THE COMPOSITION OF TWO CONNECTED G_{δ} FUNCTIONS HAS A FIXED POINT

Abstract

We show that if $f, g:[0,1] \rightarrow[0,1]$ are both functions with connected G_{δ} graphs, then their composition has a fixed point. This is a generalization of the analogous result for Darboux Baire 1 functions.

1 Introduction

In the survey [6] Gibson and Natkaniec refer to the problem whether the composition of two derivatives (or DB_{1} functions) with domain and range equal to the interval $\mathbb{I}=[0,1]$ has a fixed point. The question was answered in the positive by Csörnyei, O'Neil and Preiss ([3]) and independently by Elekes, Keleti and Prokaj ([4]). It is known that every derivative is DB_{1} and every DB_{1} function is a connected G_{δ} subset of \mathbb{T}^{2} (see definitions below). We show that if $f, g: \mathbb{I} \rightarrow \mathbb{I}$ are both connected G_{δ} subsets of \mathbb{I}^{2}, then $f \circ g$ possesses a fixed point. Since Jones and Thomas constructed a function $f: \mathbb{I} \rightarrow \mathbb{I}$ with a connected G_{δ} graph which is Baire class 2 but not DB_{1} ([7], see also [1] and [2]), this is a generalization of the result from [3] and [4].

Since this note have been written, the more general results have been proved in [11]. However, the proof presented here is considerably simpler, and self contained, while the proof presented in [11] depends heavily on the difficult results proved in [10].

[^0]
2 Preliminaries

Throughout this note for every $A \subset \mathbb{I}^{2}$ by A^{-1} we will denote the set:

$$
\{\langle y, x\rangle \mid\langle x, y\rangle \in A\} .
$$

By rectangle we will understand a rectangle whose sides are parallel to the usual coordinate axes. Topological notions like open, closed, etc., will be considered relatively to \mathbb{I}^{2}.

For every function f we will identify f with its graph. We will consider the following classes of functions from \mathbb{I} into \mathbb{I}.

- D; we will say that f is Darboux $(f \in \mathrm{D})$ if $f(I)$ is an interval for every interval $I \subset \mathbb{I}$; equivalently, f has the intermediate value property;
- Conn; f is connected $(f \in \mathrm{Conn})$ if f is a connected subset of \mathbb{I}^{2}; we will also call such a function connectivity;
- $\mathrm{B}_{1} ; f$ is Baire class 1 if f is the pointwise limit of a sequence of continuous functions; this is equivalent to the fact, that $f^{-1}(G)$ is an F_{σ} subset of \mathbb{I} for every open set $G \subset \mathbb{I}$;
- $\mathrm{B}_{2} ; f$ is Baire class 2 if f is the pointwise limit of a sequence of Baire 1 functions; this is equivalent to the fact, that $f^{-1}(G)$ is a $G_{\delta \sigma}$ subset of \mathbb{I} for every open set $G \subset \mathbb{I}$;
- $\mathrm{DB}_{1} ; f$ is Darboux Baire $1\left(f \in \mathrm{DB}_{1}\right)$ if f is Darboux and Baire 1 ;
- $G_{\delta} ; f$ is in the class G_{δ} if f is a G_{δ} subset of \mathbb{I}^{2}.

For properties of these classes of functions see e.g. the survey [5]. In particular, it is well-known that Conn $\subset \mathrm{D}$ and $\mathrm{DB}_{1} \subset \mathrm{~B}_{2} \cap$ Conn $\cap G_{\delta}$ (so, Conn $=\mathrm{D}$ if we consider only Baire 1 functions). Moreover, if $f \in$ Conn then $f \upharpoonright I$ is connected for every interval $I \subset \mathbb{I}$. In the sequel we will also use the fact that every Darboux function is bilaterally dense in itself.

3 On Some Properties of Connectivity Functions

The following lemma is also a part of the paper [10].
Lemma 1. Suppose $f: \mathbb{I} \rightarrow \mathbb{I}$ is a connectivity function, $A, B \subset f, A \cap B=\emptyset$ and $A \cup B$ is dense in f. If $\langle a, f(a)\rangle \in A$ and $\langle b, f(b)\rangle \in B$, then there exists $c \in[a, b]$ such that for every open neighbourhood U of $\langle c, f(c)\rangle, U \cap A \neq \emptyset$ and $U \cap B \neq \emptyset$.

