Árpád Bényi*, University of Massachusetts, Amherst, MA 01003, Pawel Szeptycki ${ }^{\dagger}$ and Fred Van Vleck, University of Kansas, Lawrence, KS 66045. email: benyi@math.umass.edu and vanvleck@math.ukans.edu

A GENERALIZED ARCHIMEDEAN PROPERTY

Abstract

We introduce and discuss a condition generalizing one of the Archimedean properties characterizing parabolas.

Archimedes was familiar with the following property of parabolas:
If for any two points A, B on a parabola we denote by S the area of the region between the parabola and the secant $A B$, and by T the maximum of the area of the triangle ABC , where C is a point on the parabola between A and B , then

$$
\begin{equation*}
S=\frac{4}{3} T \tag{A}
\end{equation*}
$$

Throughout this paper f denotes a continuous real valued function defined on \mathbb{R}. We denote by $G(f)$ the graph of f. For $I=[a, b]$ an arbitrary closed nontrivial interval, let $L_{I}(f)=L_{a b}(f)$ be the linear function that interpolates f at the endpoints of I,

$$
L_{I}(f)(x)=L_{a b}(f)(x)=\frac{(b-x) f(a)+(x-a) f(b)}{b-a}
$$

let $f_{I}=f_{a b}=f-L_{I}(f)$, and let $G_{I}(f)=G_{a b}(f)$ denote the graph of f_{I} over I. (A) can be reformulated as follows:

For every interval $I=[a, b]$,

$$
\left|S_{a b}(f)\right|=\frac{4}{3} T_{a b}(f)
$$

[^0]where $S_{a b}(f)=S_{a b}=\int_{a}^{b} f_{a b}(x) d x$ and $T_{a b}(f)=T_{a b}=\frac{1}{2}(b-a) \max _{x \in[a, b]}\left|f_{a b}(x)\right|$. Motivated by this equality, we introduce the following more general property:

For every interval $I=[a, b]$ and a fixed real $p, \quad\left|S_{a b}(f)\right|=p T_{a b}(f) . \quad\left(A_{p}\right)$ Observe that $\left(A_{p}\right)$ is of interest only if $p>0$ and that $\left(A^{\prime}\right)$ is exactly $\left(A_{4 / 3}\right)$.

The following theorem includes as a special case the converse of Archimedes' result:

Theorem. Let $p>0$ and let f satisfy $\left(A_{p}\right)$.
(i) If $p<1$, then $G(f)$ is a line.
(ii) If $p=1$, then $G(f)$ is either a line or a pair of half lines.
(iii) If $p>1$, then either $G(f)$ is a line, or $p=4 / 3$ and $G(f)$ is a parabola.

The fact that $\left(A_{4 / 3}\right)$ implies that $G(f)$ is a parabola was stated in [1] under excessive regularity hypotheses on f. Moreover, as first noticed by J.L. Garcin, the proof given there contains a flaw. We wish to emphasize that the proof of the theorem as stated above does not rely upon arguments (or a modification thereof) used in [1].

The proof of parts i) and ii) of our theorem depends on the following:
Lemma 1. If f satisfies $\left(A_{p}\right)$ for some $p>0$, then for every interval $I=[a, b]$, either $f_{I}(x)=0$ for all $x \in I$ or $f_{I}(x) \neq 0$ for all $x \in I^{\circ}=(a, b)$. In particular, f is either convex or concave.

