M. Balcerzak, Institute of Mathematics, Technical University of Łódź, ul. Wólczańska 215, 93-005 Łódź, Poland, and Faculty of Mathematics, Łódź University, Banacha 22, 90-238 Łódź, Poland. email: mbalce@p.lodz.pl

A. Kucia, Department of Mathematics, Silesian University, 40-007 Katowice, Poland. email: kucia@ux2.math.us.edu.pl

A. Nowak, Department of Mathematics, Silesian University, 40-007 Katowice, Poland. email: anowak@ux2.math.us.edu.pl

REGULAR DEPENDENCE OF TOTAL VARIATION ON PARAMETERS

Abstract

Let X be an interval, Y a metric space, T a set of parameters, and $f: T \times X \to Y$ a function. For given $t \in T$ denote by v(t) the total variation of $f(t, \cdot)$ on X. We look for sufficient conditions for regular (measurable, continuous, etc.) dependence of v on t.

1 Preliminaries

Throughout this paper X is an interval (open, closed, half-closed, bounded or not) on the real line, and (Y, d) is a metric space. Given a mapping $g: X \to Y$ we define the *total variation of g on X* as

$$V(g, X) = \sup_{\Pi} \sum_{i=1}^{n} d(g(x_i), g(x_{i-1})),$$

where the supremum is taken over all partitions $\Pi = \{x_0, x_1, \ldots, x_n\}$ of X (i.e., $n \in \mathbb{N}, x_0 < x_1 < \cdots < x_n$ and $x_i \in X, i = 0, 1, \ldots, n$). We say that g is of bounded variation if $V(g, X) < \infty$.

Let T be a nonempty set of parameters and $f: T \times X \to Y$ a mapping. Let $v: T \to [0, \infty]$ be given by $v(t) = V(f(t, \cdot), X)$, i.e., v(t) is the total variation of $f(t, \cdot)$ on X. We shall look for sufficient conditions for regular (measurable, continuous, etc.) dependence of v on t. This problem appeared in the

Key Words: function of bounded variation, measurability, continuity.

Mathematical Reviews subject classification: Primary 26A45; Secondary 26B99. Received by the editors July 29, 2003

Communicated by: B. S. Thomson

⁹²¹

study of regular selectors for multifunctions of bounded variation depending on parameters ([2]).

Let Z be a topological space. We say that Z is *Polish* if it is separable and can be metrizable by a complete metric. By $\mathcal{B}(Z)$ we denote the Borel σ -field on Z. Suppose T is endowed with a σ -field \mathcal{T} . Then $\mathcal{T} \otimes \mathcal{B}(Z)$ denotes the product σ -field on $T \times Z$.

We shall need some further terminology. Denote by \mathcal{N} and \mathcal{N}^* , respectively, the sets of infinite and finite sequences of positive integers. Let \mathcal{F} be a family of sets. We say that A is obtained from \mathcal{F} by the Suslin operation if

$$A = \bigcup_{\sigma \in \mathcal{N}} \bigcap_{n=1}^{\infty} F(\sigma_1, \dots, \sigma_n)$$

for some function $F : \mathcal{N}^* \to \mathcal{F}$. Denote by $S(\mathcal{F})$ the family of all sets obtained from \mathcal{F} by the Suslin operation. The family \mathcal{F} is closed with respect to the Suslin operation if $S(\mathcal{F}) = \mathcal{F}$ (cf. [4],[6])

Recall that a σ -field \mathcal{T} is closed with respect to the Suslin operation provided one of the following conditions is satisfied: (i) \mathcal{T} is complete with respect to a σ -finite measure; (ii) T is a topological space and \mathcal{T} is the Baire σ -field, i.e., \mathcal{T} is the family of all subsets of T having the Baire property; (iii) T is a locally compact space and \mathcal{T} is the family of all subsets of T measurable with respect to a Radon measure (see e.g. [4],[6]).

