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A GENERALIZED HENSTOCK INTEGRAL

Abstract

The present paper concerns a general version of the Henstock integral
that includes Schwabik’s generalized Perron integral and all the Stieltjes
type integrals induced by measures as well.

1 Introduction

Let k be a positive integer and a, b be fixed real numbers. For g : [a, b] → R
and for k + 1 distinct points x0, x1, . . . , xk belonging to [a, b], not necessarily
in linear order, the kth divided difference of g is defined as

Qk(g;x0, x1, . . . , xk) =
k∑

i=0

g(xi)
Πk

j=0,j 6=i(xi − xj)
.

If Qk(g;x0, x1, . . . , xk) ≥ 0 for all choices of k+1 distinct points x0, x1, . . . , xk

in [a, b], then g is called k-convex on [a, b].
Let x be a given point in [a, b]. The kth Riemann derivative of g : [a, b] → R

at x (Bullen [2], p. 83) is defined by

D̂kg(x) = k! lim
|xk−x|→0

lim
|xk−1−x|→0

· · · lim
|x1−x|→0

lim
|x0−x|→0

Qk(g;x0, x1, . . . , xk),

if the iterated limit exists for all choices of k + 1 distinct points x0, x1, . . . , xk

belonging to [a, b] satisfying 0 ≤ |x0−x| < |x1−x| < · · · < |xk−x|. The right
and left kth Riemann derivatives D̂k

+g(x), D̂k
−g(x) respectively are defined in

the obvious way.
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If in the above definition we take h0 = 0, then, in view of Definition
2 of Russell [11], we obtain the corresponding definitions of the kth Rie-
mann*derivatives Dkg(x), Dk

+g(x), Dk
−g(x) of g at x. It is known that if

the ordinary kth derivative g(k)(x) exists, then the kth Riemann*derivative
Dkg(x) exists and equals g(k)(x). In general, the converse is true for k = 1.
In view of Lemma 1(d) of Bullen [2] or Lemma 4 of Russell [11], we have

(xk − x0)Qk(g;x0, x1, . . . , xk) = Qk−1(g;x1, . . . , xk)−Qk−1(g;x0, . . . , xk−1).

This shows that for a k-convex function g on [a, b] the (k − 1)th divided dif-
ference is non-decreasing with the increase of any of the component points xi.
It is shown in Russell [11] that for a k-convex function g on [a, b], Dk−1

+ g(a),
Dk−1
− g(b) may not exist. If g is k-convex on [a, b] and Dk−1

+ g(a), Dk−1
− g(b)

exist, then it is shown in the proof of Lemma 3.2 of Das and Das [3] that for
a < x < y < b

Dk−1
+ g(a) ≤ Dk−1

− g(x) ≤ Dk−1
+ g(x) ≤ Dk−1

− g(y) ≤ Dk−1
+ g(y) ≤ Dk−1

− g(b).

It follows that Dk−1
− g(x) is non-decreasing on (a, b] and Dk−1

+ g(x) is non-
decreasing on [a, b). The (k−1)th Riemann* derivative Dk−1g(x) exists at each
point of continuity of either sided derivative. Since Dk−2g(x) is continuous
at each point of [a, b] (see Russell [11]), we observe, in view of Verblunsky
[14], that the above (k − 1)th Riemann* derivatives can be replaced by the
corresponding (k − 1)th ordinary derivatives. It therefore follows that if g is
k-convex on [a, b], then g(k−1)(x) exists on [a, b] except possibly for a countable
set of points in [a, b].

Russell [12] obtains a definition of Stieltjes type integral which he calls the
RS∗k integral.

Definition 1.1 ([12], Definition 4, amended on p. 441). Let f, g : [a, b] → R.
The function f is said to be RS∗k integrable with respect to g on [a, b] if there
exists a real number I such that to each ε > 0 there corresponds a real constant
δ > 0 such that for every partition P = {a = x0 < x1 < · · · < xn = b} of [a, b]
with max{(xi − xi−1), 1 ≤ i ≤ n} < δ the inequality

|
n−k∑
i=0

f(ξi)[Qk−1(g;xi+1, . . . , xi+k)−Qk−1(g;xi, . . . , xi+k−1)]− I| < ε

holds independent of the choice of points ξi ∈ [xi, xi+k], i = 0, 1, . . . , n− k.
If the integral exists we write (f, g) ∈ RS∗k [a, b]. The number I is called

the RS∗k integral and we write I = (RS∗k)
∫ b

a
f(x)dkg(x)

dxk−1 .
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It is shown in Russell [12] that given g, k-convex on [a, b] and gk−1
+ (a),

gk−1
− (b) existing, (f, g) ∈ RS∗k [a, b] if f is continuous on [a, b]. Bhattacharaya

and Das [1] show by an example that the RS∗k integral fails to exist if the
interior of [a, b] contains a common point of discontinuity of f and nonexistence
of (k − 1)th derivative of g. Ray and Das [10] overcome this difficulty of the
RS∗k integral by introducing the definition of the RS∗k integral as follows.

Definition 1.2 ([10], Definition 2.2). Let f be bounded and g be k-convex
on [a, b] and g

(k−1)
+ (a), g

(k−1)
± (b) exist. For any partition

P = {a = x0 < x1 < · · · < xn = b}

of [a, b], we write gk-mesh(P ) = max
1≤i≤n

[g(k−1)
− (xi)− g

(k−1)
+ (xi−1)] and

S(P, f, g) =
n∑

i=1

f(xi)[g
(k−1)
+ (xi)− g

(k−1)
− (xi)]/(k − 1)!

