Claude-Alain Faure, Gymnase de la Cité, Case postale 329, CH-1000 Lausanne 17, Switzerland. email: cafaure@bluemail.ch

THE LEBESGUE DIFFERENTIATION THEOREM VIA THE RISING SUN LEMMA

Abstract

A complete version of Lebesgue's differentiation theorem, including the image of the exceptional set, is proved in an elementary way.

1 Introduction

Lebesgue's differentiation theorem [5] says that every monotone function is differentiable almost everywhere. Most proofs use Vitali's covering theorem (see for instance the classics [4] and [7]) or a slightly complicated version of the rising sun lemma for semicontinuous functions (see for instance the books [3] and [9]). Proofs of other types can be found in [1] or [6]. In this paper two simplifications are proposed. First, we use a brilliant idea of Rubel [10] to reduce the result to the case of continuous monotone functions. This case is then treated as in a preceding paper [2], by means of a new version of the rising sun lemma (for continuous functions). The proof will use the following properties of the Lebesgue outer measure m^* . Properties (P3) and (P4) can be taken as definition of the outer measure m^* .

- (P1) $A \subseteq B \Rightarrow m^*(A) \le m^*(B),$
- (P2) $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} m^*(A_n),$
- (P3) if $U = \bigcup_n (c_n, d_n)$ is an open set, then $m^*(U) = \sum_n (d_n c_n)$,
- (P4) $m^*(A) = \inf\{m^*(U)/A \subseteq U \text{ and } U \text{ is open}\},\$
- (P5) $m^*([c,d]) = d c$ and $m^*(\{c\}) = 0$.

The following lemma is a slight modification of Riesz's rising sun lemma [8].

Key Words: Lebesgue's differentiation theorem, monotonic functions

Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48 Received by the editors October 31, 2003

Communicated by: B. S. Thomson

Lemma 1. Let $G : [a,b] \to \mathbb{R}$ be a continuous function and $U \subseteq (a,b)$ some open set. Then the set

$$U_G := \{x \in U : \text{ there exists } y < x \text{ with } (y, x) \subseteq U \text{ and } G(y) < G(x)\}$$

is also open. Moreover, if (c, d) is a component of U_G , then $G(c) \leq G(d)$.

PROOF. Trivially, U_G is open. Let (c, d) be any component of U_G . We show that $G(c) \leq G(x)$ for all $x \in (c, d)$. Let $\gamma := \min \{y \in [c, x] : G(y) \leq G(x)\}$, and suppose that $c < \gamma$. Hence G(c) > G(x) and $\gamma \in U_G$. There exists $z < \gamma$ with $(z, \gamma) \subseteq U$ and $G(z) < G(\gamma)$. If z < c, then $G(z) < G(\gamma) \leq G(x) < G(c)$ implies that $c \in U_G$, a contradiction. And if $z \geq c$, then $G(z) < G(\gamma) \leq G(x) \leq G(x)$ contradicts the minimality of γ . Therefore $c = \gamma$ and $G(c) \leq G(x)$.

Proposition 2. Let $F : [a,b] \to \mathbb{R}$ be a continuous increasing function and let R > 0. If the set $E \subseteq (a,b)$ is such that

$$\overline{D}_{-}F(x) := \limsup_{y \nearrow x} \frac{F(x) - F(y)}{x - y} > R$$

for every $x \in E$, then $m^*(F(E)) \ge R m^*(E)$.

PROOF. Let $\varepsilon > 0$. By (P4) there exists an open set V such that $F(E) \subseteq V$ and $m^*(V) < m^*(F(E)) + \varepsilon$. We put $U = F^{-1}(V) \cap (a, b)$ and consider the function G(x) := F(x) - Rx. Then $\overline{D}_-G(x) > 0$ for every $x \in E$, and hence $E \subseteq U_G$. Let (c_k, d_k) denote the components of U_G . By Lemma 1 $G(c_k) \leq G(d_k)$, which implies that $R(d_k - c_k) \leq F(d_k) - F(c_k)$. Since F is continuous, it follows that $\bigcup_k (F(c_k), F(d_k)) \subseteq F(\bigcup_k (c_k, d_k)) = F(U_G)$. By using (P3) twice and (P1) once, one obtains

$$R m^*(U_G) = R \sum_k (d_k - c_k) \le \sum_k (F(d_k) - F(c_k)) \le m^* (F(U_G)).$$

Then $Rm^*(E) \le m^*(F(U)) \le m^*(V) < m^*(F(E)) + \varepsilon$ (by definition of U), and the assertion follows because $\varepsilon > 0$ is arbitrary.