Let A be a subset of $T \times Z$. Given $t \in T$, we denote by A_t the t-section of A; i.e., $A_t = \{z : (t, z) \in A\}$. By $\operatorname{Proj}_T A$ we mean the projection of A on T; i.e., $\operatorname{Proj}_T A = \{t \in T : (t, z) \in A \text{ for some } z \in Z\}$.

Let \mathcal{T} be a σ -field on T and $A \in \mathcal{T} \otimes \mathcal{B}(Z)$. In general, $\operatorname{Proj}_T A$ does not belong to \mathcal{T} . We shall use the following well known results:

Projection Theorem. (see e.g. [4, Theorem 1.3]) If (T, \mathcal{T}) is a measurable space, Z is a Polish space and $A \in \mathcal{T} \otimes \mathcal{B}(Z)$, then $\operatorname{Proj}_T A \in S(\mathcal{T})$.

Arsenin-Kunugui-Novikov Theorem. (e.g. [6, Theorem 18.18]) Suppose T and Z are Polish spaces, and $A \in \mathcal{B}(T \times Z)$ has σ -compact t-sections. Then $\operatorname{Proj}_T A \in \mathcal{B}(T)$.

2 Measurability

Throughout this section (T, \mathcal{T}) is a measurable space, (Y, d) is a separable metric space, $f : T \times X \to Y$ is a function, and v is the total variation of $f(t, \cdot)$ on X. We are interested in the measurability properties of the function v. Let us start with some examples, where T = X = Y = [0, 1].

Example 2.1. Lebesgue measurable function $f : [0,1]^2 \to [0,1]$ such that v is not Lebesgue measurable.

Let A be a nonmeasurable subset of (0,1), $B = \{(t,x) : t = x \in A\}$, and $f = \chi_B$, the characteristic function of B. Clearly, f is Lebesgue measurable, and v(t) = 2 for $t \in A$ and v(t) = 0 for $t \notin A$.

Example 2.2. Function f measurable with respect to the Baire σ -field on $[0,1]^2$ such that v is not Baire measurable.

This is an obvious modification of the previous example with $A \subset (0,1)$ without the Baire property.

Example 2.3. Borel measurable function $f : [0,1]^2 \to [0,1]$ such that v is not Borel measurable.

Let P be the set of all irrationals from [0,1], and $A \subset [0,1]$ an analytic non-Borel set. There is a continuous and onto function $h: P \to A$. Let $D = \{(h(x), x) : x \in P\}$; i.e., D is the graph of h. Since h is continuous, D is a closed subset of $[0,1] \times P$ and, consequently, a Borel subset of $[0,1]^2$. Let $f = \chi_D$. Then $v(t) \ge 2$ for $t \in A$ and v(t) = 0 for $t \notin A$. Hence, v is not Borel measurable.

Since $\mathcal{B}([0,1]^2) = \mathcal{B}([0,1]) \otimes \mathcal{B}([0,1])$, the last example shows that if f is $\mathcal{T} \otimes \mathcal{B}(X)$ -measurable, then v need not be \mathcal{T} -measurable.

We start with a theorem which gives sufficient conditions for the measurability of the total variation for an arbitrary measurable space (T, \mathcal{T}) .

Theorem 2.1. Suppose there exists a countable dense subset E of X such that the following conditions are satisfied:

- (i) For each $(t,x) \in T \times X$ the value f(t,x) is the limit of $(f(t,e_k))$ for some sequence (e_k) of points of E convergent to x.
- (ii) For each $e \in E$, $f(\cdot, e)$ is measurable.

Then v is measurable.

PROOF. Fix $t \in T$. For each partition $\Pi = \{x_0, \ldots, x_n\}$ of X and each $\varepsilon > 0$ there exists a partition $\Pi' = \{x'_0, \ldots, x'_n\}$ consisting of points of E, such that

$$\sum_{i=1}^n d(f(t,x_i), f(t,x_{i-1})) \le \varepsilon + \sum_{i=1}^n d(f(t,x_i'), f(t,x_{i-1}')).$$

Hence,

$$v(t) = \sup_{\Pi'} \sum_{i=1}^{n} d(f(t, x'_i), f(t, x'_{i-1})), t \in T,$$

where supremum is taken over all partitions of X consisting of elements of E. Under our assumptions, for each such a partition Π' the function

$$t\mapsto \sum_{i=1}^n d(f(t,x_i'),f(t,x_{i-1}')),\ t\in T$$

is measurable. Thus v is measurable, as the pointwise supremum of a countable family of measurable functions.

