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REGULAR DEPENDENCE OF TOTAL
VARIATION ON PARAMETERS

Abstract

Let X be an interval, Y a metric space, T a set of parameters, and
f:T xX — Y a function. For given ¢t € T denote by v(t) the total
variation of f(¢,-) on X. We look for sufficient conditions for regular
(measurable, continuous, etc.) dependence of v on t.

1 Preliminaries

Throughout this paper X is an interval (open, closed, half-closed, bounded or
not) on the real line, and (Y, d) is a metric space. Given a mapping g : X —» Y
we define the total variation of g on X as

V(g X) = sup Z d(g(zs), g(zi-1)),

where the supremum is taken over all partitions II = {xg,z1,...,2,} of X
(ie,neN,zp<z1 <--<zpandx; € X,i=0,1,...,n). We say that g is
of bounded variation if V (g, X) < oco.

Let T be a nonempty set of parameters and f : T'x X — Y a mapping. Let
v: T — [0,00] be given by v(t) = V(f(¢,-), X), i.e., v(t) is the total variation
of f(t,-) on X. We shall look for sufficient conditions for regular (measur-
able, continuous, etc.) dependence of v on ¢t. This problem appeared in the
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study of regular selectors for multifunctions of bounded variation depending
on parameters ([2]).

Let Z be a topological space. We say that Z is Polish if it is separable and
can be metrizable by a complete metric. By B(Z) we denote the Borel o-field
on Z. Suppose T is endowed with a o-field 7. Then 7 ® B(Z) denotes the
product o-field on T' X Z.

We shall need some further terminology. Denote by A and AN*, respec-
tively, the sets of infinite and finite sequences of positive integers. Let F be a
family of sets. We say that A is obtained from F by the Suslin operation if

A= U ﬂF(Ul,...,Un)

oceN n=1

for some function F': N* — F. Denote by S(F) the family of all sets obtained
from F by the Suslin operation. The family F is closed with respect to the
Suslin operation if S(F) = F (cf. [4],[6])

Recall that a o-field 7 is closed with respect to the Suslin operation pro-
vided one of the following conditions is satisfied: (i) 7 is complete with respect
to a o-finite measure; (ii) T is a topological space and 7 is the Baire o-field,
i.e., T is the family of all subsets of T having the Baire property; (iii) T is a
locally compact space and 7 is the family of all subsets of 7' measurable with
respect to a Radon measure (see e.g. [4],[6]).

Let A be a subset of T' x Z. Given t € T, we denote by A; the t-section of
Ajie., Ay ={z:(t,2) € A}. By ProjpA we mean the projection of A on T
ie, ProjpA={teT: (tz) € Aforsomez € Z}.

Let T be a o-field on T and A € 7 ® B(Z). In general, ProjrA does not
belong to 7. We shall use the following well known results:

Projection Theorem. (see e.g. [4, Theorem 1.3]) If (T, T) is a measurable
space, Z is a Polish space and A € T @ B(Z), then ProjpA € S(T).

Arsenin-Kunugui-Novikov Theorem. (e.g. [6, Theorem 18.18]) Suppose
T and Z are Polish spaces, and A € B(T x Z) has o-compact t-sections. Then
ProjrA € B(T).

2 Measurability

Throughout this section (7,7) is a measurable space, (Y,d) is a separable
metric space, f : T x X — Y is a function, and v is the total variation of
f(t,-) on X. We are interested in the measurability properties of the function
v. Let us start with some examples, where T =X =Y = [0, 1].
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Example 2.1. Lebesgue measurable function f : [0,1]?> — [0, 1] such that v
is not Lebesgue measurable.

Let A be a nonmeasurable subset of (0,1), B = {(t,z) : t =z € A}, and
f = Xp, the characteristic function of B. Clearly, f is Lebesgue measurable,
and v(t) =2 for t € A and v(t) =0 for ¢ € A.

Example 2.2. Function f measurable with respect to the Baire o-field on
[0,1]% such that v is not Baire measurable.

This is an obvious modification of the previous example with A C (0,1)
without the Baire property.

Example 2.3. Borel measurable function f : [0,1]> — [0,1] such that v is
not Borel measurable.

