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A GENERALIZED ARCHIMEDEAN
PROPERTY

Abstract

We introduce and discuss a condition generalizing one of the Archimedean
properties characterizing parabolas.

Archimedes was familiar with the following property of parabolas:

If for any two points A, B on a parabola we denote by S the area
of the region between the parabola and the secant AB, and by T
the maximum of the area of the triangle ABC, where C is a point
on the parabola between A and B, then

S =
4
3
T. (A)

Throughout this paper f denotes a continuous real valued function defined
on R. We denote by G(f) the graph of f . For I = [a, b] an arbitrary closed
nontrivial interval, let LI(f) = Lab(f) be the linear function that interpolates
f at the endpoints of I,

LI(f)(x) = Lab(f)(x) =
(b− x)f(a) + (x− a)f(b)

b− a
,

let fI = fab = f −LI(f), and let GI(f) = Gab(f) denote the graph of fI over
I. (A) can be reformulated as follows:

For every interval I = [a, b],

|Sab(f)| = 4
3
Tab(f), (A′)
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where Sab(f) = Sab =
∫ b

a
fab(x) dx and Tab(f) = Tab = 1

2 (b−a) max
x∈[a,b]

|fab(x)|.

Motivated by this equality, we introduce the following more general property:
For every interval I = [a, b] and a fixed real p, |Sab(f)| = pTab(f). (Ap)

Observe that (Ap) is of interest only if p > 0 and that (A′) is exactly (A4/3).
The following theorem includes as a special case the converse of Archimedes’

result:

Theorem. Let p > 0 and let f satisfy (Ap).
(i) If p < 1, then G(f) is a line.
(ii) If p = 1, then G(f) is either a line or a pair of half lines.
(iii) If p > 1, then either G(f) is a line, or p = 4/3 and G(f) is a parabola.

The fact that (A4/3) implies that G(f) is a parabola was stated in [1] under
excessive regularity hypotheses on f . Moreover, as first noticed by J.L. Garcin,
the proof given there contains a flaw. We wish to emphasize that the proof of
the theorem as stated above does not rely upon arguments (or a modification
thereof) used in [1].

The proof of parts i) and ii) of our theorem depends on the following:

Lemma 1. If f satisfies (Ap) for some p > 0, then for every interval I = [a, b],
either fI(x) = 0 for all x ∈ I or fI(x) 6= 0 for all x ∈ I◦ = (a, b). In particular,
f is either convex or concave.

Proof. Suppose that fab 6≡ 0 and fab(x0) = 0 for some x0 ∈ (a, b). Then

pTab = |Sab| = |Sax0 + Sx0b| ≤ |Sax0 |+ |Sx0b| = p(Tax0 + Tx0b) ≤ pTab.

It follows that Sax0 and Sx0b are of the same sign and that

max
x∈(a,x0)

|fax0(x)| = max
x∈(x0,b)

|fx0b(x)| = max
x∈(a,b)

|fab(x)| > 0.

More generally, assuming that fab has finitely many zeros at a, x1, x2, . . . , xk, b,
where a < x1 < x2 < · · · < xk < b, k ≥ 1, a similar argument shows that
Sxjxj+1 are of the same sign and that

max
x∈(xj ,xj+1)

|fxjxj+1(x)| = max
x∈(a,b)

|fab(x)| > 0.

In particular, there may be only finitely many zeros of fab in (a, b) and fab

is of constant sign, say fab ≥ 0 on [a, b]. Let m = maxx∈(a,b) fab(x) > 0 and
{x ∈ (a, b) : fab(x) = 0} = {x1, x2, . . . , xk} 6= ∅, where x1 < x2 < · · · < xk. For
an ε > 0 sufficiently small (ε < m), the line y = ε intersects the graph of fab at
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points y0, y1, . . . , yk+1, such that a < y0 < x1 < y1 < x2 < · · · < yk+1 < b and
fy0yk+1 changes sign (it assumes the values −ε and m−ε), which is impossible.

To see that f must be either convex or concave, note that if this was not
the case, we could find I = [a, b] such that fab is not identically zero and
changes sign in (a, b) - a contradiction.

Proof of Theorem (i). From Lemma 1, f is either convex or concave.
Hence, Tab ≤ |Sab| = pTab, implying that Tab = 0 for all intervals I = [a, b]
and that G(f) is a line.