Remark 2.1. We list some cases, when the condition (i) of the last theorem is satisfied for each dense subset $E \subset X$:

- 1. f is continuous in x.
- 2. f is one-sided continuous in x (possibly, left-continuous at some points and right-continuous at others).
- 3. f is quasi-continuous in x (see e.g. [9]).

We shall use the following technical lemmas.

Lemma 2.1. For any $r \ge 0$ we have $\{t \in T : v(t) > r\} = \bigcup \{\operatorname{Proj}_T A_n : n \in \mathbb{N}\}$, where

$$A_n = \{(t, x_0, \dots, x_n) \in T \times X^{n+1} : x_0 < x_1 < \dots < x_n$$
$$\sum_{i=1}^n d(f(t, x_i), f(t, x_{i-1})) > r\}$$

PROOF. Indeed, v(t) > r iff there is a partition $\{x_0, x_1, \ldots, x_n\}$ of X such that $\sum_{i=1}^n d(f(t, x_i), f(t, x_{i-1})) > r$.

Lemma 2.2. If f is $\mathcal{T} \otimes \mathcal{B}(X)$ -measurable, then $A_n \in \mathcal{T} \otimes \mathcal{B}(X^{n+1})$.

PROOF. Let an auxiliary function $g: T \times X^{n+1} \to \mathbb{R}$ be defined by

$$g(t, x_0, \dots, x_n) = \sum_{i=1}^n d(f(t, x_i), f(t, x_{i-1})).$$

Since Y is separable, g is $\mathcal{T} \otimes \mathcal{B}(X^{n+1})$ -measurable. Now the measurability of A_n follows from $A_n = T \times U_n \cap g^{-1}((r, \infty))$, where $U_n = \{x \in X^{n+1} : x_0 < \cdots < x_n\}$ is open in X^{n+1} .

Theorem 2.2. If f is $\mathcal{T} \otimes \mathcal{B}(X)$ -measurable then v is $\sigma(S(\mathcal{T}))$ -measurable.

PROOF. Fix $r \geq 0$. By Lemma 2.2, $A_n \in \mathcal{T} \otimes \mathcal{B}(X^{n+1})$, $n \in \mathbb{N}$. Since X^{n+1} is a Polish space, we can use the Projection Theorem. Thus $\operatorname{Proj}_T A_n \in S(\mathcal{T})$ and, consequently, v is measurable with respect to the σ -field generated by $S(\mathcal{T})$.

925

Corollary 2.1. If the σ -field \mathcal{T} is closed under the Suslin operation and f is $\mathcal{T} \otimes \mathcal{B}(X)$ -measurable, then v is \mathcal{T} -measurable.

Corollary 2.2. Suppose T is a Lebesgue measurable subset of \mathbb{R}^m and $\mathcal{T} = \mathcal{L}_m(T)$. If f is $\mathcal{L}_m(T) \otimes \mathcal{B}(X)$ -measurable, then v is Lebesgue measurable.

Corollary 2.3. If T is a Polish space and f is Borel measurable, then v is measurable with respect to the σ -field generated by analytic subsets of T.

Remind that a function $h: Z \to Y$, where Z is metrizable, is of the 1st class of Baire if $h^{-1}(U) \in F_{\sigma}(Z)$ for each open $U \subset Y$. If h is the pointwise limit of a sequence of continuous functions, then it is of the 1st class of Baire. If Y is an interval, then these two conditions are equivalent. The function h is of the 2nd class of Baire if for each open $U \subset Y$, $h^{-1}(U) \in G_{\delta\sigma}(Z)$.

Theorem 2.3. Suppose T is a Polish space, $f: T \times X \to Y$ is Borel measurable, and for each $t \in T$, $f(t, \cdot)$ is of the 1st class of Baire. Then v is Borel measurable.

