# THE LEBESGUE DIFFERENTIATION THEOREM VIA THE RISING SUN LEMMA 


#### Abstract

A complete version of Lebesgue's differentiation theorem, including the image of the exceptional set, is proved in an elementary way.


## 1 Introduction

Lebesgue's differentiation theorem [5] says that every monotone function is differentiable almost everywhere. Most proofs use Vitali's covering theorem (see for instance the classics [4] and [7]) or a slightly complicated version of the rising sun lemma for semicontinuous functions (see for instance the books [3] and [9]). Proofs of other types can be found in [1] or [6]. In this paper two simplifications are proposed. First, we use a brilliant idea of Rubel [10] to reduce the result to the case of continuous monotone functions. This case is then treated as in a preceding paper [2], by means of a new version of the rising sun lemma (for continuous functions). The proof will use the following properties of the Lebesgue outer measure $m^{*}$. Properties (P3) and (P4) can be taken as definition of the outer measure $m^{*}$.
$(\mathrm{P} 1) \quad A \subseteq B \Rightarrow m^{*}(A) \leq m^{*}(B)$,
(P2) $\quad m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} m^{*}\left(A_{n}\right)$,
(P3) if $U=\bigcup_{n}\left(c_{n}, d_{n}\right)$ is an open set, then $m^{*}(U)=\sum_{n}\left(d_{n}-c_{n}\right)$,
(P4) $m^{*}(A)=\inf \left\{m^{*}(U) / A \subseteq U\right.$ and $U$ is open $\}$,
(P5) $m^{*}([c, d])=d-c$ and $m^{*}(\{c\})=0$.
The following lemma is a slight modification of Riesz's rising sun lemma [8].

[^0]Lemma 1. Let $G:[a, b] \rightarrow \mathbb{R}$ be a continuous function and $U \subseteq(a, b)$ some open set. Then the set

$$
U_{G}:=\{x \in U: \text { there exists } y<x \text { with }(y, x) \subseteq U \text { and } G(y)<G(x)\}
$$

is also open. Moreover, if $(c, d)$ is a component of $U_{G}$, then $G(c) \leq G(d)$.
Proof. Trivially, $U_{G}$ is open. Let $(c, d)$ be any component of $U_{G}$. We show that $G(c) \leq G(x)$ for all $x \in(c, d)$. Let $\gamma:=\min \{y \in[c, x]: G(y) \leq G(x)\}$, and suppose that $c<\gamma$. Hence $G(c)>G(x)$ and $\gamma \in U_{G}$. There exists $z<\gamma$ with $(z, \gamma) \subseteq U$ and $G(z)<G(\gamma)$. If $z<c$, then $G(z)<G(\gamma) \leq G(x)<G(c)$ implies that $c \in U_{G}$, a contradiction. And if $z \geq c$, then $G(z)<G(\gamma) \leq G(x)$ contradicts the minimality of $\gamma$. Therefore $c=\gamma$ and $G(c) \leq G(x)$.

Proposition 2. Let $F:[a, b] \rightarrow \mathbb{R}$ be a continuous increasing function and let $R>0$. If the set $E \subseteq(a, b)$ is such that

$$
\bar{D}_{-} F(x):=\limsup _{y \not x} \frac{F(x)-F(y)}{x-y}>R
$$

for every $x \in E$, then $m^{*}(F(E)) \geq R m^{*}(E)$.
Proof. Let $\varepsilon>0$. By (P4) there exists an open set $V$ such that $F(E) \subseteq V$ and $m^{*}(V)<m^{*}(F(E))+\varepsilon$. We put $U=F^{-1}(V) \cap(a, b)$ and consider the function $G(x):=F(x)-R x$. Then $\bar{D}_{-} G(x)>0$ for every $x \in E$, and hence $E \subseteq U_{G}$. Let $\left(c_{k}, d_{k}\right)$ denote the components of $U_{G}$. By Lemma 1 $G\left(c_{k}\right) \leq G\left(d_{k}\right)$, which implies that $R\left(d_{k}-c_{k}\right) \leq F\left(d_{k}\right)-F\left(c_{k}\right)$. Since $F$ is continuous, it follows that $\bigcup_{k}\left(F\left(c_{k}\right), F\left(d_{k}\right)\right) \subseteq F\left(\bigcup_{k}\left(c_{k}, d_{k}\right)\right)=F\left(U_{G}\right)$. By using (P3) twice and (P1) once, one obtains