Let P be the set of all irrationals from [0,1], and A C [0, 1] an analytic
non-Borel set. There is a continuous and onto function h : P — A. Let
D = {(h(z),z) : x € P}; i.e., D is the graph of h. Since h is continuous, D
is a closed subset of [0,1] x P and, consequently, a Borel subset of [0,1]?. Let
f=Xp. Then v(t) > 2 fort € A and v(t) = 0 for ¢ ¢ A. Hence, v is not Borel
measurable.

Since B([0,1]?) = B([0,1]) ® B([0, 1]), the last example shows that if f is
7 ® B(X)-measurable, then v need not be 7-measurable.

We start with a theorem which gives sufficient conditions for the measur-
ability of the total variation for an arbitrary measurable space (T, 7).

Theorem 2.1. Suppose there exists a countable dense subset E of X such
that the following conditions are satisfied:

(i) For each (t,x) € T x X the value f(t,x) is the limit of (f(¢t,ex)) for
some sequence (ey) of points of E convergent to x.

(ii) For each e € E, f(-,¢e) is measurable.
Then v is measurable.

Proor. Fix t € T. For each partition IT = {zg,...,z,} of X and each € > 0
there exists a partition II' = {zy, ..., x} } consisting of points of E, such that

Zd(f(txv:% flt,xiq1)) <e+ Zd(f(tvxg% f(txi_y)).

Hence,

o(t) = sup Do d(f(t,a), (1,25 0), £ €T,
i=1
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where supremum is taken over all partitions of X consisting of elements of E.
Under our assumptions, for each such a partition II’ the function

n
ts Y d(f(t,x)), f(t,z] ), teT
i=1
is measurable. Thus v is measurable, as the pointwise supremum of a countable

family of measurable functions. O

Remark 2.1. We list some cases, when the condition (i) of the last theorem
is satisfied for each dense subset £ C X:

1. f is continuous in x.

2. f is one-sided continuous in z (possibly, left-continuous at some points
and right-continuous at others).

3. f is quasi-continuous in x (see e.g. [9]).
We shall use the following technical lemmas.

Lemma 2.1. For any r > 0 we have {t € T : v(t) > r} = [J{ProjrA, : n €
N}, where

An ={(t,zg,...,2y) ET x X" izg <2y < - <y
D d(f(t ), f(t i) > 1)
i=1

ProoOF. Indeed, v(t) > r iff there is a partition {xg,x1,...,2,} of X such
that >0, d(f(t, i), f(t,xi-1)) > 7. O

Lemma 2.2. If f is T ® B(X)-measurable, then A, € T @ B(X"T1).

PROOF. Let an auxiliary function ¢ : T x X! — R be defined by

n

g(t7$03 s ,an) = Zd(f(tvxl)’ f(ta xi—l))'

=1

Since Y is separable, g is 7 ® B(X"™*!)-measurable. Now the measurability
of A,, follows from A,, =T x U, Ng~!((r,0)), where U,, = {z € X"! : 2y <
-+ < )} is open in X" FL 0

Theorem 2.2. If f is T ® B(X)-measurable then v is o(S(T))-measurable.
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PRrOOF. Fix r > 0. By Lemma 2.2, 4,, € 7T ® B(X"*!), n € N. Since X"*!
is a Polish space, we can use the Projection Theorem. Thus Proj,A, € S(7)
and, consequently, v is measurable with respect to the o-field generated by
S(T). O

Corollary 2.1. If the o-field T is closed under the Suslin operation and f is
T ® B(X)-measurable, then v is T -measurable.

Corollary 2.2. Suppose T is a Lebesgue measurable subset of R™ and T =
Lon(T). If f is Ln(T) @ B(X)-measurable, then v is Lebesgue measurable.

Corollary 2.3. If T is a Polish space and f is Borel measurable, then v is
measurable with respect to the o-field generated by analytic subsets of T .

Remind that a function h : Z — Y, where Z is metrizable, is of the Ist
class of Baire if h=1(U) € F,(Z) for each open U C Y. If h is the pointwise
limit of a sequence of continuous functions, then it is of the 1st class of Baire.
If Y is an interval, then these two conditions are equivalent. The function h
is of the 2nd class of Baire if for each open U C Y, h™Y(U) € Gs,(Z).