PROOF. Since Y is separable, for fixed t the function

$$(x_0,\ldots,x_n)\mapsto \sum_{i=1}^n d(f(t,x_i),f(t,x_{i-1}))$$

is of the 1st class of Baire on X^{n+1} . Let A_n be the set defined in Lemma 2.1 for fixed $r \ge 0$. By Lemma 2.2, $A_n \in \mathcal{T} \otimes \mathcal{B}(X^{n+1})$. Moreover, for each $t \in T$ we have

$$(A_n)_t = \{(x_0, \dots, x_n) \in X^{n+1} : x_0 < \dots < x_n, \sum_{i=1}^n d(f(t, x_i), f(t, x_{i-1})) > r\},\$$

and this set belongs to $F_{\sigma}(X^{n+1})$. Since X^{n+1} is σ -compact, $(A_n)_t$ is also σ compact. By the Arsenin-Kunugui-Novikov Theorem, $\operatorname{Proj}_T A_n \in \mathcal{B}(T)$. Thus v is Borel measurable.

Corollary 2.4. If T is a Polish space, f is Borel measurable, and for each $t \in T$ $f(t, \cdot)$ is of bounded variation, then v is Borel.

PROOF. Being of bounded variation, $f(t, \cdot)$ has at most countable set of discontinuity points (see e.g., [1],[5]). Consequently, $f(t, \cdot)$ is of the 1st class of Baire (cf. [7, 34.VII]). Now we can apply Theorem 2.3.

Example 2.3 shows that the assumption of the bounded variation of $f(t, \cdot)$ is essential for the Borel measurability of v.

If we assume that f is of the 1st class of Baire as a function of two variables, then we can strengthen the thesis of Theorem 2.3.

Theorem 2.4. If T is metrizable and σ -compact, and f is of the 1st class of Baire, then v is of the 2nd class.

PROOF. Fix $r \geq 0$, and let A_n be such as in Lemma 2.1. Under our assumptions, the function g defined in the proof of Lemma 2.2 is of the 1st class of Baire on $T \times X^{n+1}$. Consequently, $A_n \in F_{\sigma}(T \times X^{n+1})$. Since $T \times X^{n+1}$ is σ -compact, A_n is σ -compact, and $\operatorname{Proj}_T A_n$ is also σ -compact. Hence, $\{t \in T : v(t) > r\} \in F_{\sigma}(T)$. Moreover, $\{t \in T : v(t) < r\} = T \setminus \{t \in T : v(t) \geq r\} = T \setminus \bigcap_{k \in \mathbb{N}} \{t \in T : v(t) > r + \frac{1}{k}\} \in G_{\delta\sigma}(T)$. It completes the proof.

Remark 2.2. Example 2.3 shows that there is no analogous result for functions of the next classes of Baire. The function $f = \chi_D$ from this example is of the 2nd class of Baire, and v is not Borel measurable. It follows from the fact that D is a G_{δ} -set in $[0, 1]^2$, as a closed subset of $[0, 1] \times P$.

3 Continuity

In this section we collect some simple observations concerning the continuity properties of the function v. We shall assume that T is a topological space. First consider the following example:

Example 3.1. Continuous function f such that v is discontinuous. Let $T = [0, 1], X = (0, 1], Y = \mathbb{R}$ and $f(t, x) = x^t$. Then v(0) = 0 and v(t) = 1 for t > 0.

Note that the function v in this example is lower semicontinuous.

Theorem 3.1. If f is continuous in t, then v is lower semicontinuous.