Proof. $\operatorname{By~cl}_{f}(X)$ we will denote closure of the set X in the space f. Denote:

$$
A_{0}=A \cap([a, b] \times \mathbb{I}) \text { and } B_{0}=B \cap([a, b] \times \mathbb{I})
$$

Clearly $f \upharpoonright[a, b]=\operatorname{cl}_{f}\left(A_{0} \cup B_{0}\right)=\operatorname{cl}_{f}\left(A_{0}\right) \cup \mathrm{cl}_{f}\left(B_{0}\right)$. Since $\langle a, f(a)\rangle \in A_{0}$ and $\langle b, f(b)\rangle \in B_{0}, A_{0} \neq \emptyset \neq B_{0}$. Since $f \upharpoonright[a, b]$ is connected, $\mathrm{cl}_{f}\left(A_{0}\right) \cap \mathrm{cl}_{f}\left(B_{0}\right) \neq$ \emptyset. Therefore as $\langle c, f(c)\rangle$ we can take any point from $\mathrm{cl}_{f}\left(A_{0}\right) \cap \mathrm{cl}_{f}\left(B_{0}\right)$.

The following technical lemma is a key part of the proof of Theorem 1. Note the symmetry between assumption and assertion of the Lemma 2.

Lemma 2. Suppose $f: \mathbb{I} \rightarrow \mathbb{I}$ is a connectivity function, $g: \mathbb{I} \rightarrow \mathbb{I}$ is a Darboux function ${ }^{1}, f \cap g^{-1}=\emptyset, F \subset \mathbb{I}^{2}$ is an open neighbourhood of $f,[a, b] \times[c, d] \subset \mathbb{I}^{2}$ and there exist $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{I}$ such that (see Fig. 1):

1. $c<y_{1}<y_{2}<d$ and $x_{1}, x_{2} \in(a, b)$;
2. $f\left(g\left(y_{1}\right)\right)>y_{1}$ and $f\left(g\left(y_{2}\right)\right)<y_{2}$;
3. $f\left(x_{1}\right)<y_{1}$ and $f\left(x_{2}\right)>y_{2}$;
4. either $x_{1}<g\left(y_{1}\right)$ and $x_{2}>g\left(y_{2}\right)$ or $x_{1}>g\left(y_{1}\right)$ and $x_{2}<g\left(y_{2}\right)$.

Then there exist $\left[a^{\prime}, b^{\prime}\right] \times\left[c^{\prime}, d^{\prime}\right] \subset([a, b] \times[c, d]) \cap F$ and $x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime} \in \mathbb{I}$ such that (see Fig. 1):

1. $a^{\prime}<x_{1}^{\prime}<x_{2}^{\prime}<b^{\prime}$ and $y_{1}^{\prime}, y_{2}^{\prime} \in\left(c^{\prime}, d^{\prime}\right)$;
2. $g\left(f\left(x_{1}^{\prime}\right)\right)>x_{1}^{\prime}$ and $g\left(f\left(x_{2}^{\prime}\right)\right)<x_{2}^{\prime}$;
3. $g\left(y_{1}^{\prime}\right)<x_{1}^{\prime}$ and $g\left(y_{2}^{\prime}\right)>x_{2}^{\prime}$;
4. either $y_{1}^{\prime}<f\left(x_{1}^{\prime}\right)$ and $y_{2}^{\prime}>f\left(x_{2}^{\prime}\right)$ or $y_{1}^{\prime}>f\left(x_{1}^{\prime}\right)$ and $y_{2}^{\prime}<f\left(x_{2}^{\prime}\right)$.

Proof. For every function $h: \mathbb{I} \rightarrow \mathbb{I}$ denote:

- $A(h)=\left\{\langle x, f(x)\rangle \in \mathbb{I}^{2} \mid x<h(f(x))\right\} ;$
- $B(h)=\left\{\langle x, f(x)\rangle \in \mathbb{I}^{2} \mid x>h(f(x))\right\}$.