+
n∑

i=1

f(ξi)[g
(k−1)
− (xi)− g

(k−1)
+ (xi−1)]/(k − 1)!

where ξi ∈ (xi−1, xi), i = 1, 2, . . . , n.

The RS∗k integral, written as (RS∗k)
∫ b

a
f(x)dkg(x)

dxk−1 , is the real number I if it
exists uniquely, and if for each ε > 0 there corresponds a real number δ(ε) > 0
such that for any partition P of [a, b] with gk-mesh(P ) < δ, the inequality
|S(P, f, g)−I| < ε is satisfied. If the integral exists, we write (f, g) ∈ RS∗k [a, b].

It is shown in Ray and Das [10] that this integral exists if f is BV on [a, b],
and that (RS∗k) ⊂ (RS∗k) ⊂ (LSk), where (I) stands for the class of I-integrable
functions. (For the LSk integral the readers are referred to [1].)

Das et al. [5] obtain the Henstock version of the RS∗k integral as below.

Definition 1.3 ([5], Definition 2.1 and Remark 2.15). Let f be defined on
[a, b] and g be k-convex on [a, b] with g

(k−1)
+ (a), g

(k−1)
± (b) existing. The HSk

integral of f with respect to g is the real number I if for every arbitrary ε > 0
there is a positive function δ, called a gauge, on [a, b] such that for every δ-fine
partition P = {(ξj , [xj−1, xj ]), 1 ≤ j ≤ q} of [a, b] with each ξj ∈ [xj−1, xj ] ⊂
(ξj − δ(ξj), ξj + δ(ξj)),∣∣∣{ q∑

j=1

f(xj)[g
(k−1)
+ (xj)− g

(k−1)
− (xj)]/(k − 1)!

+
q∑

j=1

f(ξj)[g
(k−1)
− (xj)− g

(k−1)
+ (xj−1)]/(k − 1)!

}
− I

∣∣∣ < ε.
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If the integral exists, we write (f, g) ∈ HSk[a, b] and I = (HSk)
∫ b

a
f(x)dkg(x)

dxk−1 .

It is proved in ([5], Theorem 3.2) that the HSk integral includes the LSk

integral of Bhattacharaya and Das [1], so that we obtain

(RS∗k) ⊂ RS∗k) ⊂ (LSk) ⊂ (HSk).

Das and Sahu [7] apply the HSk integral to obtain the existence theorem
for the solutions of certain differential equations. An equivalent Denjoy type
definition of the HSk integral, the DS∗k integral, is obtained by Das and Sahu
[8].

Das and Sahu [6] further introduced the definition of a general integral,
the GSH integral, in light of Schwabik’s definition of the generalized Perron
integral in Schwabik [13]. The GSH integral includes the HSk integral in the
same way as the Schwabik integral includes the Henstock integral. For ready
references we produce the Schwabik integral [13] and the GSH integral [6].

Definition 1.4 ([13], Definition 1.2). A function U : [a, b] × [a, b] → R is
called integrable over [a, b] if there is an I ∈ R such that given ε > 0, there is
a gauge δ : [a, b] → (0,∞) such that

|S(U,D)− I| =
∣∣∣ n∑

j=1

[U(τj , αj)− U(τj , αj−1)]− I
∣∣∣ < ε

for every δ-fine partition D = {(τj , [αj−1, αj ]), j = 1, 2, . . . , n} of [a, b]. The
real number I is called the generalized Perron integral of U over the interval
[a, b] and will be denoted by

∫ b

a
DU(τ, t).

We see that for f, g : [a, b] → R, letting U(τ, t) = f(τ)g(t) reduces the
Schwabik integral to the Henstock Stieltjes integral (HS)

∫ b

a
f dg.

Definition 1.5 ([6], Definition 2.1). Let U and V be two real valued functions
defined on [a, b]× [a, b]. The pair (U, V ) is called integrable on [a, b] if there is
a real number I such that given ε > 0 there is a gauge δ : [a, b] → (0,∞) such
that ∣∣∣ n∑

j=1

{[V (τj , αj)− U(τj , αj−1)] + [U(αj , αj)− V (αj , αj)]} − I
∣∣∣ < ε

for every δ-fine partition P = {(τj , [αj−1, αj ]), j = 1, 2, . . . , n} of [a, b]. The
real number I is called the generalized Schwabik-Henstock integral of the pair
(U, V ) on the interval [a, b] and will be denoted by (GSH)

∫ b

a
(U, V ).
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If f, g : [a, b] → R and g is k-convex with gk−1
+ (a), gk−1

± (b) existing, then
letting U(τ, t) = f(τ)gk−1

+ (t) and V (τ, t) = f(τ)gk−1
− (t) in Definition 1.5 yields

the HSk integral of Das et al. [5].
The main clue in introducing the RS∗k-, LSk-, HSk-, DSk-, GSH- integrals

of A. G. Das and his collaborators is based on the concept of gk-measure of
an open interval J = (u, v) defined by |J |gk = g

(k−1)
− (v) − g

(k−1)
+ (u) and the

gk-saltus at x ∈ (a, b) defined by g
(k−1)
+ (x) − g

(k−1)
− (x) (see Bhattacharaya

and Das [1]). The HSk integral is a Henstock type generalization of the RS∗k
integral of Ray and Das [10] that uses gk-measure and gk-saltus instead of
the RS∗k integral of Russell [12] that uses divided differences of the integrator
function. Obviously the HSk integral includes the RS∗k integral too. It is
expected that a Henstock type integral be introduced that directly uses the
divided differences of the integrator function as in the RS∗k integral.

Pal, Ganguly and Lee [9] make an attempt in this regard. They offer a
concept of δk-fine division of [a, b] and obtain a general version of a Henstock
type integral. We produce below certain definitions and results from Pal et al.
[9] for ready references.