PROOF. For each partition $\Pi = \{x_0, \ldots, x_n\}$ of X the function

$$t \mapsto \sum_{i=1}^{n} d(f(t, x_i), f(t, x_{i-1}))$$

is continuous. Hence, v is lower semicontinuous, as the pointwise supremum of continuous functions. $\hfill \Box$

As a consequence, we obtain the following well known property of the total variation:

Corollary 3.1. If $g_k, g : X \to Y$ and the sequence (g_k) pointwise converges to g, then

$$V(g, X) \le \liminf_{k \to \infty} V(g_k, X).$$

PROOF. In order to apply Theorem 3.1, we put $T = \{\frac{1}{k} : k \in \mathbb{N}\} \cup \{0\}, f(\frac{1}{k}, x) = g_k(x)$ for $k \in \mathbb{N}$, and f(0, x) = g(x). Then $v(\frac{1}{k}) = V(g_k, X)$ and v(0) = V(g, X). By the lower semicontinuity of v at 0, $\liminf_{k \to \infty} v(\frac{1}{k}) \geq v(0)$.

Now we give a condition equivalent to the continuity of the function v.

Theorem 3.2. Let T be a compact metric space, (Y,d) a metric space, and $f: T \times [a,b] \to Y$. Assume that $f(\cdot,x)$ is continuous for each $x \in [a,b]$, and $f(t,\cdot)$ is continuous of bounded variation for each $t \in T$. The function v is continuous on T if and only if the sequence (φ_n) of functions $\varphi_n: T \to \mathbb{R}$ given by

$$\varphi_n(t) = \sum_{k=1}^{2^n} d\left(f\left(t, a + (k-1)\frac{b-a}{2^n}\right), f\left(t, a + k\frac{b-a}{2^n}\right) \right), t \in T,$$

is uniformly convergent on T.

PROOF. Since for a fixed $t \in T$ the function $f(t, \cdot)$ is continuous on [a, b], $v(t) = \lim_{n\to\infty} \varphi_n(t)$ (see [8]; the proof given there for the real-valued case also holds for functions with values in a metric space). From the continuity of $f(\cdot, x)$ (for every x) it follows that the functions φ_n are continuous on T.

By the above remarks, the proof of sufficiency is obvious. Let us show necessity. Observe that for $k \in \{1, ..., 2^n\}$ we have

$$d\left(f\left(t, a + (k-1)\frac{b-a}{2^n}\right), f\left(t, a + k\frac{b-a}{2^n}\right)\right)$$

$$\leq d\left(f\left(t, a + (2k-2)\frac{b-a}{2^{n+1}}\right), f\left(t, a + (2k-1)\frac{b-a}{2^{n+1}}\right)\right)$$

$$+ d\left(f\left(t, a + (2k-1)\frac{b-a}{2^{n+1}}\right), f\left(t, a + 2k\frac{b-a}{2^{n+1}}\right)\right).$$

Consequently, $0 \leq \varphi_n \nearrow v$, and φ_n, v are continuous on T. Hence by the Dini theorem, (φ_n) converges to v uniformly on T.

Let (Y,d) be a metric space. Remind that a function $g:[a,b] \to Y$ is absolutely continuous if for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any finite number of points $a \leq a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n \leq b$ the condition $\sum_{i=1}^{n} (b_i - a_i) < \delta$ implies $\sum_{i=1}^{n} d(g(b_i), g(a_i)) < \varepsilon$. It appears that such functions have analogous properties as in the real-valued case. Recently V. V. Chistyakov and R. E. Svetic [3] obtained the following result.

Theorem 3.3. If $g : [a,b] \to Y$ is absolutely continuous, then for almost all $x \in (a,b)$ there exists the limit (called the metric derivative of g at x)

$$|g'|(x) = \lim_{h \to 0} \frac{d(g(x+h), g(x))}{h},$$

and the following integral formula holds

$$V(g, [a, b]) = \int_a^b |g'|(x) \, dx.$$

This integral formula is an extension of the corresponding result for continuously differentiable functions with values in a normed space (cf. [1]).

