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Wólczańska 215, 93-005  Lódź, Poland, and Faculty of Mathematics,  Lódź
University, Banacha 22, 90-238  Lódź, Poland. email: mbalce@p.lodz.pl
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REGULAR DEPENDENCE OF TOTAL
VARIATION ON PARAMETERS

Abstract

Let X be an interval, Y a metric space, T a set of parameters, and
f : T × X → Y a function. For given t ∈ T denote by v(t) the total
variation of f(t, ·) on X. We look for sufficient conditions for regular
(measurable, continuous, etc.) dependence of v on t.

1 Preliminaries

Throughout this paper X is an interval (open, closed, half-closed, bounded or
not) on the real line, and (Y, d) is a metric space. Given a mapping g : X → Y
we define the total variation of g on X as

V (g,X) = sup
Π

n∑
i=1

d(g(xi), g(xi−1)),

where the supremum is taken over all partitions Π = {x0, x1, . . . , xn} of X
(i.e., n ∈ N, x0 < x1 < · · · < xn and xi ∈ X, i = 0, 1, . . . , n). We say that g is
of bounded variation if V (g,X) < ∞.

Let T be a nonempty set of parameters and f : T×X → Y a mapping. Let
v : T → [0,∞] be given by v(t) = V (f(t, ·), X), i.e., v(t) is the total variation
of f(t, ·) on X. We shall look for sufficient conditions for regular (measur-
able, continuous, etc.) dependence of v on t. This problem appeared in the

Key Words: function of bounded variation, measurability, continuity.
Mathematical Reviews subject classification: Primary 26A45; Secondary 26B99.
Received by the editors July 29, 2003
Communicated by: B. S. Thomson

921



922 M. Balcerzak, A. Kucia and A. Nowak

study of regular selectors for multifunctions of bounded variation depending
on parameters ([2]).

Let Z be a topological space. We say that Z is Polish if it is separable and
can be metrizable by a complete metric. By B(Z) we denote the Borel σ-field
on Z. Suppose T is endowed with a σ-field T . Then T ⊗ B(Z) denotes the
product σ-field on T × Z.

We shall need some further terminology. Denote by N and N ∗, respec-
tively, the sets of infinite and finite sequences of positive integers. Let F be a
family of sets. We say that A is obtained from F by the Suslin operation if

A =
⋃

σ∈N

∞⋂
n=1

F (σ1, . . . , σn)

for some function F : N ∗ → F . Denote by S(F) the family of all sets obtained
from F by the Suslin operation. The family F is closed with respect to the
Suslin operation if S(F) = F (cf. [4],[6])

Recall that a σ-field T is closed with respect to the Suslin operation pro-
vided one of the following conditions is satisfied: (i) T is complete with respect
to a σ-finite measure; (ii) T is a topological space and T is the Baire σ-field,
i.e., T is the family of all subsets of T having the Baire property; (iii) T is a
locally compact space and T is the family of all subsets of T measurable with
respect to a Radon measure (see e.g. [4],[6]).

Let A be a subset of T ×Z. Given t ∈ T , we denote by At the t-section of
A; i.e., At = {z : (t, z) ∈ A}. By ProjT A we mean the projection of A on T ;
i.e., ProjT A = {t ∈ T : (t, z) ∈ A for some z ∈ Z}.

Let T be a σ-field on T and A ∈ T ⊗ B(Z). In general, ProjT A does not
belong to T . We shall use the following well known results:

Projection Theorem. (see e.g. [4, Theorem 1.3]) If (T, T ) is a measurable
space, Z is a Polish space and A ∈ T ⊗ B(Z), then ProjT A ∈ S(T ).

Arsenin-Kunugui-Novikov Theorem. (e.g. [6, Theorem 18.18]) Suppose
T and Z are Polish spaces, and A ∈ B(T ×Z) has σ-compact t-sections. Then
ProjT A ∈ B(T ).

2 Measurability

Throughout this section (T, T ) is a measurable space, (Y, d) is a separable
metric space, f : T × X → Y is a function, and v is the total variation of
f(t, ·) on X. We are interested in the measurability properties of the function
v. Let us start with some examples, where T = X = Y = [0, 1].
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Example 2.1. Lebesgue measurable function f : [0, 1]2 → [0, 1] such that v
is not Lebesgue measurable.

Let A be a nonmeasurable subset of (0, 1), B = {(t, x) : t = x ∈ A}, and
f = χ

B , the characteristic function of B. Clearly, f is Lebesgue measurable,
and v(t) = 2 for t ∈ A and v(t) = 0 for t 6∈ A.