Clearly $A(h) \cap B(h)=\emptyset$. Moreover, if $f \cap h^{-1}=\emptyset$ then $f=A(h) \cup B(h)$.
Step 1. At the first step we will show that there exists $x^{\prime} \in(a, b)$ such that $f\left(x^{\prime}\right) \in(c, d)$ and for every open set $U \ni\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle, A(g) \cap U \neq \emptyset$ and $B(g) \cap U \neq \emptyset$.

[^1]

Figure 1: Configurations from the assumption and assertion of the Lemma 2. Points denoted by \bullet are from f and points denoted by \circ are from g^{-1}.

Define $g^{\prime}: \mathbb{I} \rightarrow \mathbb{I}$:

$$
g^{\prime}(y)= \begin{cases}g(y) & \text { if } y \in\left(y_{1}, y_{2}\right) \\ g\left(y_{1}\right) & \text { if } y \leq y_{1} \\ g\left(y_{2}\right) & \text { if } y \geq y_{2}\end{cases}
$$

Since $f\left(g\left(y_{1}\right)\right)>y_{1}$ and $f\left(g\left(y_{2}\right)\right)<y_{2}, f \cap g^{\prime-1}=\emptyset$.
From the fact that $f\left(x_{1}\right)<y_{1}$ and $f\left(x_{2}\right)>y_{2}$, and since $x_{1}<g\left(y_{1}\right)$ and $x_{2}>g\left(y_{2}\right)\left(\right.$ or $\left.x_{1}>g\left(y_{1}\right), x_{2}<g\left(y_{2}\right)\right),\left\langle x_{1}, f\left(x_{1}\right)\right\rangle \in A\left(g^{\prime}\right)$ and $\left\langle x_{2}, f\left(x_{2}\right)\right\rangle \in$ $B\left(g^{\prime}\right)$ (or $\left.\left\langle x_{1}, f\left(x_{1}\right)\right\rangle \in B\left(g^{\prime}\right),\left\langle x_{2}, f\left(x_{2}\right)\right\rangle \in A\left(g^{\prime}\right)\right)$. So, by Lemma 1 there exists $x \in\left(\min \left\{x_{1}, x_{2}\right\}, \max \left\{x_{1}, x_{2}\right\}\right)$ such that for every open neighbourhood V of $\langle x, f(x)\rangle, V \cap A\left(g^{\prime}\right) \neq \emptyset$ and $V \cap B\left(g^{\prime}\right) \neq \emptyset$. Since $g^{\prime} \upharpoonright\left[0, y_{1}\right)$ and $g^{\prime} \upharpoonright\left(y_{2}, 1\right]$ are constant and $f \cap g^{\prime-1}=\emptyset,\langle x, f(x)\rangle \in\left[\min \left\{x_{1}, x_{2}\right\}, \max \left\{x_{1}, x_{2}\right\}\right] \times$ $\left[y_{1}, y_{2}\right] \subset \operatorname{int}([a, b] \times[c, d])$.

We will verify that x has all properties we need. First, observe that if $f(x) \in\left(y_{1}, y_{2}\right)$, then since $g^{\prime} \upharpoonright\left[y_{1}, y_{2}\right]=g \upharpoonright\left[y_{1}, y_{2}\right]$, we can take $x^{\prime}=x$.

Next, suppose $f(x)=y_{1}$ (the case $f(x)=y_{2}$ is analogous). Without loss of generality we can assume $x<g\left(y_{1}\right)$. Take any open rectangle $U \ni\langle x, f(x)\rangle$ such that $\left\langle g\left(y_{1}\right), y_{1}\right\rangle \notin U$. Since $U \cap\left(\mathbb{I} \times\left[0, y_{1}\right]\right) \cap f \subset A\left(g^{\prime}\right)$, there exists p such that $f(p) \in\left(y_{1}, y_{2}\right)$ and $\langle p, f(p)\rangle \in U \cap B\left(g^{\prime}\right)$. So, $\langle p, f(p)\rangle \in U \cap B(g)$. Since $\langle x, f(x)\rangle \in U \cap A(g)$, we can also take $x^{\prime}=x$.