Given a positive function δ : [a, b] → (0,∞), there always exists (see [9], p.
854) a δk-fine division D = {([xi, xi+k], ξi), i = 0, 1, . . . , n− k} of [a, b] given
by a = x0 < x1 < · · · < xn = b with associated points {ξ0, ξ1, . . . , ξn−k}
satisfying

ξi ∈ [xi, xi+k] ⊂ (ξi − δ(ξi), ξi + δ(ξi)), i = 0, 1, . . . , n− k.

Definition 1.6 ([9], page 854 ). Let f : [a, b] → R and g : [a, b]k+1 → R. The
function f is said to be GRk integrable with respect to g to real number I on
[a, b] if for every ε > 0 there is a positive function δ on [a, b] such that for any
δk-fine division D = {([xi, xi+k], ξi), i = 0, 1, . . . , n− k} of [a, b] we have

∣∣∣ n−k∑
i=0

f(ξi)g(xi, xi+1, . . . , xi+k)− I
∣∣∣ < ε.

The expression
n−k∑
i=0

f(ξi)g(xi, xi+1, . . . , xi+k) is often denoted by s(f, g;D).

For k = 1, g : [a, b] × [a, b] → R and α : [a, b] → R, letting g(xi, xi+1) =
α(xi+1)− α(xi), provides the classical Henstock-Stieltjes integral

∫ b

a
f dα.

Pal et al. [9] claim that for g : [a, b]k+1 → R and α : [a, b] → R, letting

g(xi, xi+1, . . . , xi+k) = (xi+k − xi)Qk(α;xi, xi+1, . . . , xi+k)
= Qk−1(α;xi+1, . . . , xi+k)−Qk−1(α;xi, . . . , xi+k)

(1)
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reduces the GRk integral to the Henstock type generalization of the RS∗k
integral of Russell [12].

For further development of the theory of the GRk integral Pal et al. [9]
need the following concept of jump.
The jump of g : [a, b]k+1 → R at x, denoted by J(g;x), is defined by

J(g;x) = lim
x0→x,xk→x

g(x0, x1, . . . , xk)

where x ∈ [x0, xk] and x0 < x1 < · · · < xk. We note here that for k = 1 and α :
[a, b] → R, letting g(x0, x1) = α(x1)− α(x0), yields J(g;x) = α(x+)− α(x−)
or α(x+) − α(x) or α(x) − α(x−) according as x0 < x < x1 or x0 = x < x1

or x0 < x = x1. In any case J(g;x) = 0 if α is continuous at x. For k > 1
and g as in (1), J(g;x) exists and equals 0 provided α has finite kth divided
differences or the (k − 1)th Riemann derivative (see Bullen [2], p. 83) of α
exists at x.

Prior to producing the Saks-Henstock lemma analog, Pal et al. [9] intro-
duce a concept of partial division of [a, b] as follows.
Let [ai, bi], i = 1, 2, . . . , p be pairwise non-overlapping intervals in [a, b] such
that ∪p

i=1[ai, bi] ⊂ [a, b]. The {Di}i=1,2,...,p is said to be a δk-fine partial divi-
sion of [a, b] if each Di is a δk-fine division of [ai, bi]. Its corresponding partial
Riemann type sum is given by

∑p
i=1 s(f, g;Di).

Theorem 1.7 ([9], Theorem 2.5 ). If (f, g) ∈ GRk[a, b] and J(g, c) exists for
all c ∈ (a, b), then for every ε > 0 there exists a positive function δ on [a, b]
such that for any δk-fine division D of [a, b] and for any δk-fine partial division
{Di}i=1,2,...,p of [a, b]

‖s(f, g;D)− F (a, b)| < ε and
∣∣∣ p∑

i=1

[s(f, g;Di)− F (ai, bi)]
∣∣∣ < (k + 1)ε (2)

where Di is a δk-fine division of [ai, bi] and F (u, v) denotes the GRk integral
on [u, v] ⊆ [a, b].

The process of the proof of the above theorem in [9] requires refinements of
gauge functions arising out of the overlap of the point-interval pairs. As such
from a given δk-fine division D satisfying the first inequality in (2), one cannot
choose a finite number of point interval pairs {([xi, xi+k], ξi)} as in D. This
results in the non-additive behavior of the GRk integrals over subintervals of
[a, b].

To overcome this unpleasant behavior of the GRk integral the authors of
the present paper introduce the definition of a general integral that extends
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the idea of the generalized Perron integral of Schwabik [13] in the sense of
higher dimension. It is worth mentioning that the new integral presented here
accommodates Saks-Henstock lemma analog (see Theorem 3.1 and Corollary
3.2 below) without any jump concept which is essential for the similar result
in the GRk integral of Pal et al. [9]. Cauchy Extension analogs have also been
obtained. It is shown that for a particular choice of the defining function the
new integral is the GRkintegral of Pal et al. [9]. The definition of the integral
here does not involve repetition of division points and as such the approach
seems to be simpler.

2 Definitions and Elementary properties

Let a, b be fixed real numbers such that a < b, and let k be a fixed positive
integer. Let x1,0 < x1,1 < · · · < x1,k ≤ x2,0 < x2,1 < · · · < x2,k ≤ · · · ≤ xn,0 <
xn,1 < · · · < xn,k be any system of points in [a, b]. We say that the intervals
[xi,0, xi,k], i = 1, 2, . . . , n form an elementary system

{(xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

in [a, b]. If each interval [xi,0, xi,k] along with the interior points xi,1 < xi,2 <
· · · < xi,k−1 is tagged with ξi ∈ [xi,0, xi,k] we call the system a tagged elemen-
tary k-system and denote it by

{(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}.

