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THE LEBESGUE DIFFERENTIATION
THEOREM VIA THE RISING SUN LEMMA

Abstract

A complete version of Lebesgue’s differentiation theorem, including
the image of the exceptional set, is proved in an elementary way.

1 Introduction

Lebesgue’s differentiation theorem [5] says that every monotone function is
differentiable almost everywhere. Most proofs use Vitali’s covering theorem
(see for instance the classics [4] and [7]) or a slightly complicated version of
the rising sun lemma for semicontinuous functions (see for instance the books
[3] and [9]). Proofs of other types can be found in [1] or [6]. In this paper
two simplifications are proposed. First, we use a brilliant idea of Rubel [10]
to reduce the result to the case of continuous monotone functions. This case
is then treated as in a preceding paper [2], by means of a new version of the
rising sun lemma (for continuous functions). The proof will use the following
properties of the Lebesgue outer measure m∗. Properties (P3) and (P4) can
be taken as definition of the outer measure m∗.

(P1) A ⊆ B ⇒ m∗(A) ≤ m∗(B),

(P2) m∗(⋃∞
n=1 An

)
≤

∑∞
n=1 m∗(An),

(P3) if U =
⋃

n(cn, dn) is an open set, then m∗(U) =
∑

n(dn − cn),

(P4) m∗(A) = inf{m∗(U)/A ⊆ U and U is open},

(P5) m∗([c, d ]) = d− c and m∗({c}) = 0.

The following lemma is a slight modification of Riesz’s rising sun lemma [8].
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Lemma 1. Let G : [a, b] → R be a continuous function and U ⊆ (a, b) some
open set. Then the set

UG := {x ∈ U : there exists y < x with (y, x) ⊆ U and G(y) < G(x)}

is also open. Moreover, if (c, d) is a component of UG, then G(c) ≤ G(d).

Proof. Trivially, UG is open. Let (c, d) be any component of UG. We show
that G(c) ≤ G(x) for all x ∈ (c, d). Let γ := min {y ∈ [c, x] : G(y) ≤ G(x)},
and suppose that c < γ. Hence G(c) > G(x) and γ ∈ UG. There exists z < γ
with (z, γ) ⊆ U and G(z) < G(γ). If z < c, then G(z) < G(γ) ≤ G(x) < G(c)
implies that c ∈ UG, a contradiction. And if z ≥ c, then G(z) < G(γ) ≤ G(x)
contradicts the minimality of γ. Therefore c = γ and G(c) ≤ G(x).

Proposition 2. Let F : [a, b] → R be a continuous increasing function and
let R > 0. If the set E ⊆ (a, b) is such that

D−F (x) := lim sup
y↗x

F (x)− F (y)
x− y

> R

for every x ∈ E, then m∗(F (E)
)
≥ R m∗(E).

Proof. Let ε > 0. By (P4) there exists an open set V such that F (E) ⊆ V
and m∗(V ) < m∗(F (E)

)
+ ε. We put U = F−1(V ) ∩ (a, b) and consider

the function G(x) := F (x) − R x. Then D−G(x) > 0 for every x ∈ E, and
hence E ⊆ UG. Let (ck, dk) denote the components of UG. By Lemma 1
G(ck) ≤ G(dk), which implies that R (dk − ck) ≤ F (dk) − F (ck). Since F is
continuous, it follows that

⋃
k

(
F (ck), F (dk)

)
⊆ F

(⋃
k(ck, dk)

)
= F (UG). By

using (P3) twice and (P1) once, one obtains

R m∗(UG) = R
∑

k(dk − ck) ≤
∑

k

(
F (dk)− F (ck)

)
≤ m∗(F (UG)

)
.

Then R m∗(E) ≤ m∗(F (U)
)
≤ m∗(V ) < m∗(F (E)

)
+ ε (by definition of U),

and the assertion follows because ε > 0 is arbitrary.

Lemma 3. Let F : [a, b] → R be an increasing function. Then the function
G : [F (a), F (b)] → R defined by G(y) := inf {z ∈ [a, b] : F (z) ≥ y} is in-
creasing, and G

(
F (x)

)
≤ x for every x ∈ [a, b]. Moreover, G

(
F (x)

)
< x iff

F is constant on some interval [z, x]. Finally, if the function F is strictly
increasing, then G is a left inverse of F and is continuous.

Proof. All the assertions are trivial. Suppose that F is strictly increasing.
To show that the function G is right continuous, let x ∈ [a, b) and ε > 0 such
that x + ε ≤ b. If F (x) < y < F (x + ε), then x ≤ G(y) ≤ x + ε.
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Proposition 4. Let F : [a, b] → R be a strictly increasing function and let
r > 0. If the set E ⊆ (a, b) is such that

D−F (x) := lim inf
y↗x

F (x)− F (y)
x− y

< r

for every x ∈ E, then m∗(F (E)
)
≤ r m∗(E).

Proof. Following [10] we consider the function G : [F (a), F (b)] → R of
Lemma 3. Let D be the set of all left discontinuities of F . It is well known that
D is at most denumerable. Now take a point x ∈ E \D. Since D−F (x) < r,
there exist 0 < ε < r and a sequence xn↗x such that

F (x)− F (xn)
x− xn

< r − ε, and hence
G

(
F (x)

)
−G

(
F (xn)

)
F (x)− F (xn)

>
1

r − ε
.