Proof. Suppose that $f_{a b} \not \equiv 0$ and $f_{a b}\left(x_{0}\right)=0$ for some $x_{0} \in(a, b)$. Then

$$
p T_{a b}=\left|S_{a b}\right|=\left|S_{a x_{0}}+S_{x_{0} b}\right| \leq\left|S_{a x_{0}}\right|+\left|S_{x_{0} b}\right|=p\left(T_{a x_{0}}+T_{x_{0} b}\right) \leq p T_{a b}
$$

It follows that $S_{a x_{0}}$ and $S_{x_{0} b}$ are of the same sign and that

$$
\max _{x \in\left(a, x_{0}\right)}\left|f_{a x_{0}}(x)\right|=\max _{x \in\left(x_{0}, b\right)}\left|f_{x_{0} b}(x)\right|=\max _{x \in(a, b)}\left|f_{a b}(x)\right|>0
$$

More generally, assuming that $f_{a b}$ has finitely many zeros at $a, x_{1}, x_{2}, \ldots, x_{k}, b$, where $a<x_{1}<x_{2}<\cdots<x_{k}<b, k \geq 1$, a similar argument shows that $S_{x_{j} x_{j+1}}$ are of the same sign and that

$$
\max _{x \in\left(x_{j}, x_{j+1}\right)}\left|f_{x_{j} x_{j+1}}(x)\right|=\max _{x \in(a, b)}\left|f_{a b}(x)\right|>0 .
$$

In particular, there may be only finitely many zeros of $f_{a b}$ in (a, b) and $f_{a b}$ is of constant sign, say $f_{a b} \geq 0$ on $[a, b]$. Let $m=\max _{x \in(a, b)} f_{a b}(x)>0$ and $\left\{x \in(a, b): f_{a b}(x)=0\right\}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \neq \emptyset$, where $x_{1}<x_{2}<\cdots<x_{k}$. For an $\epsilon>0$ sufficiently small $(\epsilon<m)$, the line $y=\epsilon$ intersects the graph of $f_{a b}$ at
points $y_{0}, y_{1}, \ldots, y_{k+1}$, such that $a<y_{0}<x_{1}<y_{1}<x_{2}<\cdots<y_{k+1}<b$ and $f_{y_{0} y_{k+1}}$ changes sign (it assumes the values $-\epsilon$ and $m-\epsilon$), which is impossible.

To see that f must be either convex or concave, note that if this was not the case, we could find $I=[a, b]$ such that $f_{a b}$ is not identically zero and changes sign in (a, b) - a contradiction.

Proof of Theorem (i). From Lemma $1, f$ is either convex or concave. Hence, $T_{a b} \leq\left|S_{a b}\right|=p T_{a b}$, implying that $T_{a b}=0$ for all intervals $I=[a, b]$ and that $G(f)$ is a line.

Proof of Theorem (ii). We wish to show that $G(f)$ is either a line or a pair of half lines. If f satisfies $\left(A_{1}\right)$ and $S_{a b} \neq 0$ for all $I=[a, b]$, then by continuity, $S_{a b}$ is of constant sign, and f is either strictly convex or strictly concave, in which case $\left|S_{a b}\right|>T_{a b}$ - a contradiction. Thus, the graph of f must contain a segment (of a line). We can then consider a maximal segment \mathcal{L} contained in $G(f)$. Suppose that \mathcal{L} lies over the interval (a, b), where $-\infty \leq a<b \leq \infty$. Suppose that \mathcal{L} (and thus $G(f)$) is not a line. Then either $a>-\infty$ or $b<\infty$. For the sake of the argument, suppose that $b<\infty$ and let $a^{\prime} \in(a, b)$. For every $c>b, f_{a^{\prime} c} \not \equiv 0$, or else, the segment \mathcal{L} could be extended to one containing the points $(b, f(b)),(c, f(c))$, contradicting the maximality of \mathcal{L}. We now show that for every $c>b, G_{b c}(f)$ is a line segment; i.e., $f_{b c} \equiv 0$ on (b, c). Otherwise, we would have either $f_{b c}<0$ on (b, c), or $f_{b c}>0$ on (b, c). In each of the two cases one can easily check that $\left|S_{a^{\prime} c}\right|>T_{a^{\prime} c}$, in contradiction with the fact that f satisfies $\left(A_{1}\right)$. It readily follows that $G_{b \infty}(f)$ is a half line. When $a>-\infty$ we proceed analogously to show that $G_{-\infty a}$ is a half line.