A tagged elementary k-system

{(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

is a tagged k-partition of [a, b] if ∪n
i=1[xi,0, xi,k] = [a, b].

Given a positive function δ : [a, b] → (0,∞), a tagged elementary k-system
and in particular a tagged k-partition

{(ξi;xi,1, xi,2, . . . ;xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b] is said to be δ-fine if ξi ∈ [xi,0, xi,k] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for all
i = 1, 2, . . . , n. We shall often call such a positive function δ a gauge on [a, b].
We note that a δ-fine tagged k-partition

{(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b] exists because it is simply a usual δ-fine tagged partition

{ξi; [xi,0, xi,k], i = 1, 2, . . . , n}
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of [a, b] along with a set of (k − 1) points xi,1 < xi,2 < · · · < xi,k−1 in
(xi,0, xi,k), i = 1, 2, . . . , n. Clearly for k = 1, a δ-fine tagged k-partition is a
δ-fine tagged partition.

Definition 2.1. A function U : [a, b]k+1 → R is called GHk integrable on
[a, b] if there is an I ∈ R such that given ε > 0 there is a gauge δ on [a, b] such
that ∣∣∣ n∑

i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− I
∣∣∣ < ε

for every δ-fine tagged k-partition

P = {(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b]. The real number I is called the GHk integral of U on [a, b] and we
write (GHk)

∫ b

a
U = I.

If (GHk)
∫ b

a
U exists, we often write U ∈ GHk[a, b]. We use the notation

S(U,P ) for the Riemann type sum

n∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]

corresponding to the function U and the k-partition

P = {(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}.

Remark 2.2. For k = 1, the GHk integral is the generalized Perron integral
of Schwabik [13]. As such the GHk integral includes the Henstock, the gener-
alized Perron and all the Stieltjes type integrals on [a, b] induced by measure.

For k > 1, we set

U(τ ; t1, t2, . . . , tk) = f(τ)α(t1, t2, . . . , tk)

for f : [a, b] → R, α : [a, b]k → R so as to obtain a kth Riemann Stieltjes type
sum

n∑
i=1

f(ξi)[α(xi,1, . . . , xi,k)− α(xi,0, . . . , xi,k−1)].

If the integral exists, we often write (f, α) ∈ GHk[a, b] and the integral will be
denoted by (GHk)

∫ b

a
fdα. In particular, for f : [a, b] → R, and h : [a, b] → R,

letting
U(τ ; t1, t2, . . . , tk) = f(τ)Qk−1(h; t1, t2, . . . , tk)
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where Qk−1(h; t1, t2, . . . , tk) is the (k − 1)th divided difference of h, leads to
the kth Riemann-Stieltjes sum

s(f, h;P ) =
n∑

i=1

f(ξi)[Qk−1(h;xi,1, . . . , xi,k)−Qk−1(h;xi,0, . . . , xi,k−1)]

corresponding to the k-partition

P = {(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b] (cf. Russell [12], Das and Lahiri [4]). We note further that the resulting
integrals do not involve the repeated terms as in [12], [9] and in some others.

Definition 2.3. A function U : [a, b]k+1 → Rn is called GHk integrable on
[a, b] if there exists an I ∈ Rn such that given ε > 0, there exists a gauge δ on
[a, b] such that

‖S(U,P )− I‖ =
∥∥∥ n∑

i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− I
∥∥∥ < ε

for any δ-fine tagged k-partition

P = {(ξi;xi,1, xi,2, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}.

of [a, b]. The integral I ∈ Rn is called the GHk integral of U on [a, b] and we
write (GHk)

∫ b

a
U = I.

If the integral exists, we often write U ∈ GHk[a, b]. Here the norm ‖.‖ is
any norm in Rn, for example, the Euclidean one.

Note 2.4. Following Schwabik[13] it is not difficult to show that an Rn-valued
function U : [a, b]k+1 → Rn, U = (U1, U2, . . . , Un), is GHk integrable if and
only if every component Um,m = 1, 2, . . . , n, is GHk integrable in the sense
of Definition 1.1.

Theorem 2.5. The function U : [a, b]k+1 → Rn is GHk integrable on [a, b] if
and only if for every ε > 0 there is a gauge δ on [a, b] such that

‖S(U,P1)− S(U,P2)‖ < ε

for any δ-fine tagged k-partitions P1, P2 of [a, b].
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Proof. By Note 2.4, it is sufficient to prove the theorem for a real valued
function U : [a, b]k+1 → R. We prove the sufficient part. The necessary part is
immediate. Denote by M the set of all s in R such that for every δ-fine tagged
k-partition P of [a, b] we have s ≤ S(U,P ). Assume that P0 is an arbitrary
δ-fine tagged k-partition of [a, b]. By the hypothesis, for every δ-fine tagged
k-partition P of [a, b] we have

S(U,P0)− ε < S(U,P ) < S(U,P0) + ε.

Therefore (−∞, S(U,P0)− ε) ⊂ M ⊂ (−∞, S(U,P0) + ε) and so the set M is
non-empty and bounded above. Consequently supM exists and

S(U,P0)− ε < supM < S(U,P0) + ε,

so that for every δ-fine tagged k-partition P of [a, b]

|S(U,P )− supM | ≤ |S(U,P )− S(U,P0)|+ |S(U,P0)− supM | < 2ε

holds. Hence U ∈ GHk[a, b] and (GHk)
∫ b

a
U = supM .