Step 2. Now find $a^{\prime}<b^{\prime}$ and $c^{\prime}<d^{\prime}$ such that $S=\left[a^{\prime}, b^{\prime}\right] \times\left[c^{\prime}, d^{\prime}\right] \subset$ $\operatorname{int}([a, b] \times[c, d]),\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle \in \operatorname{int}(S), S \subset F$ and $\left\langle g\left(f\left(x^{\prime}\right)\right), f\left(x^{\prime}\right)\right\rangle \notin S$.

Step 3. In the sequel we will assume $x^{\prime}<g\left(f\left(x^{\prime}\right)\right)$, i.e. $\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle \in A(g)$ - the other situation is analogous. Then at least one of the following sets is dense in $\left\langle x^{\prime}, f\left(x^{\prime}\right)\right\rangle$:

$$
\begin{align*}
& \left\{\langle p, f(p)\rangle \in B(g) \mid p>x^{\prime} \& f(p)>f\left(x^{\prime}\right)\right\} \tag{Case1}\\
& \left\{\langle p, f(p)\rangle \in B(g) \mid p>x^{\prime} \& f(p)<f\left(x^{\prime}\right)\right\} \tag{Case2}\\
& \left\{\langle p, f(p)\rangle \in B(g) \mid p<x^{\prime} \& f(p)>f\left(x^{\prime}\right)\right\} \tag{Case3}\\
& \left\{\langle p, f(p)\rangle \in B(g) \mid p<x^{\prime} \& f(p)<f\left(x^{\prime}\right)\right\} \tag{Case4}
\end{align*}
$$

Clearly it is enough to continue the proof only for the cases with the odd number. The situation in even cases is symmetric.

During the rest of the proof we will use the following observation: if $p<b^{\prime}$ and $f(p) \neq f\left(x^{\prime}\right)$ then there exists $q \in\left(\min \left\{x^{\prime}, p\right\}, \max \left\{x^{\prime}, p\right\}\right)$ such that $f(q) \in\left(\min \left\{f\left(x^{\prime}\right), f(p)\right\}, \max \left\{f\left(x^{\prime}\right), f(p)\right\}\right)$ and $g(f(q))>q$. Since (by the assumption made at the beginning of this step) $b^{\prime}<g\left(f\left(x^{\prime}\right)\right)$ and g is bilaterally dense in $\left\langle f\left(x^{\prime}\right), g\left(f\left(x^{\prime}\right)\right)\right\rangle$, this is a consequence of the intermediate value property of f.

Figure 2: Configurations from the first and the third case of step 3 of Lemma's 2 proof. Labels at the bottom and left side of the diagrams are as during the progress of the proof, ones at the top and right are as in the assertion of the Lemma.

At the first case, since g is bilaterally dense in $\left\langle f\left(x^{\prime}\right), g\left(f\left(x^{\prime}\right)\right)\right\rangle$ there exists $y^{\prime} \in\left(f\left(x^{\prime}\right), d^{\prime}\right)$ such that $g\left(y^{\prime}\right)>x^{\prime}$. We can find $p \in\left(x^{\prime}, \min \left\{g\left(y^{\prime}\right), b^{\prime}\right\}\right)$ such that $f(p) \in\left(f\left(x^{\prime}\right), y^{\prime}\right)$ and $g(f(p))<p$. As noted above we can also find $q \in$ $\left(x^{\prime}, p\right)$ such that $f(q) \in\left(f\left(x^{\prime}\right), f(p)\right)$ and $g(f(q))>q$. Using the assumption of the first case again, we can find $p^{\prime} \in\left(x^{\prime}, q\right)$ such that $f\left(p^{\prime}\right) \in\left(f\left(x^{\prime}\right), f(q)\right)$ and $g\left(f\left(p^{\prime}\right)\right)<p^{\prime}$ (see Fig. 2). Now if we take $x_{1}^{\prime}=q, x_{2}^{\prime}=p, y_{1}^{\prime}=f\left(p^{\prime}\right)$ and $y_{2}^{\prime}=y^{\prime}$, we have the claim.