Proof of Theorem (ii). We wish to show that G(f) is either a line or a pair
of half lines. If f satisfies (A1) and Sab 6= 0 for all I = [a, b], then by continuity,
Sab is of constant sign, and f is either strictly convex or strictly concave, in
which case |Sab| > Tab - a contradiction. Thus, the graph of f must contain a
segment (of a line). We can then consider a maximal segment L contained in
G(f). Suppose that L lies over the interval (a, b), where −∞ ≤ a < b ≤ ∞.
Suppose that L (and thus G(f)) is not a line. Then either a > −∞ or b < ∞.
For the sake of the argument, suppose that b < ∞ and let a′ ∈ (a, b). For every
c > b, fa′c 6≡ 0, or else, the segment L could be extended to one containing
the points (b, f(b)), (c, f(c)), contradicting the maximality of L. We now show
that for every c > b, Gbc(f) is a line segment; i.e., fbc ≡ 0 on (b, c). Otherwise,
we would have either fbc < 0 on (b, c), or fbc > 0 on (b, c). In each of the
two cases one can easily check that |Sa′c| > Ta′c, in contradiction with the
fact that f satisfies (A1). It readily follows that Gb∞(f) is a half line. When
a > −∞ we proceed analogously to show that G−∞a is a half line.

The proof of part iii) of the theorem depends on the following five lemmas.

Lemma 2. If f satisfies (Ap) for some p > 1, and for some interval I, fI ≡ 0
in I, i.e., G(f) contains a line segment, then G(f) is a line. In particular, if
G(f) is not a line, then f is strictly convex or strictly concave.

Proof. Suppose, by way of contradiction, that the graph of f contains a
segment (or half line) which does not extend linearly to the right, say, beyond
the point (b, f(b)). Choosing a suitable a < b and replacing f by fab we
can then assume that f(x) = 0 for x ∈ [a, b] and that for some sequence
bn ↘ b, f(bn) → 0. Furthermore, by suitably modifying bn, we may assume
that |f(bn)| = maxx∈[a,bn] |f(x)|. For the sake of the argument, we may let
f(bn) > 0. We now consider the condition (Ap) over the interval [a, bn].
We observe that (fI)I′ = fI′ if I ⊂ I ′ and that the triangle with vertices
(a, 0), (b, 0), (bn, f(bn)), which has area 1

2 (b−a)f(bn), appears among triangles
with vertices (a, 0), (x, f(x)), (bn, f(bn)), a < x < bn, competing in finding
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the value Tabn
. Since |Sabn

| =
∣∣∣ bn−a

2 f(bn)−
∫ bn

b
f(x) dx

∣∣∣ and
∫ bn

b
|f(x)| dx ≤

(bn − b)f(bn),

p =
|Sabn

|
Tabn

≤ bn − a

b− a
+

2
(b− a)f(bn)

∫ bn

b

|f(x)| dx → 1, as n →∞.

This contradicts the assumption that p > 1.

Lemma 3. If f satisfies (Ap) for some p > 1, then f is continuously differ-
entiable.

Proof. If G(f) is a line, then there is nothing to prove. Otherwise, because
of Lemma 2, we can suppose that f is strictly convex, for the sake of the
argument. Then for every x the one sided derivatives D−f(x) and D+f(x)
exist. Also, for x < y, D−f(x) ≤ D+f(x) < D−f(y) ≤ D+f(y). Suppose that
there exists a t ∈ R such that D−f(t) < D+f(t). Let m = D−f(t)+D+f(t)

2 ,
and notice that f(x)− f(t)−m(x− t) satisfies (Ap). Hence, we may assume
that t = 0, f(x) > f(0) for x 6= 0, and D−f(0) = −D+f(0) = −β < 0.
It follows that f is strictly decreasing on (−∞, 0) and strictly increasing on
(0,∞). Hence for every a < 0 there is a unique b = b(a) > 0 such that
f(a) = f(b(a)) and, when a ↗ 0, b(a) ↘ 0 and f(a) ↘ 0. In this setting, we
have Tab = 1

2f(a)(b− a) and f(a) = −βa + o(a) = βb + o(b), which gives

Tab =
1
2
f(a)(−a) +

1
2
f(a)b =

βa2

2
+

βb2

2
+ o(a2) + o(b2).

Similarly, f(x) = −βx+o(x) for x < 0, and f(x) = βx+o(x) for x > 0, which
implies that

Sab =
βa2

2
+

βb2

2
+ o(a2) + o(b2).

As a → 0, the ratio |Sab|/Tab converges to 1 rather than to p. It readily
follows that f ′ is continuous: f ′ is increasing, so if at some point f ′(x+) >
f ′(x−) then we could also have at that point D+f(x) > D−f(x), which by
the considerations above would yield a contradiction.

To fix the ideas, we assume from now on that f is strictly convex; i.e.,
Sab < 0 for all intervals I = [a, b]. We observe next that the assumptions
on f imply that p < 2. To see this, note that |Sab| is less than the area
of the parallelogram bounded by the secant determined by the two points
(a, f(a)), (b, f(b)), the tangent to the graph parallel to this secant, and the
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vertical lines x = a, x = b. The area of this parallelogram is 2Tab. Hence,
2Tab > |Sab| = pTab, and p < 2. Henceforth we assume 1 < p < 2.