For any k-partition P = {(ξi;xi,1, . . . , xi,k−1); [xi,0, xi,k], i = 1, 2, . . . , n}
of [a, b] and for arbitrary c1, c2 ∈ R we evidently have

S(c1U + c2V, P ) = c1S(U,P ) + c2S(V, P )

for the Riemann sums of the functions U : [a, b]k+1 → Rn, V : [a, b]k+1 → Rn.
We immediately obtain the following linear property.

Theorem 2.6 (Linear Property). If U, V ∈ GHk[a, b] and c1, c2 ∈ R, then
c1U + c2V ∈ GHk[a, b] and

(GHk)
∫ b

a

(c1U + c2V ) = c1(GHk)
∫ b

a

U + c2(GHk)
∫ b

a

V.

Theorem 2.7. If U ∈ GHk[a, b], then for every [c, d] ⊂ [a, b], U ∈ GHk[c, d].

Proof. Consider any two δ-fine tagged k-partitions P1, P2 of [c, d], namely

Pj = {(ξj
i ;x

j
i,1, . . . , x

j
i,k−1) : [xj

i,0, x
j
i,k], i = 1, 2, . . . , qj}, xj

1,0 = c, xj
qj ,k = d

for j = 1, 2. Assume that a < c < d < b. Let

P3 = {(ξ3
i ;x3

i,1, . . . , x
3
i,k−1) : [x3

i,0, x
3
i,k], i = 1, 2, . . . , p}, x3

1,0 = a, x3
p,k = c
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be a δ-fine tagged k-partition of [a, c] and let

P4 = {(ξ4
i ;x4

i,1, . . . , x
4
i,k−1) : [x4

i,0, x
4
i,k], i = 1, 2, . . . , r}, x4

1,0 = d, x4
r,k = b

be a δ-fine tagged k-partition of [d, b]. Clearly the union P3 ∪ P1 ∪ P4 consti-
tute a δ-fine tagged k-partition P ′

1 of [a, b]. Similarly the union P3 ∪ P2 ∪ P4

constitute a δ-fine tagged k-partition P ′
2 of [a, b]. So using the necessary part

of Theorem 2.5, we have ‖S(U,P ′
1)− S(U,P ′

2)‖ < ε. Then

‖S(U,P1)− S(U,P2)‖ = ‖S(U,P ′
1)− S(U,P ′

2)‖ < ε.

Therefore by the sufficient part of Theorem 2.5, U ∈ GHk[c, d].

Corollary 2.8. If U ∈ GHk[a, b] and if a < c < b, then U ∈ GHk[a, c],
U ∈ GHk[c, b] and (GHk)

∫ b

a
U = (GHk)

∫ c

a
U + (GHk)

∫ b

c
U.

Proof. By Theorem 2.7, U ∈ GHk[a, c] and U ∈ GHk[c, b]. For arbitrary
ε > 0 there exists a positive function δ : [a, b] → (0,∞) such that for every δ-
fine tagged k-partition P1 of [a, c] and P2 of [c, b] and consequently P = P1∪P2

of [a, b], we have

‖S(U,P1)− (GHk)
∫ c

a

U‖ < ε/3;

‖S(U,P2)− (GHk)
∫ b

c

U‖ < ε/3;

‖S(U,P )− (GHk)
∫ b

a

U‖ < ε/3.

Then

‖(GHk)
∫ c

a

U + (GHk)
∫ b

c

U − (GHk)
∫ b

a

U‖

≤‖(GHk)
∫ c

a

U − S(U,P1)‖+ ‖(GHk)
∫ b

c

U − S(U,P2)‖

+ ‖(GHk)
∫ b

a

U − S(U,P )‖ < ε/3 + ε/3 + ε/3 = ε.

As ε > 0 is arbitrary, we have (GHk)
∫ b

a
U = (GHk)

∫ c

a
U + (GHk)

∫ b

c
U.

Prior to the next result we produce a definition.
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Definition 2.9. Let U : [a, b]k+1 → R and let c ∈ [a, b]. By J(U, c) we mean
the iterated limit

lim
|tk−c|→0

lim
|tk−1−c|→0

· · · lim
|t1−c|→0

U(c; t1, t2, . . . , tk),

if it exists for all choices of t1, t2, . . . , tk in [a, b] satisfying 0 ≤ |t1 − c| <
|t2 − c| < · · · < |tk − c|.

Equivalently, J(U, c) exists if for every ε > 0 there is a positive number
δ(c) such that |U(c; t1, t2, . . . , tk) − J(U, c)| < ε for all t1, t2, . . . , tk ∈ [a, b]
satisfying 0 ≤ |t1 − c| < |t2 − c| < · · · < |tk − c| < δ(c).

For c ≤ t1 < t2 < · · · < tk ≤ b, we define J+(U, c) and similarly J−(U, c)
for c ≥ t1 > t2 > · · · > tk ≥ a.

In particular, if we set U(τ, t) = f(τ)g(t), then J(U, τ) = f(τ) lim
|t−τ |→0

g(t).

If U(τ ; t1, t2, . . . , tk) = f(τ)Qk−1(g; t1, t2, . . . , tk), then

J(U, τ) = f(τ)D̂k−1g(τ)/(k − 1)!,

provided the (k− 1)th Riemann derivative, D̂k−1g(τ), exists. We note that if
any ti coincides with τ for some i, we have J(U, τ) = f(τ)Dk−1g(τ)/(k − 1)!,
where Dk−1g(τ) is the (k−1)th Riemann* derivative (see Russell [11], p. 548).
We further note that D̂k−1g(τ) = Dk−1g(τ) whenever D̂k−1g(τ) exists.

For f : [a, b] → R, α : [a, b]k → R and U(τ ; t1, . . . , tk) = f(τ)α(t1, . . . , tk),
we shall sometimes use the notation J(f, α; c) for J(U, c) when a < c < b,
J+(f, α; c) for J+(U, c) when a ≤ c < b and J−(f, α; c) for J−(U, c) when
a < c ≤ b.

