHya, c| for every ¢ € [a,b), we have by Corollary 2.8

c n—1 Tik
(GHk)/ U= Z(GHk)/ U.
a i=1 Ti,0
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Therefore, using (8)

H f[U(fﬁxi,l, o xin) — UG wio, -, @ik—1)] — (GHy) /CUH
=1 a

n—1

Tik
=D Ui, wik) = Ul @i0s - ig1) — (GHk)/ ull 9)
=1 Ti,0
oo n—1 Ti,k
S Y Uwinemin) = Uléiiia i) = (GH) [ U]
— i= Zi,0
= p(&i)=p
> €
< Z % = €
p=1

If J~(U,b) exists, there is 7o > 0 such that for every b —no < t; <tg < - - <
ti < b we have

HU(b7 to, ..., tgk, b) - U(b;tl,tg, R 7tk)|| < €. (10)
Let nn = min(n;,72). Define a gauge § on [a, b] such that

§(¢) = min(8(6),b - &) if € € [a,b), 5(b) <.
Let P = {(&;®i1,---,Tik—1) : [Ti0,Tik),4=1,2,...,n} be an arbitrary J-
fine tagged k-partition of [a,b]. Clearly &, = zp, = b and xp_1 % = Tpo €
(b—mn,b) C (b —m,b). Utilizing (6) and (10)

I1S(U, P) —I||
n—1

:H S Ui, min) = UG mio, - Tik1)]
i=1

F UG 2, b) = Ubi gy s Tngeo1)] — IH
n—1

SH Z[U(fisxi,h v i) — UG a0y -0 Ti—1)] — (GHk)/

=1 a

Tn—1,k

v

Ty 1,k
+ H(GHk)/ U—I|+ U0 zna,...,0) = Ub; 2,0, Tnge-1)|l

n—1

<H Z[U(&; Titse s tin) — Ui, win1)] — (GH) /az_ UH + 2.

=1
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Since zp_1% < band P= {(&;xitse s ®ig—1): [0, Tik), 1=1,2,...,n—1}
is a 0-fine tagged k-partition of [a, z,,—1 k], using (9) the first term on the right
hand side of the last inequality is less than e. Hence we obtain

IS(U, P) — I|| < 3e.
This yields U € GHyla,b] and that (GHy) [ U = I, O

Remark 3.4. For k = 1 see Schwabik ([13], Theorem 1.14). In fact, there the
existence of J~ (U, b) doesn’t necessarily imply lirll)l [U(b,b)—=U(b,c)] = 0. For

example, let U(7,t) = f(7)g(¢t) so that Clirgli[U(b, b) — U(b,c)] = f(b)[g(b) —
g(b—)], when g(b—) exists. However, if U(r,t) = f(7).t, then CEI?,[U(Z” b) —
U(b,c)] =0.

The left analog of Theorem 3.3 can similarly be obtained.

Theorem 3.5. Let U : [a,b]*! — R", k > 1, be such that U € GHyla,b] for
every a € (a,b] and let lim (GHy) f;’U = I exist finitely. If JT(U,a)exists
a—a

finitely, then U € GHyla,b] and (GHy) [P U = 1.
Theorem 3.6. Let f: [a,b] = R, a:[a,b]F = R, g: [a,b]* — R and let
g(to,tl, ce ,tk) = Oé(tl, ce ,tk) - Oé(tg, ce ,tk_l)

forto,t1,... tx € [a,b]. If (f,a) € GHgla,b] and J*(f,c;a), J~(f,a;b) emist,
then (f,g) € GRyla,b] and (GRy,) [* fdg = k(GHy) [0 f da.

PROOF. Let € > 0 be arbitrary. There exists a positive function § : [a,b] —
(0,00) such that for every d-fine tagged k-partition

P={(;zi1, .. Tik-1): [®io, Tik)t=1,2,...,n}
of [a,b] and for every d-fine tagged k-system {(Ci;¥i1,---sYik—1) : [¥i,05Yik]}

in [a,b] we have from Definition 2.1 and Theorem 3.1

n b
‘ Z flé)la(zin, - xik) — a(Tios -, Tik—1)] — (GHk)/ fdoz’ <e (11)
=0 a

Yik

’Z{f@i)[a(yz’,h cosYik) = Yi0s -5 Yik—1)] — (GHk)/ fda}| <2¢ (12)

7,0

where we take U(7;t1,t0,...,tx) = f(T)a(ty,te, ..., tk), T,t1,t2,...,tx € [a,b].
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Take an arbitrary §*-fine division D = {([z;, z;11],&), i =10,1,...,n — k}
of [a,b]. The points z1,...,25—1 and Zp_g41,-..,2n—1 are accommodated
satisfying the jump effects at a, b respectively. For each 7 =0,1,....k—1 we
may consider

{(fi—o—j? Lidjtiy--- 71'i+j+k'—1) : [xi+j7 $i+j+k)]a

i€ Apr = {pk,p=0,1,.., 2111 < b}}

as a O-fine tagged k-system in [a,b]. So utilizing Cauchy Extension analogs
(Theorems 3.3, 3.5) and using inequalities (11), (12) above, we obtain

b
’ > fG)a@ivin, o Tiggn)—olTitg, - 7$i+j+k—1)}—(GHk)/f da‘ < 2e
1€EALL @

for each j =0,1,...,k — 1. Using the definition of g and the notation of Pal
et al. [9], we observe that

k—1
s(f,6:D) =Y > fEplal@iviin, - ipirn) — @iy, Tigjin1)]-

J=04i€ Ay
We therefore obtain |s(f, g; D) —k(GH}) fj fda| < 2ke. It follows that (f,g) €
GRyla,b], and (GRy) [° fdg = K(GHy) [7 fda. O
Acknowledgement: The authors are grateful to the referee for helpful sug-

gestions towards the improvement of the paper.
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