Let x0 be arbitrary. Note that if we replace f(x) by f(x + x0) − f(x0) −
f ′(x0)x then the hypotheses on f are preserved. Hence, we may assume that
f(x0) = f ′(x0) = 0 and that x0 = 0. Since f ′ is strictly increasing, f has a
minimum at 0, and f is decreasing for x < 0 and increasing for x > 0. Hence,
for every x > 0 there is a unique ϕ(x) such that ϕ(x) < 0, ϕ′(x) < 0, and
f(ϕ(x)) = f(x).

Lemma 4. There is a constant λ > 0 such that f(x) = λ(x − ϕ(x))q, where
q = p

2−p .

Proof. Note that q > 1 since 1 < p < 2, and q = 2 if p = 4
3 . For x > 0, the

hypothesis on f implies that

(x− ϕ(x))f(x)−
∫ x

ϕ(x)

f(t) dt =
p

2
f(x)(x− ϕ(x))

or
2− p

2
f(x)(x− ϕ(x)) =

∫ x

ϕ(x)

f(t) dt.

If we differentiate the last equality and use the fact that f(x) = f(ϕ(x)), we
obtain

2− p

2
(1− ϕ′(x))f(x) + (x− ϕ(x))f ′(x) = (1− ϕ′(x))f(x)

or
f ′(x)
f(x)

= q
1− ϕ′(x)
x− ϕ(x)

for x 6= 0,

which implies that f(x) = λ(x− ϕ(x))q, where λ is a positive constant.

Remark. We have f ′(x) = qλ(x − ϕ(x))q−1(1 − ϕ′(x)). For x > 0, f ′(x) >
qλxq−1, since λ > 0. In particular,

lim
x→∞

f ′(x) = ∞,

a condition invariant under addition of an affine function.

Lemma 5. Let (x0, y0) be the point of intersection of the tangent lines to
y = f(x) at (a, f(a)) and (ϕ(a), f(ϕ(a))) respectively. Then the area of the
triangle with vertices at (a, f(a)), (ϕ(a), f(ϕ(a))), (x0, y0) is q times the area
of the triangle with vertices at (a, f(a)), (ϕ(a), f(ϕ(a))), (0, 0).
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Proof. The equations of the tangent lines to y = f(x) at (a, f(a)) and
(ϕ(a), f(a)) = (ϕ(a), f(ϕ(a))) are

y − f(a) = f ′(a)(x− a) and y − f(a) = f ′(ϕ(a))(x− ϕ(a)).

Using the fact that f ′(ϕ(a))ϕ′(a) = f ′(a), we find that the point of intersection
(x0, y0) has its coordinates given by

x0 =
aϕ′(a)− ϕ(a)

ϕ′(a)− 1
, y0 = f(a) + f ′(a)

a− ϕ(a)
ϕ′(a)− 1

.

But f(x) = λ(x − ϕ(x))q implies that f ′(x) = qλ(x − ϕ(x))q−1(1 − ϕ′(x)),
hence

y0 = f(a) + qλ
(a− ϕ(a))q(1− ϕ′(a))

ϕ′(a)− 1
= (1− q)f(a).

In particular, the area of the triangle with vertices (a, f(a)), (ϕ(a), f(ϕ(a))),
(x0, y0) is q times the area of the triangle with vertices (a, f(a)), (ϕ(a), f(ϕ(a))),
(0, 0), a property of f observed by G. Muraz when p = 4

3 (q = 2).

Consider next the area of the region between the graph of f and the se-
cant at two arbitrary points. We may assume, by adding as before an affine
function, that the points are (0, 0), (x, f(x)) and that f(0) = f ′(0) = 0. In this
case, the following lemma holds.

Lemma 6. For x > 0, f(x) = cxr, where r = 2−p
p−1 (c is some positive con-

stant).

Proof. Note that r > 0 since 1 < p < 2, and r = 2 when p = 4
3 . Let (c, f(c))

be the point where the tangent line to the graph of f is parallel to the secant de-
termined by the points (0, 0), (x, f(x)), and let S denote the area of the region
between the graph of f and this secant and T the area of the triangle deter-
mined by the points (0, 0), (c, f(c)), (x, f(x)). From Lemma 5, we have T̃ = qT,
where T̃ is the triangle with vertices at the points (0, 0), (ξ, 0), (x, f(x)), and
(ξ, 0) is the point of intersection of the x−axis with the tangent to the graph
of f at (x, f(x)). Note that ξ = x− f(x)

f ′(x) . The condition (Ap), S = pT = p
q T̃ ,

can be rewritten as

1
2
xf(x)−

∫ x

0

f(t) dt =
p

q

(
x− f(x)

f ′(x)

)
f(x)

2
,

which is equivalent to

p− 1
2

xf(x)−
∫ x

0

f(t) dt =
(p

2
− 1

) f(x)2

f ′(x)
. (A′

p)
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Note that f being continuously differentiable implies, solving for f ′ in (A′
p),

that f has derivatives of any order wherever f(x) 6= 0. Differentiate both sides
of the equality (A′

p) to obtain:

xf ′(x)− f(x)
f(x)2

= r
f ′′(x)
f ′(x)2

; i.e.,
(

x

f(x)

)′

= −r
f ′′(x)
f ′(x)2

.