Theorem 2.10. Let c ∈ (a, b) and let J(U, c) exist. If U ∈ GHk[a, c] and U ∈
GHk[c, b], then U ∈ GHk[a, b] and (GHk)

∫ b

a
U = (GHk)

∫ c

a
U + (GHk)

∫ b

c
U.

Proof. Let ε > 0 be arbitrary. There exist δ1 : [a, c] → (0,∞) and δ2 :
[c, b] → (0,∞) such that for any δ1-fine tagged k-partition P1 of [a, c] and for
any δ2-fine tagged k-partition P2 of [c, b], we have

‖S(U,P1)− (GHk)
∫ c

a

U‖ < ε, ‖S(U,P2)− (GHk)
∫ b

c

U‖ < ε.

Since J(U, c) exists, there is η > 0 such that for max
1≤j≤k

|tj − c| < η,

‖U(c; t1, t2, . . . , tk)− J(U, c)‖ < ε/6. (3)
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We define a positive function δ on [a, b] by

δ(x) =


min{δ1(x), c− x} if a ≤ x < c

min{δ2(x), x− c} if c < x ≤ b

min{δ1(c), δ2(c), η} if x = c.

Consider any δ-fine tagged k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b]. Clearly c is a tag for some interval [xm,0, xm,k], 1 ≤ m ≤ n. No
other interval except [xm,0, xm,k] can include c. If S(U,P ) denotes the ap-
proximating sum of U corresponding to the δ-fine tagged k-partition P , we
have

S(U,P ) =
m−1∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]

+ [U(c;xm,1, . . . ;xm,k)− U(c;xm,0, . . . , xm,k−1)]

+
n∑

i=m+1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)].

Consider the sets of k-points

c− δ(c) < xm−1,k = ym,0 < ym,1 < · · · < ym,k = c,

c = zm,0 < zm,1 < · · · < zm,k = xm+1,0 < c + δ(c).

Then the parts of the partition P for i = 1, 2, . . . ,m−1 together with the single
system {(c; ym,1, . . . , ym,k−1) : [ym,0, c]} constitute a δ1-fine tagged k-partition
P1 of [a, c]. Also the parts of the partition P for i = m+1, . . . , n together with
{(c; zm,1, . . . , zm,k−1) : [c, zm,k]} constitute a δ2-fine tagged k-partition P2 of
[c, b]. We have then using (3)

‖S(U,P )−S(U,P1)− S(U,P2)‖
=‖[U(c;xm,1, . . . , xm,k)− U(c;xm,0, . . . , xm,k−1)]
− [U(c; ym,1, . . . , ym,k = c)− U(c; ym,0, . . . , ym,k−1)]
− [U(c; zm,1, . . . , zm,k)− U(c; zm,0 = c, . . . , zm,k−1)]‖ < ε.
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So

‖S(U,P )− (GHk)
∫ c

a

U − (GHk)
∫ b

c

U‖

≤‖S(U,P1)− (GHk)
∫ c

a

U‖+ ‖S(U,P2)− (GHk)
∫ b

c

U‖

+ ‖S(U,P )− S(U,P1)− S(U,P2)‖ < 3ε.

Since P is arbitrary δ-fine tagged k-partition of [a, b], it follows that U ∈
GHk[a, b], and (GHk)

∫ b

a
U = (GHk)

∫ c

a
U + (GHk)

∫ b

c
U.

Remark 2.11. Apparently there seems to be a contrast between Corollary
2.8 and Theorem 2.10. In Corollary 2.8, the equality holds without the limit
concept on U at c whereas it is essential in establishing the equality in Theorem
2.10. In fact, if U is given to be GHk integrable on [a, b], we are free to
consider any point c ∈ (a, b) as a partition point xm,0,m < n, of a δ-fine
tagged k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b]. For k = 1, Theorem 2.10 analog does not require the existence of
J(U, c) (see Schwabik [13]).

3 Some Fundamental Results

Theorem 3.1 (Saks-Henstock analog ). Let U : [a, b]k+1 → Rn be GHk

integrable on [a, b]. Given ε > 0 assume that the gauge δ on [a, b], δ : [a, b] →
(0,∞) is such that for every δ-fine tagged k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b]∥∥∥ n∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− (GHk)
∫ b

a

U
∥∥∥ < ε.

If {(ηi; yi,1, . . . , yi,k−1) : [yi,0; yi,k], i = 1, 2, . . . ,m} where a ≤ y1,0, yi−1,k ≤
yi,0(i = 2, . . . ,m), ym,k ≤ b, represents a δ-fine elementary k-system in [a, b],
then∥∥∥ m∑

i=1

[U(ηi; yi,1, . . . , yi,k)− U(ηi; yi,0, . . . , yi,k−1)− (GHk)
∫ yi,k

yi,0

U ]
∥∥∥ < 2ε.
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Proof. If yi,k < yi+1,0 for some i = 1, 2, . . . ,m; ym+1,0 = b, then by Theorem
2.7, U ∈ GHk[yi,k, yi+1,0]. Given ε > 0 there exists a gauge δi on [yi,k, yi+1,0]
such that δi(x) < δ(x) for all x ∈ [yi,k, yi+1,0] and for every δi-fine tagged
k-partition P i of [yi,k, yi+1,0] we have

‖S(U,P i)− (GHk)
∫ yi+1,0

yi,k

U‖ <
ε

m + 1
. (4)

If yi,k = yi+1,0, we consider S(U,P i) = 0. The expression
m∑

i=1

[U(ηi; yi,1, . . . , yi,k)− U(ηi; yi,0, . . . , yi,k−1)] +
∑

i

S(U,P i)

represents a GHk integral sum which corresponds to a certain δ-fine tagged
k-partition of [a, b] and consequently∥∥∥ m∑

i=1

[U(ηi; yi,1, . . . , yi,k)− U(ηi; yi,0, . . . , yi,k−1)]

+
∑

i

S(U,P i)− (GHk)
∫ b

a

U
∥∥∥ < ε.