$$
R m^{*}\left(U_{G}\right)=R \sum_{k}\left(d_{k}-c_{k}\right) \leq \sum_{k}\left(F\left(d_{k}\right)-F\left(c_{k}\right)\right) \leq m^{*}\left(F\left(U_{G}\right)\right)
$$

Then $R m^{*}(E) \leq m^{*}(F(U)) \leq m^{*}(V)<m^{*}(F(E))+\varepsilon$ (by definition of $\left.U\right)$, and the assertion follows because $\varepsilon>0$ is arbitrary.

Lemma 3. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Then the function $G:[F(a), F(b)] \rightarrow \mathbb{R}$ defined by $G(y):=\inf \{z \in[a, b]: F(z) \geq y\}$ is increasing, and $G(F(x)) \leq x$ for every $x \in[a, b]$. Moreover, $G(F(x))<x$ iff $F$ is constant on some interval $[z, x]$. Finally, if the function $F$ is strictly increasing, then $G$ is a left inverse of $F$ and is continuous.

Proof. All the assertions are trivial. Suppose that $F$ is strictly increasing. To show that the function $G$ is right continuous, let $x \in[a, b)$ and $\varepsilon>0$ such that $x+\varepsilon \leq b$. If $F(x)<y<F(x+\varepsilon)$, then $x \leq G(y) \leq x+\varepsilon$.

Proposition 4. Let $F:[a, b] \rightarrow \mathbb{R}$ be a strictly increasing function and let $r>0$. If the set $E \subseteq(a, b)$ is such that

$$
\underline{D}_{-} F(x):=\liminf _{y \backslash x} \frac{F(x)-F(y)}{x-y}<r
$$

for every $x \in E$, then $m^{*}(F(E)) \leq r m^{*}(E)$.
Proof. Following [10] we consider the function $G:[F(a), F(b)] \rightarrow \mathbb{R}$ of Lemma 3. Let $D$ be the set of all left discontinuities of $F$. It is well known that $D$ is at most denumerable. Now take a point $x \in E \backslash D$. Since $\underline{D}_{-} F(x)<r$, there exist $0<\varepsilon<r$ and a sequence $x_{n} \nmid x$ such that

$$
\frac{F(x)-F\left(x_{n}\right)}{x-x_{n}}<r-\varepsilon, \text { and hence } \frac{G(F(x))-G\left(F\left(x_{n}\right)\right)}{F(x)-F\left(x_{n}\right)}>\frac{1}{r-\varepsilon} .
$$

By continuity, the sequence $F\left(x_{n}\right)$ converges to $F(x)$. So one concludes that $\bar{D}_{-} G(F(x))>\frac{1}{r}$. By Proposition 2 one obtains $m^{*}(E) \geq m^{*}(E \backslash D) \geq$ $\frac{1}{r} m^{*}\left(F(E \backslash D)\right.$ ). Since $m^{*}(F(D))=0$, one gets $r m^{*}(E) \geq m^{*}(F(E \backslash D))=$ $m^{*}(F(E))$.
Lemma 5. Let $F, G:[a, b] \rightarrow \mathbb{R}$ be two increasing functions and $E \subseteq(a, b)$. If $H(x)=F(x)+G(x)$, then $m^{*}(F(E))+m^{*}(G(E)) \leq m^{*}(H(E))$.