The proof of part iii) of the theorem depends on the following five lemmas.
Lemma 2. If f satisfies $\left(A_{p}\right)$ for some $p>1$, and for some interval $I, f_{I} \equiv 0$ in I, i.e., $G(f)$ contains a line segment, then $G(f)$ is a line. In particular, if $G(f)$ is not a line, then f is strictly convex or strictly concave.

Proof. Suppose, by way of contradiction, that the graph of f contains a segment (or half line) which does not extend linearly to the right, say, beyond the point $(b, f(b))$. Choosing a suitable $a<b$ and replacing f by $f_{a b}$ we can then assume that $f(x)=0$ for $x \in[a, b]$ and that for some sequence $b_{n} \searrow b, f\left(b_{n}\right) \rightarrow 0$. Furthermore, by suitably modifying b_{n}, we may assume that $\left|f\left(b_{n}\right)\right|=\max _{x \in\left[a, b_{n}\right]}|f(x)|$. For the sake of the argument, we may let $f\left(b_{n}\right)>0$. We now consider the condition $\left(A_{p}\right)$ over the interval $\left[a, b_{n}\right]$. We observe that $\left(f_{I}\right)_{I^{\prime}}=f_{I^{\prime}}$ if $I \subset I^{\prime}$ and that the triangle with vertices $(a, 0),(b, 0),\left(b_{n}, f\left(b_{n}\right)\right)$, which has area $\frac{1}{2}(b-a) f\left(b_{n}\right)$, appears among triangles with vertices $(a, 0),(x, f(x)),\left(b_{n}, f\left(b_{n}\right)\right), a<x<b_{n}$, competing in finding
the value $T_{a b_{n}}$. Since $\left|S_{a b_{n}}\right|=\left|\frac{b_{n}-a}{2} f\left(b_{n}\right)-\int_{b}^{b_{n}} f(x) d x\right|$ and $\int_{b}^{b_{n}}|f(x)| d x \leq$ $\left(b_{n}-b\right) f\left(b_{n}\right)$,

$$
p=\frac{\left|S_{a b_{n}}\right|}{T_{a b_{n}}} \leq \frac{b_{n}-a}{b-a}+\frac{2}{(b-a) f\left(b_{n}\right)} \int_{b}^{b_{n}}|f(x)| d x \rightarrow 1, \text { as } n \rightarrow \infty
$$

This contradicts the assumption that $p>1$.
Lemma 3. If f satisfies $\left(A_{p}\right)$ for some $p>1$, then f is continuously differentiable.

Proof. If $G(f)$ is a line, then there is nothing to prove. Otherwise, because of Lemma 2, we can suppose that f is strictly convex, for the sake of the argument. Then for every x the one sided derivatives $D_{-} f(x)$ and $D_{+} f(x)$ exist. Also, for $x<y, D_{-} f(x) \leq D_{+} f(x)<D_{-} f(y) \leq D_{+} f(y)$. Suppose that there exists a $t \in \mathbb{R}$ such that $D_{-} f(t)<D_{+} f(t)$. Let $m=\frac{D_{-} f(t)+D_{+} f(t)}{2}$, and notice that $f(x)-f(t)-m(x-t)$ satisfies $\left(A_{p}\right)$. Hence, we may assume that $t=0, f(x)>f(0)$ for $x \neq 0$, and $D_{-} f(0)=-D_{+} f(0)=-\beta<0$. It follows that f is strictly decreasing on $(-\infty, 0)$ and strictly increasing on $(0, \infty)$. Hence for every $a<0$ there is a unique $b=b(a)>0$ such that $f(a)=f(b(a))$ and, when $a \nearrow 0, b(a) \searrow 0$ and $f(a) \searrow 0$. In this setting, we have $T_{a b}=\frac{1}{2} f(a)(b-a)$ and $f(a)=-\beta a+o(a)=\beta b+o(b)$, which gives

$$
T_{a b}=\frac{1}{2} f(a)(-a)+\frac{1}{2} f(a) b=\frac{\beta a^{2}}{2}+\frac{\beta b^{2}}{2}+o\left(a^{2}\right)+o\left(b^{2}\right) .
$$