(5)

Hence in view of Corollary 2.8 and the inequalities (4), (5)∥∥∥ m∑
i=1

[
U(ηi; yi,1, . . . , yi,k)− U(ηi; yi,0, . . . , yi,k−1)− (GHk)

∫ yi,k

yi,0

U
]∥∥∥

≤
∥∥∥ m∑

i=1

[U(ηi; yi,1, . . . , yi,k)− U(ηi; yi,0, . . . , yi,k−1)]

+
∑

i

S(U,P i)− (GHk)
∫ b

a

U
∥∥∥ +

∑
i

∥∥∥S(U,P i)− (GHk)
∫ yi+1,0

yi,k

U
∥∥∥

<ε +
m

m + 1
ε < 2ε.

Corollary 3.2. Let U : [a, b]k+1 → Rn be GHk integrable on [a, b]. Then to
each ε > 0 there exists a gauge δ on [a, b] such that for every δ-fine tagged
k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b]
n∑

i=1

∥∥∥[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]
∥∥∥ < ε.
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Proof. We prove the result for real valued function U : [a, b]k+1 → R. The
general case for Rn follows from Note 2.4. Since U ∈ GHk[a, b], for every
ε > 0 there is a positive function δ on [a, b] such that for every δ-fine tagged
k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi.0, xi,k], i = 1, 2, . . . , n}

of [a, b] we have, in view of Corollary 2.8

∣∣∣ n∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]
∣∣∣ <

ε

4
.

Let Σ+ denote that part of the above sum for which

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ] ≥ 0,

and let Σ− denote that part for which the above left expression is less than 0.
Then utilizing Theorem 3.1, we obtain

∑
n
i=1

∣∣[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]
∣∣

= Σ+ − Σ− = |Σ+|+ |Σ−| < ε

2
+

ε

2
= ε.

Theorem 3.3 (Cauchy Extension analog). Let U : [a, b]k+1 → Rn, k > 1, be
such that U ∈ GHk[a, c] for every c ∈ [a, b) and let lim

c→b
(GHk)

∫ c

a
U = I exist

finitely. If J−(U, b) exists finitely, then U ∈ GHk[a, b] and (GHk)
∫ b

a
U = I.

Proof. Let ε > 0 be arbitrary. There is a number η1 > 0 such that for every
c ∈ (b− η1, b) ∥∥∥(GHk)

∫ c

a

U − I
∥∥∥ < ε. (6)

Let {cp}∞p=0 be an increasing sequence in [a, b), c0 = a with cp → b so that
U ∈ GHk[a, cp] for every p = 1, 2, . . . . So for every p = 1, 2, . . . , there exists
a gauge δp : [a, cp] → (0,∞) such that for any δp-fine tagged k-partition Pp of
[a, cp] we have∥∥∥S(U,Pp)− (GHk)

∫ cp

a

U
∥∥∥ < ε/2p+1, p = 1, 2, . . . . (7)
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For any ξ ∈ [a, b) there is exactly one p(ξ) = 1, 2, . . . for which ξ ∈ [cp(ξ)−1, cp(ξ)].
Given ξ ∈ [a, b) choose δ̂(ξ) > 0 such that δ̂(ξ) ≤ δp(ξ)(ξ) and

(ξ − δ̂(ξ), ξ + δ̂(ξ)) ∩ [a, b) ⊂ [a, cp(ξ)).

Assume that c is given in [a, b) and that

P̂ = {(ξi;xi,1, . . . , xi,k−1); [xi,0, xi,k], i = 1, 2, . . . , n− 1}

is a δ̂-fine tagged k-partition of [a, c]. If p(ξi) = p, then

[xi,0, xi,k] ⊂ (ξi − δ̂(ξi), ξi + δ̂(ξi)) ⊂ [a, cp].

Also we have [xi,0, xi,k] ⊂ (ξi − δp(ξi), ξi + δp(ξi)). Let

n−1∑
i=1

p(ξi)=p

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]

be the sum of those terms in

n−1∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]

for which the tag ξi satisfies the relation ξi ∈ [cp−1, cp]. Since (7) holds we
obtain, by Saks-Henstock analog (Theorem 3.1),

∥∥∥ n−1∑
i=1

p(ξi)=p

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]
∥∥∥ <

ε

2p
.

(8)
Since U ∈ GHk[a, c] for every c ∈ [a, b), we have by Corollary 2.8

(GHk)
∫ c

a

U =
n−1∑
i=1

(GHk)
∫ xi,k

xi,0

U.
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Therefore, using (8)

∥∥∥ n−1∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− (GHk)
∫ c

a

U
∥∥∥

=‖
n−1∑
i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]‖ (9)

≤
∞∑

p=1

‖
n−1∑
i=1

p(ξi)=p

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)− (GHk)
∫ xi,k

xi,0

U ]‖

<
∞∑

p=1

ε

2p
= ε.

If J−(U, b) exists, there is η2 > 0 such that for every b− η2 < t1 < t2 < · · · <
tk < b we have

‖U(b; t2, . . . , tk, b)− U(b; t1, t2, . . . , tk)‖ < ε. (10)

Let η = min(η1, η2). Define a gauge δ on [a, b] such that

δ(ξ) = min(δ̂(ξ), b− ξ) if ξ ∈ [a, b), δ(b) < η.