Proof. Let $\varepsilon>0$. By (P4) there exists an open set $V$ such that $H(E) \subseteq V$ and $m^{*}(V)<m^{*}(H(E))+\varepsilon$. Let $\left(c_{k}, d_{k}\right)$ denote the components of $V$. For $x_{1}, x_{2}, y_{1}, y_{2} \in H^{-1}\left(c_{k}, d_{k}\right)$ with $x_{i}<y_{i}$ note that

$$
F\left(y_{1}\right)-F\left(x_{1}\right)+G\left(y_{2}\right)-G\left(x_{2}\right) \leq H\left(\max y_{i}\right)-H\left(\min x_{i}\right)<d_{k}-c_{k} .
$$

Hence $F\left(H^{-1}\left(c_{k}, d_{k}\right)\right)$ and $G\left(H^{-1}\left(c_{k}, d_{k}\right)\right)$ are contained in two intervals $I_{k}$ and $J_{k}$ such that $m^{*}\left(I_{k}\right)+m^{*}\left(J_{k}\right) \leq d_{k}-c_{k}$. Since $E \subseteq \bigcup_{k} H^{-1}\left(c_{k}, d_{k}\right)$, it follows that $m^{*}(F(E))+m^{*}(G(E)) \leq \sum_{k}\left(d_{k}-c_{k}\right)<m^{*}(H(E))+\varepsilon$.

Proposition 6. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function and let $r>0$. If $E \subseteq(a, b)$ is such that

$$
\underline{D}_{-} F(x):=\liminf _{y \backslash x} \frac{F(x)-F(y)}{x-y}<r
$$

for every $x \in E$, then $m^{*}(F(E)) \leq r m^{*}(E)$.
Proof. We consider the function $H(x):=F(x)+x$. Then $H(x)$ is strictly increasing and $\underline{D}_{-} H(x)<r+1$ for every $x \in E$. According to the previous results one concludes that $m^{*}(F(E))+m^{*}(E) \leq m^{*}(H(E)) \leq(r+1) m^{*}(E)$.

Corollary 7. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function and let $r>0$. If the set $E \subseteq(a, b)$ is such that

$$
\underline{D}_{+} F(x):=\liminf _{y \backslash x} \frac{F(y)-F(x)}{y-x}<r
$$

for every $x \in E$, then $m^{*}(F(E)) \leq r m^{*}(E)$.
Proof. Consider the function $G(x):=-F(-x)$.
Proposition 8. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function and let $R>0$. If the set $E \subseteq(a, b)$ is such that

$$
\bar{D}_{+} F(x):=\limsup _{y \backslash x} \frac{F(y)-F(x)}{y-x}>R
$$

for every $x \in E$, then $m^{*}(F(E)) \geq R m^{*}(E)$.
Proof. Consider the function $G:[F(a), F(b)] \rightarrow \mathbb{R}$ of Lemma 3. Let $D_{1}$ be the set of all right discontinuities of $F$, and $D_{2}$ the set of right end-points of intervals of constancy. It is well known that the set $D=D_{1} \cup D_{2}$ is at most denumerable. Now take a point $x \in E \backslash D$. Since $\bar{D}_{+} F(x)>R$, there exist $\varepsilon>0$ and a sequence $x_{n} \backslash x$ such that

$$
\frac{F\left(x_{n}\right)-F(x)}{x_{n}-x}>R+\varepsilon, \text { and hence } \frac{G\left(F\left(x_{n}\right)\right)-G(F(x))}{F\left(x_{n}\right)-F(x)}<\frac{1}{R+\varepsilon}
$$

by using the properties of $G$. By continuity, the sequence $F\left(x_{n}\right)$ converges to $F(x)$. So one concludes that $\underline{D}_{+} G(F(x))<\frac{1}{R}$. By Corollary 7 one obtains

$$
m^{*}(E \backslash D) \leq \frac{1}{R} m^{*}(F(E \backslash D)) \leq \frac{1}{R} m^{*}(F(E))
$$