At the third case there exists $p \in\left(a^{\prime}, x^{\prime}\right)$ such that $f(p) \in\left(f\left(x^{\prime}\right), d^{\prime}\right)$ and $g(f(p))<p$. From the observation above we can also find $q \in\left(p, x^{\prime}\right)$ such
that $f(q) \in\left(f\left(x^{\prime}\right), f(p)\right)$ and $g(f(q))>q$. Finally, using the assumption of this case again, we can find $p^{\prime} \in\left(q, x^{\prime}\right)$ such that $f\left(p^{\prime}\right) \in\left(f\left(x^{\prime}\right), f(q)\right)$ and $g\left(f\left(p^{\prime}\right)\right)<p^{\prime}$ (see Fig. 2). So, if we take $x_{1}^{\prime}=q, x_{2}^{\prime}=p^{\prime}, y_{1}^{\prime}=f(p)$ and $y_{2}^{\prime}=f\left(x^{\prime}\right)$, we have the claim.

4 Compositions of Connected G_{δ} Functions

In this section we will show that the composition of two connected G_{δ} functions has a fixed point. The proof is based on the following observation of Ciesielski. The composition of functions $f, g: \mathbb{I} \rightarrow \mathbb{I}$ possesses a fixed point if and only if $f \cap g^{-1} \neq \emptyset$.

Theorem 1. If $u, v: \mathbb{I} \rightarrow \mathbb{I}$ are both connected G_{δ} functions, then $u \circ v$ possesses a fixed point.

Proof. The method used in this proof is similiar to that used in [3].
Suppose that $u \circ v$ has no fixed point, i.e. $u \cap v^{-1}=v \cap u^{-1}=\emptyset$. Since u and v are G_{δ} functions,

$$
u=\bigcap_{n \in \mathbb{N}} U_{n} \text { and } v^{-1}=\bigcap_{n \in \mathbb{N}} V_{n}
$$

where $\mathbb{I}^{2} \supset U_{0} \supset U_{1} \supset \cdots$ and $\mathbb{I}^{2} \supset V_{0} \supset V_{1} \supset \cdots$ are open sets (relatively to \mathbb{I}^{2}).

First we claim that we can assume:

$$
u\left(v\left(\frac{1}{3}\right)\right)>\frac{1}{3}, u\left(v\left(\frac{2}{3}\right)\right)<\frac{2}{3}, u\left(\frac{1}{12}\right)<\frac{1}{3} \text { and } u\left(\frac{11}{12}\right)>\frac{2}{3}
$$

To see this, consider the square $[-1,2] \times[-1,2]$. By extending u and v^{-1} as shown in Figure 3 and then rescaling we can define two new connectivity G_{δ} functions $\widetilde{u}, \widetilde{v}: \mathbb{I} \rightarrow \mathbb{I}$ with the required property such that $\widetilde{u} \circ \widetilde{v}$ has a fixed point if and only if the composition $u \circ v$ possesses it.

Note that

$$
\begin{gathered}
f=u, g=v, F=U_{0}, a=0, b=1, c=0, d=1, \\
x_{1}=\frac{1}{12}, x_{2}=\frac{11}{12}, y_{1}=\frac{1}{3} \text { and } y_{2}=\frac{2}{3}
\end{gathered}
$$

fulfill the assumption of Lemma 2. Next, if we take $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}$ and y_{2}^{\prime} as in this Lemma, then:

$$
f=v, g=u, F=V_{1}^{-1}, a=c^{\prime}, b=d^{\prime}, c=a^{\prime}, d=b^{\prime}
$$

Figure 3: Example of extending and rescaling of u and v to \widetilde{u} and \widetilde{v} respectively as in the proof of Theorem 1. Points denoted by \bullet are from \widetilde{u} and points denoted by \circ are from \widetilde{v}^{-1}.