By continuity, the sequence F (xn) converges to F (x). So one concludes that
D−G

(
F (x)

)
> 1

r . By Proposition 2 one obtains m∗(E) ≥ m∗(E \ D) ≥
1
r m∗(F (E \D)

)
. Since m∗(F (D)

)
= 0, one gets r m∗(E) ≥ m∗(F (E \D)

)
=

m∗(F (E)
)
.

Lemma 5. Let F,G : [a, b] → R be two increasing functions and E ⊆ (a, b).
If H(x) = F (x) + G(x), then m∗(F (E)

)
+ m∗(G(E)

)
≤ m∗(H(E)

)
.

Proof. Let ε > 0. By (P4) there exists an open set V such that H(E) ⊆ V
and m∗(V ) < m∗(H(E)

)
+ ε. Let (ck, dk) denote the components of V . For

x1, x2, y1, y2 ∈ H−1(ck, dk) with xi < yi note that

F (y1)− F (x1) + G(y2)−G(x2) ≤ H(max yi)−H(min xi) < dk − ck.

Hence F
(
H−1(ck, dk)

)
and G

(
H−1(ck, dk)

)
are contained in two intervals Ik

and Jk such that m∗(Ik) + m∗(Jk) ≤ dk − ck. Since E ⊆
⋃

k H−1(ck, dk), it
follows that m∗(F (E)

)
+ m∗(G(E)

)
≤

∑
k(dk − ck) < m∗(H(E)

)
+ ε.

Proposition 6. Let F : [a, b] → R be an increasing function and let r > 0. If
E ⊆ (a, b) is such that

D−F (x) := lim inf
y↗x

F (x)− F (y)
x− y

< r

for every x ∈ E, then m∗(F (E)
)
≤ r m∗(E).

Proof. We consider the function H(x) := F (x) + x. Then H(x) is strictly
increasing and D−H(x) < r + 1 for every x ∈ E. According to the previous
results one concludes that m∗(F (E)

)
+m∗(E) ≤ m∗(H(E)

)
≤ (r +1)m∗(E).
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Corollary 7. Let F : [a, b] → R be an increasing function and let r > 0. If
the set E ⊆ (a, b) is such that

D+F (x) := lim inf
y↘x

F (y)− F (x)
y − x

< r

for every x ∈ E, then m∗(F (E)
)
≤ r m∗(E).

Proof. Consider the function G(x) := −F (−x).

Proposition 8. Let F : [a, b] → R be an increasing function and let R > 0.
If the set E ⊆ (a, b) is such that

D+F (x) := lim sup
y↘x

F (y)− F (x)
y − x

> R

for every x ∈ E, then m∗(F (E)
)
≥ R m∗(E).

Proof. Consider the function G : [F (a), F (b)] → R of Lemma 3. Let D1 be
the set of all right discontinuities of F , and D2 the set of right end-points of
intervals of constancy. It is well known that the set D = D1 ∪D2 is at most
denumerable. Now take a point x ∈ E \ D. Since D+F (x) > R, there exist
ε > 0 and a sequence xn↘x such that

F (xn)− F (x)
xn − x

> R + ε, and hence
G

(
F (xn)

)
−G

(
F (x)

)
F (xn)− F (x)

<
1

R + ε

by using the properties of G. By continuity, the sequence F (xn) converges to
F (x). So one concludes that D+G

(
F (x)

)
< 1

R . By Corollary 7 one obtains

m∗(E \D) ≤ 1
R m∗(F (E \D)

)
≤ 1

R m∗(F (E)
)
.

Since m∗(D) = 0, one gets R m∗(E) = R m∗(E \D) ≤ m∗(F (E)
)
.

Theorem 9. Let F : [a, b] → R be an increasing function. Then

D−F (x) = D+F (x) = D+F (x) = D−F (x)

for all x ∈ (a, b) except on a set E such that m∗(E) = m∗(F (E)
)

= 0. The
set Z := {x ∈ (a, b) : F ′(x) = 0} satisfies the equality m∗(F (Z)

)
= 0 and the

set I := {x ∈ (a, b) : F ′(x) = ∞} satisfies m∗(I) = 0.

Proof. This uses a classical argument. Given two rationals R > r > 0 we
consider

ErR := {x ∈ (a, b) : D−F (x) < r < R < D+F (x)}.



The Lebesgue Differentiation Theorem 951

By Propositions 6 and 8 we get R m∗(ErR) ≤ m∗(F (ErR)
)
≤ r m∗(ErR), so

m∗(ErR) = m∗(F (ErR)
)

= 0. Then E1 := {x ∈ (a, b) : D−F (x) < D+F (x)}
satisfies the equality m∗(E1) = m∗(F (E1)

)
= 0 by (P2), and the same holds

for E2 := {x ∈ (a, b) / D+F (x) < D−F (x)} by considering G(x) := −F (−x).
Now let E := E1 ∪ E2. For x ∈ (a, b) \ E we remark that

D−F (x) ≥ D+F (x) ≥ D+F (x) ≥ D−F (x) ≥ D−F (x).

Finally, for every n ∈ N we obtain m∗(F (Z)
)
≤ 1

n (b − a) by Proposition 6,
and m∗(I) ≤ 1

n

(
F (b)− F (a)

)
by Proposition 8.
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