Theorem 2.3. Suppose T is a Polish space, f :T x X — Y is Borel measur-
able, and for each t € T, f(t,-) is of the 1st class of Baire. Then v is Borel
measurable.

PROOF. Since Y is separable, for fixed ¢ the function

n

(o, Tp) — Zd(f(t,xi), flt,xi21))

i=1

is of the 1st class of Baire on X™*!. Let A,, be the set defined in Lemma 2.1
for fixed 7 > 0. By Lemma 2.2, A,, € 7 @ B(X"*!). Moreover, for each t € T
we have

(A = {(20,. . xn) € X" iag < - < 2, id(f(t,xi),f(t,xi,l)) >r},
i=1

and this set belongs to F,,(X"*!). Since X"*! is o-compact, (A,); is also o-
compact. By the Arsenin-Kunugui-Novikov Theorem, ProjrA, € B(T). Thus
v is Borel measurable. O

Corollary 2.4. If T is a Polish space, [ is Borel measurable, and for each
teT f(t,-) is of bounded variation, then v is Borel.
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PROOF. Being of bounded variation, f(¢,-) has at most countable set of dis-
continuity points (see e.g., [1],[5]). Consequently, f(¢,-) is of the 1st class of
Baire (cf. [7, 34.VII]). Now we can apply Theorem 2.3. O

Example 2.3 shows that the assumption of the bounded variation of f(t,-)
is essential for the Borel measurability of v.

If we assume that f is of the 1st class of Baire as a function of two variables,
then we can strengthen the thesis of Theorem 2.3.

Theorem 2.4. If T is metrizable and o-compact, and f is of the 1st class of
Baire, then v is of the 2nd class.

PRrROOF. Fix r > 0, and let A, be such as in Lemma 2.1. Under our as-
sumptions, the function g defined in the proof of Lemma 2.2 is of the 1st
class of Baire on T x X"*1. Consequently, 4, € F,(T x X"*!). Since
T x X"+ is o-compact, A, is o-compact, and Proj,A4,, is also o-compact.
Hence, {t € T : v(t) > r} € F,(T). Moreover, {t € T : v(t) <r} =T\ {t €
T:o(t) >r} =T\ pen{t € T :0(t) > r+ 1} € Gso(T). It completes the
proof. O

Remark 2.2. Example 2.3 shows that there is no analogous result for func-
tions of the next classes of Baire. The function f = xp from this example is
of the 2nd class of Baire, and v is not Borel measurable. It follows from the
fact that D is a Gs-set in [0, 1]?, as a closed subset of [0,1] x P.

3 Continuity

In this section we collect some simple observations concerning the continuity
properties of the function v. We shall assume that T is a topological space.
First consider the following example:

Example 3.1. Continuous function f such that v is discontinuous.
Let T =[0,1], X = (0,1], Y = R and f(¢,z) = 2'. Then v(0) =0 and v(t) =1
for t > 0.

Note that the function v in this example is lower semicontinuous.
Theorem 3.1. If f is continuous in t, then v is lower semicontinuous.

PRrooF. For each partition II = {zg,...,z,} of X the function

t Y d(f(t @), f(t,zim1))
=1
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is continuous. Hence, v is lower semicontinuous, as the pointwise supremum
of continuous functions. O

As a consequence, we obtain the following well known property of the total
variation:

Corollary 3.1. If gr,g : X — Y and the sequence (g) pointwise converges
to g, then
Vig,X) < likmian(gk,X).
—00

PROOF. In order to apply Theorem 3.1, we put 7' = {3 : k € N} U {0},
f(3,2) = gr(z) for k € N, and f(0,2) = g(z). Then v(3) = V(gx, X) and
v(0) = V(g,X). By the lower semicontinuity of v at 0, liminfy_.cc v($) >
v(0). O

Now we give a condition equivalent to the continuity of the function v.

Theorem 3.2. Let T be a compact metric space, (Y,d) a metric space, and
f:T x[a,b] = Y. Assume that f(-,z) is continuous for each x € [a,b], and
f(t,-) is continuous of bounded variation for each t € T. The function v is
continuous on T if and only if the sequence (p,) of functions ¢, : T — R

given by
Zd( (t a+ k—l)bz_qfl>7f(t7a+kb2:fl>>,teT,

is uniformly convergent on T .

