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ON THE UNIQUENESS PROBLEM FOR
FOURIER SERIES

Abstract

In this paper the relation between N. Wiener’s theorem about char-
acterization of irregular points for the Dirichlet problem and the unique-
ness problem for Fourier series is established.

1 Introduction

Let us denote by Sn(x, f), n = 1, 2, . . . the partial sums of the Fourier series
of a function f(x) ∈ L1(−π, π), i.e.

Sn(x, f) =
n∑

k=−n

akeikx.

Definition 1. The subset E ⊂ [−π, π] is said to be a set of uniqueness for a
class of functions X, X ⊂ L1(−π, π), if for each f ∈ X, whenever we have
the condition

lim
n→∞

Sn(x, f) = 0, x /∈ E, (1)

it follows that f(x) = 0 a.e. on [−π, π].

Complete surveys of the classical results about the uniqueness problem
can be found in [1] or [2]. For the convenience of the reader, we present some
classical results, which qualitatively are close to the problem discussed here.

A. Zygmund [5] proved, that if εn > 0, n = 0, 1, 2, . . . is a sequence for
which

lim
n→∞

εn = 0,
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then there is a subset E, with measure arbitrary close to 2π such that E is a
set of uniqueness for the class of trigonometric series (not necessary Fourier
series) satisfying the conditions

|an| ≤ ε|n|, n = 0,±1,±2, . . . .

In 1973, this result was improved by J.-p. Kahane and Y. Katznelson [6]
who showed that there is a set of uniqueness, E with m(E) = 2π.

The analog of A. Zygmund’s original result, when the coefficient condition
is replaced by

∞∑
n=−∞

|an|p < ∞,

(1 < p < 2) was proved by Y. Katznelson in 1964, see [7]. And in 1975, L.
Michele and p. Soardi [3] improved this last result by showing the existence
of a set of uniqueness, E with m(E) = 2π.

For certain classes of functions there is a simple characterization of sets of
uniqueness. For example, if X = C[−π, π], the class of continuous functions
on [−π, π], then a set E is a set of uniqueness if and only if [−π, π]\E is dense
in the interval [−π, π]. Sets of uniqueness for the class X = L2(−π, π) can
also be characterized in a simple way; in this case, the sets of uniqueness are
exactly the sets of measure zero.

For classes X, containing discontinuous functions, sets of uniqueness E
have the property that their complements must be ”spread” in some sense
over the entire interval. In this paper we attempt to answer the following
question:

In what sense must the subset [−π, π] \ E be ”spread” over the
interval [−π, π] in order that E is a set of uniqueness for a given
class of functions, X?.

To accomplish this, we relate our question with well known results of N.
Wiener about the characterization of irregular points, see [4]. In Wiener’s
work, some classes of functions appear naturally, and although those classes
are natural for potential theory, they are different from those which one usu-
ally investigates when investigating the uniqueness problem for trigonometric
series.

2 Auxiliary Results

For completeness, we first give some well known definitions and results from
Potential Theory, see [4, p. 169].
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Definition 2. Let 0 < σ < 1. For an arbitrary Borel set E let the σ−capacity
of the set E be denoted by

Cσ(E) =
(

inf
µ≺E

∫
E

∫
E

dµ(x)dµ(y)
|x− y|σ

)−1

,

where µ ≺ E means that dµ is a probability measure with support in E.

Definition 3. Let 0 < σ < 1. If dµ is an arbitrary nonnegative measure,
define the α−potential of dµ as

Uµ
α (x) =

∫
dµ(y)

|x− y|1−α
.

The following definition is classical in potential theory, see [4, p. 376].

Definition 4. The subset E is called α−thin at the point x0 if there is a
nonnegative measure dµ for which

Uµ
α (x0) < lim inf

E\{x0}3x→x0

Uµ
α (x).

The following is a well known generalization of N. Wiener’s Theorem, see
[4, p. 353].

Theorem (N. Wiener) 1. Let 0 < α < 1. Then the subset E is α−thin at
the point x0 if and only if

∞∑
n=1

2n(1−α)C1−α(En(x0)) < ∞,

where En(x0) = {x ∈ E; 2−1−n < |x− x0| < 2−n}.

3 The Uniqueness for Fourier Series

We first prove the following lemma.

Lemma 1. Let dµ be a measure on [−π, π] (not necessary positive). Suppose
that for almost every point x0 ∈ [−π, π] the subset [−π, π]\E is α−thin at the
point x0. If Uµ

α (x) = 0 for every x 6∈ E, then Uµ
α (x) = 0 for every x ∈ [−π, π].

Proof. By Jordan’s Theorem we put dµ = dµ+ − dµ−, where dµ± are
nonnegative measures and we set d|µ| = dµ+ + dµ−.



942 Ashot Vagharshakyan

Then it follows directly from the definition that F =
{

x : U
|µ|
α (x) = +∞

}
has zero 1− α-capacity, i.e. C1−α(F ) = 0. Thus, we have

Uµ+
α (x) = Uµ−

α (x), whenever x ∈ [−π, π] \ E ∪ F.

Now we want to prove that this equality is true at each point x0 /∈ F where the
set [−π, π]\E is α-thin. Assume that U

µ+
α (x0) < U

µ−
α (x0) and fix 0 < A < ∞

such that U
µ+
α (x0) < A < U

µ−
α (x0). Since the function U

µ−
α (x) is continuous

from below, it follows that U
µ−
α (x) > A in some neighborhood of x0.

Since F has zero 1 − α-capacity, the set [−π, π] \ E ∪ F is α-thin at the
point x0, and consequently, by N. Wiener’s Theorem we have

Uµ
α (x0) ≥ lim inf

E∪F\{x0}3x→x0

Uµ
α (x).