Similarly, $f(x)=-\beta x+o(x)$ for $x<0$, and $f(x)=\beta x+o(x)$ for $x>0$, which implies that

$$
S_{a b}=\frac{\beta a^{2}}{2}+\frac{\beta b^{2}}{2}+o\left(a^{2}\right)+o\left(b^{2}\right)
$$

As $a \rightarrow 0$, the ratio $\left|S_{a b}\right| / T_{a b}$ converges to 1 rather than to p. It readily follows that f^{\prime} is continuous: f^{\prime} is increasing, so if at some point $f^{\prime}(x+)>$ $f^{\prime}(x-)$ then we could also have at that point $D_{+} f(x)>D_{-} f(x)$, which by the considerations above would yield a contradiction.

To fix the ideas, we assume from now on that f is strictly convex; i.e., $S_{a b}<0$ for all intervals $I=[a, b]$. We observe next that the assumptions on f imply that $p<2$. To see this, note that $\left|S_{a b}\right|$ is less than the area of the parallelogram bounded by the secant determined by the two points $(a, f(a)),(b, f(b))$, the tangent to the graph parallel to this secant, and the
vertical lines $x=a, x=b$. The area of this parallelogram is $2 T_{a b}$. Hence, $2 T_{a b}>\left|S_{a b}\right|=p T_{a b}$, and $p<2$. Henceforth we assume $1<p<2$.

Let x_{0} be arbitrary. Note that if we replace $f(x)$ by $f\left(x+x_{0}\right)-f\left(x_{0}\right)-$ $f^{\prime}\left(x_{0}\right) x$ then the hypotheses on f are preserved. Hence, we may assume that $f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0$ and that $x_{0}=0$. Since f^{\prime} is strictly increasing, f has a minimum at 0 , and f is decreasing for $x<0$ and increasing for $x>0$. Hence, for every $x>0$ there is a unique $\varphi(x)$ such that $\varphi(x)<0, \varphi^{\prime}(x)<0$, and $f(\varphi(x))=f(x)$.

Lemma 4. There is a constant $\lambda>0$ such that $f(x)=\lambda(x-\varphi(x))^{q}$, where $q=\frac{p}{2-p}$.

Proof. Note that $q>1$ since $1<p<2$, and $q=2$ if $p=\frac{4}{3}$. For $x>0$, the hypothesis on f implies that

$$
(x-\varphi(x)) f(x)-\int_{\varphi(x)}^{x} f(t) d t=\frac{p}{2} f(x)(x-\varphi(x))
$$

or

$$
\frac{2-p}{2} f(x)(x-\varphi(x))=\int_{\varphi(x)}^{x} f(t) d t
$$

If we differentiate the last equality and use the fact that $f(x)=f(\varphi(x))$, we obtain

$$
\frac{2-p}{2}\left(1-\varphi^{\prime}(x)\right) f(x)+(x-\varphi(x)) f^{\prime}(x)=\left(1-\varphi^{\prime}(x)\right) f(x)
$$

or

$$
\frac{f^{\prime}(x)}{f(x)}=q \frac{1-\varphi^{\prime}(x)}{x-\varphi(x)} \text { for } x \neq 0
$$

which implies that $f(x)=\lambda(x-\varphi(x))^{q}$, where λ is a positive constant.
Remark. We have $f^{\prime}(x)=q \lambda(x-\varphi(x))^{q-1}\left(1-\varphi^{\prime}(x)\right)$. For $x>0, f^{\prime}(x)>$ $q \lambda x^{q-1}$, since $\lambda>0$. In particular,