Since $m^{*}(D)=0$, one gets $R m^{*}(E)=R m^{*}(E \backslash D) \leq m^{*}(F(E))$.
Theorem 9. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function. Then

$$
\underline{D}_{-} F(x)=\bar{D}_{+} F(x)=\underline{D}_{+} F(x)=\bar{D}_{-} F(x)
$$

for all $x \in(a, b)$ except on a set $E$ such that $m^{*}(E)=m^{*}(F(E))=0$. The set $Z:=\left\{x \in(a, b): F^{\prime}(x)=0\right\}$ satisfies the equality $m^{*}(F(Z))=0$ and the set $I:=\left\{x \in(a, b): F^{\prime}(x)=\infty\right\}$ satisfies $m^{*}(I)=0$.

Proof. This uses a classical argument. Given two rationals $R>r>0$ we consider

$$
E_{r R}:=\left\{x \in(a, b): \underline{D}_{-} F(x)<r<R<\bar{D}_{+} F(x)\right\} .
$$

By Propositions 6 and 8 we get $R m^{*}\left(E_{r R}\right) \leq m^{*}\left(F\left(E_{r R}\right)\right) \leq r m^{*}\left(E_{r R}\right)$, so $m^{*}\left(E_{r R}\right)=m^{*}\left(F\left(E_{r R}\right)\right)=0$. Then $E_{1}:=\left\{x \in(a, b): \underline{D}_{-} F(x)<\bar{D}_{+} F(x)\right\}$ satisfies the equality $m^{*}\left(E_{1}\right)=m^{*}\left(F\left(E_{1}\right)\right)=0$ by (P2), and the same holds for $E_{2}:=\left\{x \in(a, b) / \underline{D}_{+} F(x)<\bar{D}_{-} F(x)\right\}$ by considering $G(x):=-F(-x)$. Now let $E:=E_{1} \cup E_{2}$. For $x \in(a, b) \backslash E$ we remark that

$$
\underline{D}_{-} F(x) \geq \bar{D}_{+} F(x) \geq \underline{D}_{+} F(x) \geq \bar{D}_{-} F(x) \geq \underline{D}_{-} F(x)
$$

Finally, for every $n \in \mathbb{N}$ we obtain $m^{*}(F(Z)) \leq \frac{1}{n}(b-a)$ by Proposition 6 , and $m^{*}(I) \leq \frac{1}{n}(F(b)-F(a))$ by Proposition 8.

## References

[1] D. Austin, A geometric proof of the Lebesgue differentiation theorem, Proc. Amer. Math. Soc., 16 (1965), 220-221.
[2] C.-A. Faure, A short proof of Lebesgue's density theorem, Amer. Math. Monthly, 109 (2002), 194-196.
[3] N. B. Haaser, J. A. Sullivan, Real Analysis, Van Nostrand, New York, 1971.
[4] E. Hewitt, K. R. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.
[5] H. Lebesgue, Leçons sur l'Intégration et la Recherche des Fonctions Primitives, Gauthier Villars, Paris, 1904.
[6] G. Letta, Une démonstration élémentaire du théorème de Lebesgue sur la dérivation des fonctions croissantes, L'enseignement Math., 16 (1970), 177-184.
[7] I. P. Natanson, Theory of Functions of a Real Variable (3rd pr.), Ungar, New York, 1964.
[8] F. Riesz, Sur l'existence de la dérivée des fonctions monotones et sur quelques problèmes qui s'y rattachent, Acta Sci. Math., 5 (1930-1932), 208-221.
[9] A. C. M. van Rooij, W. H. Schikhof, A Second Course on Real Functions, Cambridge University Press, Cambridge, 1982.
[10] L. A. Rubel, Differentiability of monotonic functions, Coll. Math., 10 (1963), 277-279.


[^0]:    Key Words: Lebesgue's differentiation theorem, monotonic functions
    Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48
    Received by the editors October 31, 2003
    Communicated by: B. S. Thomson