Lemma 3. Let $F : [a,b] \to \mathbb{R}$ be an increasing function. Then the function $G : [F(a), F(b)] \to \mathbb{R}$ defined by $G(y) := \inf \{z \in [a,b] : F(z) \ge y\}$ is increasing, and $G(F(x)) \le x$ for every $x \in [a,b]$. Moreover, G(F(x)) < x iff F is constant on some interval [z,x]. Finally, if the function F is strictly increasing, then G is a left inverse of F and is continuous.

PROOF. All the assertions are trivial. Suppose that F is strictly increasing. To show that the function G is right continuous, let $x \in [a, b)$ and $\varepsilon > 0$ such that $x + \varepsilon \leq b$. If $F(x) < y < F(x + \varepsilon)$, then $x \leq G(y) \leq x + \varepsilon$. **Proposition 4.** Let $F : [a,b] \to \mathbb{R}$ be a strictly increasing function and let r > 0. If the set $E \subseteq (a,b)$ is such that

$$\underline{D}_{-}F(x) := \liminf_{y \nearrow x} \frac{F(x) - F(y)}{x - y} < r$$

for every $x \in E$, then $m^*(F(E)) \leq r m^*(E)$.

PROOF. Following [10] we consider the function $G : [F(a), F(b)] \to \mathbb{R}$ of Lemma 3. Let D be the set of all left discontinuities of F. It is well known that D is at most denumerable. Now take a point $x \in E \setminus D$. Since $\underline{D}_F(x) < r$, there exist $0 < \varepsilon < r$ and a sequence $x_n \nearrow x$ such that

$$\frac{F(x) - F(x_n)}{x - x_n} < r - \varepsilon, \text{ and hence } \frac{G(F(x)) - G(F(x_n))}{F(x) - F(x_n)} > \frac{1}{r - \varepsilon}.$$

By continuity, the sequence $F(x_n)$ converges to F(x). So one concludes that $\overline{D}_{-}G(F(x)) > \frac{1}{r}$. By Proposition 2 one obtains $m^*(E) \ge m^*(E \setminus D) \ge \frac{1}{r} m^*(F(E \setminus D))$. Since $m^*(F(D)) = 0$, one gets $r m^*(E) \ge m^*(F(E \setminus D)) = m^*(F(E))$.

Lemma 5. Let $F, G : [a, b] \to \mathbb{R}$ be two increasing functions and $E \subseteq (a, b)$. If H(x) = F(x) + G(x), then $m^*(F(E)) + m^*(G(E)) \le m^*(H(E))$.

PROOF. Let $\varepsilon > 0$. By (P4) there exists an open set V such that $H(E) \subseteq V$ and $m^*(V) < m^*(H(E)) + \varepsilon$. Let (c_k, d_k) denote the components of V. For $x_1, x_2, y_1, y_2 \in H^{-1}(c_k, d_k)$ with $x_i < y_i$ note that

$$F(y_1) - F(x_1) + G(y_2) - G(x_2) \le H(\max y_i) - H(\min x_i) < d_k - c_k.$$

Hence $F(H^{-1}(c_k, d_k))$ and $G(H^{-1}(c_k, d_k))$ are contained in two intervals I_k and J_k such that $m^*(I_k) + m^*(J_k) \leq d_k - c_k$. Since $E \subseteq \bigcup_k H^{-1}(c_k, d_k)$, it follows that $m^*(F(E)) + m^*(G(E)) \leq \sum_k (d_k - c_k) < m^*(H(E)) + \varepsilon$. \Box

Proposition 6. Let $F : [a,b] \to \mathbb{R}$ be an increasing function and let r > 0. If $E \subseteq (a,b)$ is such that

$$\underline{D}_{-}F(x) := \liminf_{y \nearrow x} \frac{F(x) - F(y)}{x - y} < r$$

for every $x \in E$, then $m^*(F(E)) \leq r m^*(E)$.

PROOF. We consider the function H(x) := F(x) + x. Then H(x) is strictly increasing and $\underline{D}_{-}H(x) < r+1$ for every $x \in E$. According to the previous results one concludes that $m^*(F(E)) + m^*(E) \le m^*(H(E)) \le (r+1)m^*(E)$.

Corollary 7. Let $F : [a,b] \to \mathbb{R}$ be an increasing function and let r > 0. If the set $E \subseteq (a,b)$ is such that

$$\underline{D}_+F(x) := \liminf_{y \searrow x} \frac{F(y) - F(x)}{y - x} < r$$

for every $x \in E$, then $m^*(F(E)) \leq r m^*(E)$.

PROOF. Consider the function G(x) := -F(-x).

Proposition 8. Let $F : [a,b] \to \mathbb{R}$ be an increasing function and let R > 0. If the set $E \subseteq (a,b)$ is such that

$$\overline{D}_+F(x) := \limsup_{y \searrow x} \frac{F(y) - F(x)}{y - x} > R$$

for every $x \in E$, then $m^*(F(E)) \ge R m^*(E)$.