PROOF. Since for a fixed t € T the function f(¢,-) is continuous on [a,b],
v(t) = limy, 00 ©n(t) (see [8]; the proof given there for the real-valued case
also holds for functions with values in a metric space). ;jFrom the continuity
of f(,x) (for every z) it follows that the functions ¢,, are continuous on T'.

By the above remarks, the proof of sufficiency is obvious. Let us show
necessity. Observe that for k£ € {1,...,2"} we have

a
=)

d(f (t,a+(k;—1)b2_n(l>,f(a
gd(f <t,a+(2k2)gn+?> f<t,a+(2k1)l;n_+?>)

+d (f <t,a+ (2k — 1);;?) f <t a+2kl;n+1>)

Consequently, 0 < ¢, /v, and ¢, v are continuous on 7. Hence by the Dini
theorem, (¢,) converges to v uniformly on T O
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Let (Y,d) be a metric space. Remind that a function ¢ : [a,b] — Y is
absolutely continuous if for any € > 0 there exists § > 0 such that for any
finite number of points a < a1 < by < as < by < --- < a, < b, < b the
condition Y 7, (b; — a;) < & implies >_1 , d(g(b;),g(a;)) < €. It appears that
such functions have analogous properties as in the real-valued case. Recently
V. V. Chistyakov and R. E. Svetic [3] obtained the following result.

Theorem 3.3. If g : [a,b] — Y is absolutely continuous, then for almost all
x € (a,b) there exists the limit (called the metric derivative of g at x)

9/|(x) = Jim d(g(x +£>,g<x>>

)

and the following integral formula holds

b
V(g [a,b]) = / o'|(x) da.

This integral formula is an extension of the corresponding result for con-
tinuously differentiable functions with values in a normed space (cf. [1]).

For f : T x [a,b] — Y absolutely continuous in the second variable we
denote by |f1|(t,-) the metric derivative of f(t,-). Hence,

o(t) = / F1(t, ) do.

In order to apply this formula in the study of the continuity of v, we have
to assume that the metric derivative |f| depends continuously on ¢. But for
fixed € (a,b), the function | f.|(-, ) may be defined not for all t € T' (or even
undefined). Therefore we shall assume that |f.| can be extended to a function
g defined on T x [a, b] which satisfies some regularity conditions. For example,
for f(t,x) = |t — x| the function g = 1 is such an extension. More precisely,
we impose the following assumption:

(A) The function f(t,-) is absolutely continuous for every ¢ € T, and there
exists a function g : T X [a,b] — R continuous in ¢ and such that for each
teT, g(t,x) =|fl|(t, ) for almost all = € [a, b].

In particular, the assumption (A) is satisfied if Y is a normed space, f
is differentiable in the second variable and this derivative is continuous on
T X [a,b].

Theorem 3.4. Let T and Y be metric spaces and f : T x [a,b] — Y. Assume
(A). Moreover, assume that there exists an integrable function h : [a,b] — R
such that g(t,x) < h(z) for all (t,z) € T x [a,b]. Then v is continuous.
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PROOF. Let ty € T and a sequence (t,,) C T converging to tg be arbitrary but
fixed. By the Lebesgue Dominated Convergence Theorem we obtain

b b
klim v(ty) klim/ \f;|(tk,m)|dm:klim / g(ty, ) dx

b
/ g(to, x) dx = v(to).
It shows the continuity of v. O

In the next theorem we prove the Lipschitz continuity of the function v.

Theorem 3.5. Let (T, 0) and (Y,d) be metric spaces, and f: T X [a,b] = Y.
Assume (A). Moreover, suppose that g(-,xz) satisfies the Lipschitz condition;
i.e., lg(s,z)—g(t,z)| < h(x)o(s,t) for all s,t € T, x € [a,b], where h : [a,b] —
R is an integrable function. Then the function v is Lipschitzian.

PROOF. Fix s,t € T. Then

[o(s) —v(t)] =

b b
/"|fu<aaadx——j/ I£](¢, 2) da
b

/a g(s,z)dx — /abg(t,x) dx
< (/ab h(z) d:z:) o(s,t). 0

Remark 3.1. Since we use the Lebesgue integral, it suffices if the estimations
in the assumptions of Theorems 3.4 and 3.5 hold for almost all = € [a, b].

b
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