Example 2.2. Function f measurable with respect to the Baire σ-field on
[0, 1]2 such that v is not Baire measurable.

This is an obvious modification of the previous example with A ⊂ (0, 1)
without the Baire property.

Example 2.3. Borel measurable function f : [0, 1]2 → [0, 1] such that v is
not Borel measurable.

Let P be the set of all irrationals from [0,1], and A ⊂ [0, 1] an analytic
non-Borel set. There is a continuous and onto function h : P → A. Let
D = {(h(x), x) : x ∈ P}; i.e., D is the graph of h. Since h is continuous, D
is a closed subset of [0, 1]× P and, consequently, a Borel subset of [0, 1]2. Let
f = χ

D. Then v(t) ≥ 2 for t ∈ A and v(t) = 0 for t 6∈ A. Hence, v is not Borel
measurable.

Since B([0, 1]2) = B([0, 1]) ⊗ B([0, 1]), the last example shows that if f is
T ⊗ B(X)-measurable, then v need not be T -measurable.

We start with a theorem which gives sufficient conditions for the measur-
ability of the total variation for an arbitrary measurable space (T, T ).

Theorem 2.1. Suppose there exists a countable dense subset E of X such
that the following conditions are satisfied:

(i) For each (t, x) ∈ T × X the value f(t, x) is the limit of (f(t, ek)) for
some sequence (ek) of points of E convergent to x.

(ii) For each e ∈ E, f(·, e) is measurable.

Then v is measurable.

Proof. Fix t ∈ T . For each partition Π = {x0, . . . , xn} of X and each ε > 0
there exists a partition Π′ = {x′0, . . . , x′n} consisting of points of E, such that

n∑
i=1

d(f(t, xi), f(t, xi−1)) ≤ ε +
n∑

i=1

d(f(t, x′i), f(t, x′i−1)).

Hence,

v(t) = sup
Π′

n∑
i=1

d(f(t, x′i), f(t, x′i−1)), t ∈ T,
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where supremum is taken over all partitions of X consisting of elements of E.
Under our assumptions, for each such a partition Π′ the function

t 7→
n∑

i=1

d(f(t, x′i), f(t, x′i−1)), t ∈ T

is measurable. Thus v is measurable, as the pointwise supremum of a countable
family of measurable functions.

Remark 2.1. We list some cases, when the condition (i) of the last theorem
is satisfied for each dense subset E ⊂ X:

1. f is continuous in x.

2. f is one-sided continuous in x (possibly, left-continuous at some points
and right-continuous at others).

3. f is quasi-continuous in x (see e.g. [9]).

We shall use the following technical lemmas.

Lemma 2.1. For any r ≥ 0 we have {t ∈ T : v(t) > r} =
⋃
{ProjT An : n ∈

N}, where

An = {(t, x0, . . . , xn) ∈ T ×Xn+1 :x0 < x1 < · · · < xn

n∑
i=1

d(f(t, xi), f(t, xi−1)) > r}.

Proof. Indeed, v(t) > r iff there is a partition {x0, x1, . . . , xn} of X such
that

∑n
i=1 d(f(t, xi), f(t, xi−1)) > r.

Lemma 2.2. If f is T ⊗ B(X)-measurable, then An ∈ T ⊗ B(Xn+1).

Proof. Let an auxiliary function g : T ×Xn+1 → R be defined by

g(t, x0, . . . , xn) =
n∑

i=1

d(f(t, xi), f(t, xi−1)).

Since Y is separable, g is T ⊗ B(Xn+1)-measurable. Now the measurability
of An follows from An = T ×Un ∩ g−1((r,∞)), where Un = {x ∈ Xn+1 : x0 <
· · · < xn} is open in Xn+1.

Theorem 2.2. If f is T ⊗ B(X)-measurable then v is σ(S(T ))-measurable.
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Proof. Fix r ≥ 0. By Lemma 2.2, An ∈ T ⊗ B(Xn+1), n ∈ N. Since Xn+1

is a Polish space, we can use the Projection Theorem. Thus ProjT An ∈ S(T )
and, consequently, v is measurable with respect to the σ-field generated by
S(T ).

Corollary 2.1. If the σ-field T is closed under the Suslin operation and f is
T ⊗ B(X)-measurable, then v is T -measurable.