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=\infty
$$

a condition invariant under addition of an affine function.
Lemma 5. Let $\left(x_{0}, y_{0}\right)$ be the point of intersection of the tangent lines to $y=f(x)$ at $(a, f(a))$ and $(\varphi(a), f(\varphi(a)))$ respectively. Then the area of the triangle with vertices at $(a, f(a)),(\varphi(a), f(\varphi(a))),\left(x_{0}, y_{0}\right)$ is q times the area of the triangle with vertices at $(a, f(a)),(\varphi(a), f(\varphi(a))),(0,0)$.

Proof. The equations of the tangent lines to $y=f(x)$ at $(a, f(a))$ and $(\varphi(a), f(a))=(\varphi(a), f(\varphi(a)))$ are

$$
y-f(a)=f^{\prime}(a)(x-a) \text { and } y-f(a)=f^{\prime}(\varphi(a))(x-\varphi(a))
$$

Using the fact that $f^{\prime}(\varphi(a)) \varphi^{\prime}(a)=f^{\prime}(a)$, we find that the point of intersection $\left(x_{0}, y_{0}\right)$ has its coordinates given by

$$
x_{0}=\frac{a \varphi^{\prime}(a)-\varphi(a)}{\varphi^{\prime}(a)-1}, y_{0}=f(a)+f^{\prime}(a) \frac{a-\varphi(a)}{\varphi^{\prime}(a)-1}
$$

But $f(x)=\lambda(x-\varphi(x))^{q}$ implies that $f^{\prime}(x)=q \lambda(x-\varphi(x))^{q-1}\left(1-\varphi^{\prime}(x)\right)$, hence

$$
y_{0}=f(a)+q \lambda \frac{(a-\varphi(a))^{q}\left(1-\varphi^{\prime}(a)\right)}{\varphi^{\prime}(a)-1}=(1-q) f(a)
$$

In particular, the area of the triangle with vertices $(a, f(a)),(\varphi(a), f(\varphi(a)))$, $\left(x_{0}, y_{0}\right)$ is q times the area of the triangle with vertices $(a, f(a)),(\varphi(a), f(\varphi(a)))$, $(0,0)$, a property of f observed by G. Muraz when $p=\frac{4}{3}(q=2)$.

Consider next the area of the region between the graph of f and the secant at two arbitrary points. We may assume, by adding as before an affine function, that the points are $(0,0),(x, f(x))$ and that $f(0)=f^{\prime}(0)=0$. In this case, the following lemma holds.
Lemma 6. For $x>0, f(x)=c x^{r}$, where $r=\frac{2-p}{p-1}$ (c is some positive constant).

Proof. Note that $r>0$ since $1<p<2$, and $r=2$ when $p=\frac{4}{3}$. Let $(c, f(c))$ be the point where the tangent line to the graph of f is parallel to the secant determined by the points $(0,0),(x, f(x))$, and let S denote the area of the region between the graph of f and this secant and T the area of the triangle determined by the points $(0,0),(c, f(c)),(x, f(x))$. From Lemma 5 , we have $\tilde{T}=q T$, where \tilde{T} is the triangle with vertices at the points $(0,0),(\xi, 0),(x, f(x))$, and $(\xi, 0)$ is the point of intersection of the x-axis with the tangent to the graph of f at $(x, f(x))$. Note that $\xi=x-\frac{f(x)}{f^{\prime}(x)}$. The condition $\left(A_{p}\right), S=p T=\frac{p}{q} \tilde{T}$, can be rewritten as

$$
\frac{1}{2} x f(x)-\int_{0}^{x} f(t) d t=\frac{p}{q}\left(x-\frac{f(x)}{f^{\prime}(x)}\right) \frac{f(x)}{2}
$$

which is equivalent to

$$
\begin{equation*}
\frac{p-1}{2} x f(x)-\int_{0}^{x} f(t) d t=\left(\frac{p}{2}-1\right) \frac{f(x)^{2}}{f^{\prime}(x)} \tag{p}
\end{equation*}
$$