PROOF. Consider the function $G : [F(a), F(b)] \to \mathbb{R}$ of Lemma 3. Let D_1 be the set of all right discontinuities of F, and D_2 the set of right end-points of intervals of constancy. It is well known that the set $D = D_1 \cup D_2$ is at most denumerable. Now take a point $x \in E \setminus D$. Since $\overline{D}_+F(x) > R$, there exist $\varepsilon > 0$ and a sequence $x_n \setminus x$ such that

$$\frac{F(x_n) - F(x)}{x_n - x} > R + \varepsilon, \text{ and hence } \frac{G(F(x_n)) - G(F(x))}{F(x_n) - F(x)} < \frac{1}{R + \varepsilon}$$

by using the properties of G. By continuity, the sequence $F(x_n)$ converges to F(x). So one concludes that $\underline{D}_+G(F(x)) < \frac{1}{R}$. By Corollary 7 one obtains

$$m^*(E \setminus D) \le \frac{1}{R} m^*(F(E \setminus D)) \le \frac{1}{R} m^*(F(E)).$$

Since $m^*(D) = 0$, one gets $R m^*(E) = R m^*(E \setminus D) \le m^*(F(E))$.

Theorem 9. Let $F : [a, b] \to \mathbb{R}$ be an increasing function. Then

$$\underline{D}_{-}F(x) = \overline{D}_{+}F(x) = \underline{D}_{+}F(x) = \overline{D}_{-}F(x)$$

for all $x \in (a,b)$ except on a set E such that $m^*(E) = m^*(F(E)) = 0$. The set $Z := \{x \in (a,b) : F'(x) = 0\}$ satisfies the equality $m^*(F(Z)) = 0$ and the set $I := \{x \in (a,b) : F'(x) = \infty\}$ satisfies $m^*(I) = 0$.

PROOF. This uses a classical argument. Given two rationals R > r > 0 we consider

$$E_{rR} := \{ x \in (a, b) : \underline{D}_{-}F(x) < r < R < D_{+}F(x) \}.$$

By Propositions 6 and 8 we get $Rm^*(E_{rR}) \leq m^*(F(E_{rR})) \leq rm^*(E_{rR})$, so $m^*(E_{rR}) = m^*(F(E_{rR})) = 0$. Then $E_1 := \{x \in (a,b) : \underline{D}_-F(x) < \overline{D}_+F(x)\}$ satisfies the equality $m^*(E_1) = m^*(F(E_1)) = 0$ by (P2), and the same holds for $E_2 := \{x \in (a,b) / \underline{D}_+F(x) < \overline{D}_-F(x)\}$ by considering G(x) := -F(-x). Now let $E := E_1 \cup E_2$. For $x \in (a,b) \setminus E$ we remark that

$$\underline{D}_{-}F(x) \ge \overline{D}_{+}F(x) \ge \underline{D}_{+}F(x) \ge \overline{D}_{-}F(x) \ge \underline{D}_{-}F(x).$$

Finally, for every $n \in \mathbb{N}$ we obtain $m^*(F(Z)) \leq \frac{1}{n}(b-a)$ by Proposition 6, and $m^*(I) \leq \frac{1}{n}(F(b) - F(a))$ by Proposition 8.

References

- D. Austin, A geometric proof of the Lebesgue differentiation theorem, Proc. Amer. Math. Soc., 16 (1965), 220–221.
- [2] C.-A. Faure, A short proof of Lebesgue's density theorem, Amer. Math. Monthly, 109 (2002), 194–196.
- [3] N. B. Haaser, J. A. Sullivan, *Real Analysis*, Van Nostrand, New York, 1971.
- [4] E. Hewitt, K. R. Stromberg, *Real and Abstract Analysis*, Springer, New York, 1965.
- [5] H. Lebesgue, Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier Villars, Paris, 1904.
- [6] G. Letta, Une démonstration élémentaire du théorème de Lebesgue sur la dérivation des fonctions croissantes, L'enseignement Math., 16 (1970), 177–184.
- [7] I. P. Natanson, Theory of Functions of a Real Variable (3rd pr.), Ungar, New York, 1964.
- [8] F. Riesz, Sur l'existence de la dérivée des fonctions monotones et sur quelques problèmes qui s'y rattachent, Acta Sci. Math., 5 (1930–1932), 208–221.
- [9] A. C. M. van Rooij, W. H. Schikhof, A Second Course on Real Functions, Cambridge University Press, Cambridge, 1982.
- [10] L. A. Rubel, Differentiability of monotonic functions, Coll. Math., 10 (1963), 277–279.