$$
x_{1}=y_{1}^{\prime}, x_{2}=y_{2}^{\prime}, y_{1}=x_{1}^{\prime} \text { and } y_{2}=x_{2}^{\prime}
$$

again fulfill the assumption of the Lemma. Hence we can consecutively use Lemma 2 to find a decreasing sequence of closed rectangles:

$$
\mathbb{I}^{2} \supset R_{0} \supset R_{1} \supset R_{2} \supset \cdots
$$

with $R_{2 i} \subset U_{i}$ and $R_{2 i+1} \subset V_{i}$ for each $i \in \mathbb{N}$. Since $\bigcap_{n \in \mathbb{N}} R_{n} \neq \emptyset$ and:

$$
\bigcap_{n \in \mathbb{N}} R_{n} \subset \bigcap_{n \in \mathbb{N}} U_{n}=u \text { and } \bigcap_{n \in \mathbb{N}} R_{n} \subset \bigcap_{n \in \mathbb{N}} V_{n}=v^{-1}
$$

we have $u \cap v^{-1} \neq \emptyset$.
Example 1 (Ciesielski and Rosen [2]). There exist Darboux G_{δ} functions $f, g: \mathbb{I} \rightarrow \mathbb{I}$ such that $f \circ g$ has no fixed point.

Ciesielski and Rosen showed even more: they constructed Darboux G_{δ} function f which has no fixed point (the function constructed in [2] is also Baire class 2, see also [7]). Therefore it is enough to take the identity function $g: \mathbb{I} \rightarrow \mathbb{I}$ to obtain $f \circ g=g \circ f$ with no fixed point.

Example 2 (Kellum [8]). There exist connectivity functions $f, g: \mathbb{I} \rightarrow \mathbb{I}$ such that $f \circ g$ has no fixed point.

With the assumption of the Continuum Hypothesis Natkaniec showed in [9] that if the cardinality of $f^{-1}(y) \cap I$ is continuum for every $y \in \mathbb{I}$ and nondegenerated interval $I \subset \mathbb{I}$, then f is a composition of two connectivity functions. Using standard set theoretical methods it is not very hard to construct functions with the above property.

References

[1] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math., 86 (1974), 1-7.
[2] K. Ciesielski, H. Rosen, Two examples concerning extendable and almost continuous functions, Real Anal. Exchange, 25(2) (1999-2000), 579-598.
[3] M. Csörnyei, T. C. O'Neil, D. Preiss, The composition of two derivatives has a fixed point, Real Anal. Exchange, 26(2) (2000-01), 749-760.
[4] M. Elekes, T. Keleti, V. Prokaj, The fixed point of the composition of derivatives, Real Anal. Exchange, 27(1) (2001-02), 131-140.
[5] R. G. Gibson, T. Natkaniec, Darboux like functions, Real Anal. Exchange, 22(2) (1996-97), 492-533.
[6] R. G. Gibson, T. Natkaniec, Darboux like functions. Old problems and new results, Real Anal. Exchange, 24(2) (1998-99), 487-496.
[7] F. B. Jones, E. S. Thomas, Jr., Connected G_{δ} graphs, Duke Math. J., 33 (1966), 341-345.
[8] K. R. Kellum, Almost continuous functions on \mathbb{I}^{n}, Fund. Math., 79 (1973), 213-215.
[9] T. Natkaniec, On compositions and products of almost continuous functions, Fund. Math., 139 (1991), 59-74.
[10] P. Szuca, Sharkovskiǔ's theorem holds for some discontinuous functions,, Fund. Math., to appear.
[11] P. Szuca, Loops of intervals and Darboux Baire 1 fixed point problem, Real Anal. Exchange, this issue.

[^0]: Key Words: Baire 1 functions, Darboux functions, connectivity functions, compositions of functions, fixed points.

 Mathematical Reviews subject classification: Primary 26A15; Secondary 26A21.
 Received by the editors September 27, 2003
 Communicated by: Krzysztof Chris Ciesielski
 *This work was partially supported by grant number BW/5100-5-0085-3.

[^1]: ${ }^{1}$ In the proof we will use only the fact that g is bilaterally dense in itself, which is a consequence of Darboux property of g.