Note that f being continuously differentiable implies, solving for f^{\prime} in $\left(A_{p}^{\prime}\right)$, that f has derivatives of any order wherever $f(x) \neq 0$. Differentiate both sides of the equality $\left(A_{p}^{\prime}\right)$ to obtain:

$$
\frac{x f^{\prime}(x)-f(x)}{f(x)^{2}}=r \frac{f^{\prime \prime}(x)}{f^{\prime}(x)^{2}} ; \text { i.e., } \quad\left(\frac{x}{f(x)}\right)^{\prime}=-r \frac{f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
$$

If we integrate the last equality we get

$$
\frac{x}{f(x)}=\frac{r}{f^{\prime}(x)}+C
$$

Let now $x \rightarrow \infty$ in the last equality. Using the remark following Lemma 4 and l'Hôpital's rule, we conclude that $C=0, x f^{\prime}(x)-r f(x)=0$ and finally that $f(x)=c x^{r}, c>0$.

Proof of Theorem (iii). We have reduced the proof of Part iii) to the case when $1<p<2, f$ is strictly convex and there is a unique function φ such that $\varphi(x)<0, \varphi^{\prime}(x)<0$ and $f(\varphi(x))=f(x)$ for all $x>0$. Using Lemmas 4 and 6 we get

$$
x-\varphi=\left(\frac{c}{\lambda}\right)^{\frac{1}{q}} x^{\frac{r}{q}}
$$

and

$$
\varphi^{\prime}(x)=1-\left(\frac{c}{\lambda}\right)^{\frac{1}{q}} \frac{r}{q} x^{\frac{r}{q}-1}
$$

If $\frac{r}{q}>1$, then the equation for φ^{\prime} implies that there is an $\varepsilon>0$ such that $\varphi^{\prime}(x)>0$ for $0<x<\varepsilon$. If $\frac{r}{q}<1$ the equation for φ^{\prime} implies that $\varphi^{\prime}(x) \rightarrow 1$ as $x \rightarrow \infty$. Both of these cases contradict the fact that $\varphi^{\prime}(x)<0$ for all $x>0$. Therefore $r=q$, from which it follows, that $p=\frac{4}{3}$ and the proof is complete.

A modified condition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. In the work above we considered the following condition $\left(A_{p}\right)$:

$$
\left|\int_{a}^{b} f_{a b}(x) d x\right|=\frac{p}{2}(b-a) \max _{a<x<b}\left|f_{a b}(x)\right|, \text { for all } I=[a, b]
$$

We now consider a modified condition, call it $\left(\tilde{A}_{p}\right)$, obtained from $\left(A_{p}\right)$ by moving the absolute value sign inside the integral in the left hand side of the equality:

$$
\int_{a}^{b}\left|f_{a b}(x)\right| d x=\frac{p}{2}(b-a) \max _{a<x<b}\left|f_{a b}(x)\right|, \text { for all } I=[a, b]
$$

Let

$$
\tilde{S}_{a b}=\int_{a}^{b}\left|f_{a b}(x)\right| d x
$$

and

$$
T_{a b}=\frac{1}{2}(b-a) \max _{a<x<b}\left|f_{a b}(x)\right|
$$

The condition $\left(\tilde{A}_{p}\right)$ can be rewritten as

$$
\tilde{S}_{a b}=p T_{a b}, \text { for all } I=[a, b] .
$$

Let $p>0$. We have shown (Lemma 1) that for every interval $I=[a, b], f_{I}$ is either identically zero or f_{I} has a constant sign. In particular, $\left(A_{p}\right)$ implies $\left(\tilde{A}_{p}\right)$. It might come as a surprise, but the reverse implication is true as well. We now show that $\left(\tilde{A}_{p}\right)$ implies $\left(A_{p}\right)$.