Thus,

A ≤ lim inf
E∪F\{x0}3x→x0

Uµ−
α (x) = lim inf

E∪F\{x0}3x→x0

Uµ+
α (x) ≤ Uµ+

α (x0) < A.

This is contradiction. The case where U
µ+
α (x0) > U

µ−
α (x0) is handled in

a similar manner. But then, since both potentials U
µ+
α (x) and U

µ−
α (x) are

continuous from below it follows that

Uµ+
α (x) ≡ Uµ−

α (x).

This completes the proof.

The following Theorem is the main result of this paper.

Theorem 1. Let 0 < α < 1 and suppose∫ π

−π

|f(x)| dx +
∫ π

−π

∫ π

0

|f(x + t)− f(x)|
t1+α

dx dt < ∞. (1)

Let E be a subset for which

∞∑
n=1

2n(1−α)C1−α(En(x0)) = ∞,

where En(x0) = {x /∈ E; 2−1−n < |x − x0| < 2−n} for almost all points
x0 ∈ [−π, π]. Suppose further that for each point x /∈ E, limn→∞ Sn(x, f) = 0.
Then, f(x) = 0 almost everywhere on [−π, π].
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Proof. It is easy to see that there is a function f0(x),−∞ < x < ∞, with
bounded support, which coincides with f(x) for −π < x < π and for which∫ ∞

−∞

∫ ∞

0

|f0(x + t)− f0(x)|
t1+α

dx dt < ∞.

If 0 < δ < 1, define

fδ(x) =
1
δ

∫ δ

−δ

(
1− |t|

δ

)
f0(x + t) dt.

If 0 < δ, then fδ(x) is continuously differentiable and

lim
δ→0+

∫ ∞

−∞
|fδ(x)− f0(x)| dx = 0.

For 0 < δ < 1, define the auxiliary functions

gδ(x) =
α

2π
tan

(πα

2

)∫ ∞

−∞
fδ(x)− fδ(t)|x− t|1+α dt, −∞ < x < ∞.

It is known, see [9, p. 173], that

fδ(x) =
∫ ∞

−∞
gδ(t)|x− t|1−α dt.

Thus, we have∫ ∞

−∞
|gδ(x)| dx ≤ α

2π
tan

(πα

2

)∫ ∞

−∞

∫ ∞

0

|fδ(x + t)− fδ(x)|
t1+α

dx dt.

It follows from [2, p. 43–44] that there is a sequence {δn} tending to zero such
that the measures gδn(x) dx converge to a finite measure dµ(x) in the weak*
topology.

Now consider Uµ
α (x). For an arbitrary integer n = 0,±1, . . . we have

an =
1
2π

∫ π

−π

f(x)e−inx dx =
1
2π

∫ π

−π

f0(x)e−inx dx

= lim
n→∞

1
2π

∫ π

−π

fδn
(x)e−inx dx = lim

n→∞

1
2π

∫ ∞

−∞
gδn

(t)
(∫ π

−π

e−inx

|x− t|1−α
dx

)
dt

=
1
2π

∫ π

−π

Uµ
α (x)e−inx dx.
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So, the functions f(x),−π < x < π, and Uµ
α (x),−π < x < π, have the same

Fourier coefficients and consequently Uµ
α (x) = f(x) almost everywhere on

[−π, π].
Finally, there is a number 0 < M < ∞ such that for 0 < α < 1 the

following inequality holds, see [1, p. 306],∣∣∣∣∣
m∑

n=1

cos(nx)
nα

∣∣∣∣∣ ≤ M

|x|1−α
, m = 1, 2, . . . .

It now follows from the Lebesgue Dominated Convergence Theorem, that at
each point x /∈ E, where the integral is defined, the function Uµ

α (x) is abso-
lutely continuous Hence, for x /∈ E, we have

lim
n→∞

Sn(x, f) = lim
n→∞

Sn(x,Uµ
α ) = Uµ

α (x).

It follows from Lemma 1 that f(x) = 0 a.e. on [−π, π]. This completes the
proof of Theorem 1. .

Remark 1. For each σ > 1−α there is a set E which satisfies the conditions
of Lemma 1 and for which Cσ(E) = 0.

Proof. Actually, for arbitrary numbers 0 < t and a ∈ [−π, π] we have
C1−α(Et(a)) = t1−αC1−α(E), where Et(a) = {a + tx : x ∈ E}. It was shown
in [8, p. 38], that there is a set F for which C1−α(F ) > 0, and Cσ(F ) = 0.
Then the set

E =
∞⋃

n=1

(
2n⋃

k=1

F2−n(k2−n)

)

satisfies the hypothesis Theorem 1, so that Cσ(E) = 0.

Remark 2. There is an extensive family of subsets E, with 0 < m(E) < 2π
that are not sets of uniqueness for our classes. To see this, let 0 < α < 1 and
set E = [−π, π] \

⋃∞
n=1 ln, where ln, n = 1, 2, . . . are disjoint open intervals

satisfying
∑∞

n=1 |ln|1−α < ∞. Assuming that m(E) > 0, the characteristic
function of [−π, π] \ E,

f(x) =

{
0 x /∈ E

1 x ∈ E

satisfies condition (1) of Theeorem 1, and for each point x /∈ E we have
limn→∞ Sn(x, f) = 0.
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Actually, if 0 < α < 1, then for the characteristic function fn(x) of the
interval ln we have∫ π

−π

∫ π

0

|f(x + t)− f(x)|
t1+α

dx dt ' |ln|1−α.
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