Let P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n} be an arbitrary δ-
fine tagged k-partition of [a, b]. Clearly ξn = xn,k = b and xn−1,k = xn,0 ∈
(b− η, b) ⊂ (b− η1, b). Utilizing (6) and (10)

‖S(U,P )− I‖

=
∥∥∥ n−1∑

i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]

+ [U(b;xn,1, . . . , b)− U(b;xn,0, . . . , xn,k−1)]− I
∥∥∥

≤
∥∥∥ n−1∑

i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− (GHk)
∫ xn−1,k

a

U
∥∥∥

+ ‖(GHk)
∫ xn−1,k

a

U − I‖+ ‖U(b;xn,1, . . . , b)− U(b;xn,0, . . . , xn,k−1)‖

<
∥∥∥ n−1∑

i=1

[U(ξi;xi,1, . . . , xi,k)− U(ξi;xi,0, . . . , xi,k−1)]− (GHk)
∫ xn−1,k

a

U
∥∥∥ + 2ε.



A Generalized Henstock Intrgral 77

Since xn−1,k < b and P̂ = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n− 1}
is a δ̂-fine tagged k-partition of [a, xn−1,k], using (9) the first term on the right
hand side of the last inequality is less than ε. Hence we obtain

‖S(U,P )− I‖ < 3ε.

This yields U ∈ GHk[a, b] and that (GHk)
∫ b

a
U = I.

Remark 3.4. For k = 1 see Schwabik ([13], Theorem 1.14). In fact, there the
existence of J−(U, b) doesn’t necessarily imply lim

c→b−
[U(b, b)−U(b, c)] = 0. For

example, let U(τ, t) = f(τ)g(t) so that lim
c→b−

[U(b, b) − U(b, c)] = f(b)[g(b) −
g(b−)], when g(b−) exists. However, if U(τ, t) = f(τ).t, then lim

c→b−
[U(b, b) −

U(b, c)] = 0.

The left analog of Theorem 3.3 can similarly be obtained.

Theorem 3.5. Let U : [a, b]k+1 → Rn, k > 1, be such that U ∈ GHk[α, b] for
every α ∈ (a, b] and let lim

α→a
(GHk)

∫ b

α
U = I exist finitely. If J+(U, a)exists

finitely, then U ∈ GHk[a, b] and (GHk)
∫ b

a
U = I.

Theorem 3.6. Let f : [a, b] → R, α : [a, b]k → R, g : [a, b]k+1 → R and let

g(t0, t1, . . . , tk) = α(t1, . . . , tk)− α(t0, . . . , tk−1)

for t0, t1, . . . , tk ∈ [a, b]. If (f, α) ∈ GHk[a, b] and J+(f, α; a), J−(f, α; b) exist,
then (f, g) ∈ GRk[a, b] and (GRk)

∫ b

a
f dg = k(GHk)

∫ b

a
f dα.

Proof. Let ε > 0 be arbitrary. There exists a positive function δ : [a, b] →
(0,∞) such that for every δ-fine tagged k-partition

P = {(ξi;xi,1, . . . , xi,k−1) : [xi,0, xi,k], i = 1, 2, . . . , n}

of [a, b] and for every δ-fine tagged k-system {(ζi; yi,1, . . . , yi,k−1) : [yi,0, yi,k]}
in [a, b] we have from Definition 2.1 and Theorem 3.1∣∣∣ n∑

i=0

f(ξi)[α(xi,1, . . . , xi,k)− α(xi,0, . . . , xi,k−1)]− (GHk)
∫ b

a

f dα
∣∣∣ < ε, (11)

∣∣∣ ∑
i

{f(ζi)[α(yi,1, . . . , yi,k)− α(yi,0, . . . , yi,k−1)]− (GHk)
∫ yi,k

yi,0

f dα}
∣∣∣ < 2ε (12)

where we take U(τ ; t1, t2, . . . , tk) = f(τ)α(t1, t2, . . . , tk), τ, t1, t2, . . . , tk ∈ [a, b].



78 A. G. Das and Sarmila Kundu

Take an arbitrary δk-fine division D = {([xi, xi+k], ξi), i = 0, 1, . . . , n− k}
of [a, b]. The points x1, . . . , xk−1 and xn−k+1, . . . , xn−1 are accommodated
satisfying the jump effects at a, b respectively. For each j = 0, 1, . . . , k− 1 we
may consider

{(ξi+j ;xi+j+1, . . . , xi+j+k−1) : [xi+j , xi+j+k)],

i ∈ Apk = {pk, p = 0, 1, . . ., xi+j+k ≤ b}}

as a δ-fine tagged k-system in [a, b]. So utilizing Cauchy Extension analogs
(Theorems 3.3, 3.5) and using inequalities (11), (12) above, we obtain∣∣∣ ∑
i∈Apk

f(ξi+j)[α(xi+j+1, . . . , xi+j+k)−α(xi+j , . . . , xi+j+k−1)]−(GHk)
∫ b

a

f dα
∣∣∣ < 2ε

for each j = 0, 1, . . . , k − 1. Using the definition of g and the notation of Pal
et al. [9], we observe that

s(f, g;D) =
k−1∑
j=0

∑
i∈Apk

f(ξi+j)[α(xi+j+1, . . . , xi+j+k)− α(xi+j , . . . , xi+j+k−1)].

We therefore obtain |s(f, g;D)−k(GHk)
∫ b

a
fdα| < 2kε. It follows that (f, g) ∈

GRk[a, b], and (GRk)
∫ b

a
fdg = k(GHk)

∫ b

a
fdα.
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