We first prove, similarly to our previous work, that if f satisfies $\left(\tilde{A}_{p}\right)$ for $p>1$ and the graph of f contains a line segment, then f is an affine functionthis is the case when $\left(\tilde{A}_{p}\right)$ holds with both sides of the equality equal to zero. Suppose that the graph contains a segment which starts at the point $(a, f(a))$ and ends at the point $(b, f(b))$, and f is not affine. This implies that $f_{a b}=0$ in $[a, b]$ but there exists a sequence $b_{n} \searrow b$ such that $f_{a b}\left(b_{n}\right) \neq 0$. Then we have
$\tilde{S}_{a b_{n}}=\frac{1}{2}(b-a)\left|f_{a b_{n}}(b)\right|+\left(b_{n}-b\right)\left|f_{a b_{n}}\left(s_{n}\right)\right| \leq\left[\frac{1}{2}(b-a)+\left(b_{n}-b\right)\right]\left|f_{a b_{n}}\left(c_{n}\right)\right|$,
for some $s_{n}, c_{n} \in\left[b, b_{n}\right)$ and $\left|f_{a b_{n}}\right|$ attains its maximum at c_{n}. On the other hand, $T_{a b_{n}}=\frac{1}{2}(b-a)\left|f_{a b_{n}}\left(c_{n}\right)\right|$ and it follows that

$$
p=\lim _{n \rightarrow \infty} \frac{\tilde{S}_{a b_{n}}}{T_{a b_{n}}} \leq 1
$$

a contradiction. Next we note that as in the proof of Lemma 1 , if f is not an affine function and if for some $a<c<b$ we have $f_{a b}(c)=0$, then

$$
T_{a b}=\frac{1}{p} \tilde{S}_{a b}=\frac{1}{p}\left(\tilde{S}_{a c}+\tilde{S}_{c b}\right)=T_{a c}+T_{c b}
$$

an equality which holds only if the maxima of $\left|f_{a c}\right|$ and $\left|f_{c b}\right|$ are the same. In particular, $f_{a b}$ can have at most finitely many zeros in (a, b). By suitably restricting the interval, we may assume that there is only one zero of $f_{a b}$, say at c, in (a, b). Suppose first that $f_{a b}$ changes sign at c, say $f_{a c}>0$ and $f_{c b}<0$.

Let $b^{\prime} \in(c, b)$ be sufficiently close to b so that $f_{a b^{\prime}}$ changes sign at c^{\prime} in $\left(a, b^{\prime}\right)$. Then

$$
\max _{a<x<c^{\prime}} f_{a b^{\prime}}(x)>\max _{a<x<c} f_{a b}(x)=\max _{c<x<b}\left(-f_{a b}(x)\right)>\max _{c^{\prime}<x<b}\left(-f_{a b^{\prime}}(x)\right)
$$

a contradiction. If $f_{a b}>0$ in the intervals (a, c) and (c, b) then, for $b^{\prime} \in(c, b)$ sufficiently close to $b, f_{a b^{\prime}}$ changes sign in $\left(a, b^{\prime}\right)$ and we are back in the previous case. It follows that, for $a<b, f_{a b}$ is of constant sign in (a, b) and (\tilde{A}_{p}) implies $\left(A_{p}\right)$.

References

[1] Árpád Bényi, Pawel Szeptycki, and Fred Van Vleck, Archimedean properties of parabolas, Amer. Math. Monthly, 107 (2000), 945-949.

[^0]: Key Words: Archimedes, parabolas
 Mathematical Reviews subject classification: Primary 26A06; Secondary 26A09.
 Received by the editors August 28, 2002
 Communicated by: R. Daniel Mauldin
 *Work completed while at University of Kansas.
 ${ }^{\dagger}$ This work was completed before the death of Pawel Szeptycki on January 30, 2004.