If we integrate the last equality we get
x

f(x)
=

r

f ′(x)
+ C.

Let now x → ∞ in the last equality. Using the remark following Lemma 4
and l’Hôpital’s rule, we conclude that C = 0, xf ′(x) − rf(x) = 0 and finally
that f(x) = cxr, c > 0.

Proof of Theorem (iii). We have reduced the proof of Part iii) to the case
when 1 < p < 2, f is strictly convex and there is a unique function ϕ such
that ϕ(x) < 0, ϕ′(x) < 0 and f(ϕ(x)) = f(x) for all x > 0. Using Lemmas 4
and 6 we get

x− ϕ = (
c

λ
)

1
q x

r
q

and
ϕ′(x) = 1− (

c

λ
)

1
q
r

q
x

r
q−1.

If r
q > 1, then the equation for ϕ′ implies that there is an ε > 0 such that

ϕ′(x) > 0 for 0 < x < ε. If r
q < 1 the equation for ϕ′ implies that ϕ′(x) → 1

as x → ∞. Both of these cases contradict the fact that ϕ′(x) < 0 for all
x > 0. Therefore r = q, from which it follows, that p = 4

3 and the proof is
complete.

A modified condition

Let f : R → R be a continuous function. In the work above we considered
the following condition (Ap):∣∣∣∣∣

∫ b

a

fab(x) dx

∣∣∣∣∣ =
p

2
(b− a) max

a<x<b
|fab(x)|, for all I = [a, b].

We now consider a modified condition, call it (Ãp), obtained from (Ap) by
moving the absolute value sign inside the integral in the left hand side of the
equality: ∫ b

a

|fab(x)| dx =
p

2
(b− a) max

a<x<b
|fab(x)|, for all I = [a, b].
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Let

S̃ab =
∫ b

a

|fab(x)| dx

and
Tab =

1
2
(b− a) max

a<x<b
|fab(x)|.

The condition (Ãp) can be rewritten as

S̃ab = pTab, for all I = [a, b].

Let p > 0. We have shown (Lemma 1) that for every interval I = [a, b], fI

is either identically zero or fI has a constant sign. In particular, (Ap) implies
(Ãp). It might come as a surprise, but the reverse implication is true as well.
We now show that (Ãp) implies (Ap).

We first prove, similarly to our previous work, that if f satisfies (Ãp) for
p > 1 and the graph of f contains a line segment, then f is an affine function–
this is the case when (Ãp) holds with both sides of the equality equal to zero.
Suppose that the graph contains a segment which starts at the point (a, f(a))
and ends at the point (b, f(b)), and f is not affine. This implies that fab = 0
in [a, b] but there exists a sequence bn ↘ b such that fab(bn) 6= 0. Then we
have

S̃abn
=

1
2
(b−a)|fabn

(b)|+(bn−b)|fabn
(sn)| ≤

[
1
2
(b− a) + (bn − b)

]
|fabn

(cn)|,

for some sn, cn ∈ [b, bn) and |fabn
| attains its maximum at cn. On the other

hand, Tabn
= 1

2 (b− a)|fabn
(cn)| and it follows that

p = lim
n→∞

S̃abn

Tabn

≤ 1,

a contradiction. Next we note that as in the proof of Lemma 1, if f is not an
affine function and if for some a < c < b we have fab(c) = 0, then

Tab =
1
p
S̃ab =

1
p
(S̃ac + S̃cb) = Tac + Tcb,

an equality which holds only if the maxima of |fac| and |fcb| are the same.
In particular, fab can have at most finitely many zeros in (a, b). By suitably
restricting the interval, we may assume that there is only one zero of fab, say
at c, in (a, b). Suppose first that fab changes sign at c, say fac > 0 and fcb < 0.
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Let b′ ∈ (c, b) be sufficiently close to b so that fab′ changes sign at c′ in (a, b′).
Then

max
a<x<c′

fab′(x) > max
a<x<c

fab(x) = max
c<x<b

(−fab(x)) > max
c′<x<b

(−fab′(x)),

a contradiction. If fab > 0 in the intervals (a, c) and (c, b) then, for b′ ∈ (c, b)
sufficiently close to b, fab′ changes sign in (a, b′) and we are back in the previous
case. It follows that, for a < b, fab is of constant sign in (a, b) and (Ãp) implies
(Ap).
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