For $f: T \times [a, b] \to Y$ absolutely continuous in the second variable we denote by $|f'_x|(t, \cdot)$ the metric derivative of $f(t, \cdot)$. Hence,

$$v(t) = \int_a^b |f'_x|(t,x) \, dx.$$

In order to apply this formula in the study of the continuity of v, we have to assume that the metric derivative $|f'_x|$ depends continuously on t. But for fixed $x \in (a, b)$, the function $|f'_x|(\cdot, x)$ may be defined not for all $t \in T$ (or even undefined). Therefore we shall assume that $|f'_x|$ can be extended to a function g defined on $T \times [a, b]$ which satisfies some regularity conditions. For example, for f(t, x) = |t - x| the function $g \equiv 1$ is such an extension. More precisely, we impose the following assumption:

(A) The function $f(t, \cdot)$ is absolutely continuous for every $t \in T$, and there exists a function $g: T \times [a, b] \to \mathbb{R}$ continuous in t and such that for each $t \in T$, $g(t, x) = |f'_x|(t, x)$ for almost all $x \in [a, b]$.

In particular, the assumption (A) is satisfied if Y is a normed space, f is differentiable in the second variable and this derivative is continuous on $T \times [a, b]$.

Theorem 3.4. Let T and Y be metric spaces and $f: T \times [a,b] \to Y$. Assume (A). Moreover, assume that there exists an integrable function $h: [a,b] \to \mathbb{R}$ such that $g(t,x) \leq h(x)$ for all $(t,x) \in T \times [a,b]$. Then v is continuous.

928

PROOF. Let $t_0 \in T$ and a sequence $(t_n) \subset T$ converging to t_0 be arbitrary but fixed. By the Lebesgue Dominated Convergence Theorem we obtain

$$\lim_{k \to \infty} v(t_k) = \lim_{k \to \infty} \int_a^b |f'_x|(t_k, x)| \, dx = \lim_{k \to \infty} \int_a^b g(t_k, x) \, dx$$
$$= \int_a^b g(t_0, x) \, dx = v(t_0).$$

It shows the continuity of v.

In the next theorem we prove the Lipschitz continuity of the function v.

Theorem 3.5. Let (T, ϱ) and (Y, d) be metric spaces, and $f : T \times [a, b] \to Y$. Assume (A). Moreover, suppose that $g(\cdot, x)$ satisfies the Lipschitz condition; *i.e.*, $|g(s, x) - g(t, x)| \le h(x)\varrho(s, t)$ for all $s, t \in T$, $x \in [a, b]$, where $h : [a, b] \to \mathbb{R}$ is an integrable function. Then the function v is Lipschitzian.

PROOF. Fix $s, t \in T$. Then

$$\begin{aligned} |v(s) - v(t)| &= \left| \int_a^b |f'_x|(s, x) \, dx - \int_a^b |f'_x|(t, x) \, dx \right| \\ &= \left| \int_a^b g(s, x) \, dx - \int_a^b g(t, x) \, dx \right| \le \int_a^b |g(s, x) - g(t, x)| \, dx \\ &\le \left(\int_a^b h(x) \, dx \right) \varrho(s, t). \end{aligned}$$

Remark 3.1. Since we use the Lebesgue integral, it suffices if the estimations in the assumptions of Theorems 3.4 and 3.5 hold for almost all $x \in [a, b]$.

Acknowledgement. We are grateful to V. V. Chistyakov (Nizhny Novgorod, Russia) for letting us know Theorem 3.3 from his joint paper with R. E. Svetic [3] and for helpful comments. The research of the second and third author was supported by the Department of Mathematics of the Silesian University in Katowice.

References

 V. V. Chistyakov, On mappings of bounded variation, J. Dynam. and Control Syst., 3(2) (1997), 261–289.

- [2] V. V. Chistyakov and A. Nowak, *Regular Carathéodory-type selectors under* no convexity assumptions, submitted.
- [3] V. V. Chistyakov and R. E. Svetic, On the differentiation of multifunctions of bounded variation, (in preparation).
- [4] J. P. R. Christensen, *Topology and Borel Structures*, North-Holland, Amsterdam, 1974.
- [5] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969.
- [6] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, 1994.
- [7] K. Kuratowski, Topology, vol. I, Academic Press and PWN, 1966.
- [8] I. P. Natanson, Theory of Functions of a Real Variable, Frederic Ungar Publishing Co, New York, 1964 (Russian edition: Moskva 1950).
- [9] T. Neubrunn, *Quasi-continuity*, Real Anal. Exchange, 14 (1988-1989), 259–306.