Corollary 2.2. Suppose T is a Lebesgue measurable subset of Rm and T =
Lm(T ). If f is Lm(T )⊗ B(X)-measurable, then v is Lebesgue measurable.

Corollary 2.3. If T is a Polish space and f is Borel measurable, then v is
measurable with respect to the σ-field generated by analytic subsets of T .

Remind that a function h : Z → Y , where Z is metrizable, is of the 1st
class of Baire if h−1(U) ∈ Fσ(Z) for each open U ⊂ Y . If h is the pointwise
limit of a sequence of continuous functions, then it is of the 1st class of Baire.
If Y is an interval, then these two conditions are equivalent. The function h
is of the 2nd class of Baire if for each open U ⊂ Y , h−1(U) ∈ Gδσ(Z).

Theorem 2.3. Suppose T is a Polish space, f : T ×X → Y is Borel measur-
able, and for each t ∈ T , f(t, ·) is of the 1st class of Baire. Then v is Borel
measurable.

Proof. Since Y is separable, for fixed t the function

(x0, . . . , xn) 7→
n∑

i=1

d(f(t, xi), f(t, xi−1))

is of the 1st class of Baire on Xn+1. Let An be the set defined in Lemma 2.1
for fixed r ≥ 0. By Lemma 2.2, An ∈ T ⊗ B(Xn+1). Moreover, for each t ∈ T
we have

(An)t = {(x0, . . . , xn) ∈ Xn+1 : x0 < · · · < xn,
n∑

i=1

d(f(t, xi), f(t, xi−1)) > r},

and this set belongs to Fσ(Xn+1). Since Xn+1 is σ-compact, (An)t is also σ-
compact. By the Arsenin-Kunugui-Novikov Theorem, ProjT An ∈ B(T ). Thus
v is Borel measurable.

Corollary 2.4. If T is a Polish space, f is Borel measurable, and for each
t ∈ T f(t, ·) is of bounded variation, then v is Borel.
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Proof. Being of bounded variation, f(t, ·) has at most countable set of dis-
continuity points (see e.g., [1],[5]). Consequently, f(t, ·) is of the 1st class of
Baire (cf. [7, 34.VII]). Now we can apply Theorem 2.3.

Example 2.3 shows that the assumption of the bounded variation of f(t, ·)
is essential for the Borel measurability of v.

If we assume that f is of the 1st class of Baire as a function of two variables,
then we can strengthen the thesis of Theorem 2.3.

Theorem 2.4. If T is metrizable and σ-compact, and f is of the 1st class of
Baire, then v is of the 2nd class.

Proof. Fix r ≥ 0, and let An be such as in Lemma 2.1. Under our as-
sumptions, the function g defined in the proof of Lemma 2.2 is of the 1st
class of Baire on T × Xn+1. Consequently, An ∈ Fσ(T × Xn+1). Since
T × Xn+1 is σ-compact, An is σ-compact, and ProjT An is also σ-compact.
Hence, {t ∈ T : v(t) > r} ∈ Fσ(T ). Moreover, {t ∈ T : v(t) < r} = T \ {t ∈
T : v(t) ≥ r} = T \

⋂
k∈N{t ∈ T : v(t) > r + 1

k} ∈ Gδσ(T ). It completes the
proof.

Remark 2.2. Example 2.3 shows that there is no analogous result for func-
tions of the next classes of Baire. The function f = χD from this example is
of the 2nd class of Baire, and v is not Borel measurable. It follows from the
fact that D is a Gδ-set in [0, 1]2, as a closed subset of [0, 1]× P .

3 Continuity

In this section we collect some simple observations concerning the continuity
properties of the function v. We shall assume that T is a topological space.
First consider the following example:

Example 3.1. Continuous function f such that v is discontinuous.
Let T = [0, 1], X = (0, 1], Y = R and f(t, x) = xt. Then v(0) = 0 and v(t) = 1
for t > 0.

Note that the function v in this example is lower semicontinuous.

Theorem 3.1. If f is continuous in t, then v is lower semicontinuous.

Proof. For each partition Π = {x0, . . . , xn} of X the function

t 7→
n∑

i=1

d(f(t, xi), f(t, xi−1))
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is continuous. Hence, v is lower semicontinuous, as the pointwise supremum
of continuous functions.

As a consequence, we obtain the following well known property of the total
variation:

Corollary 3.1. If gk, g : X → Y and the sequence (gk) pointwise converges
to g, then

V (g,X) ≤ lim inf
k→∞

V (gk, X).

Proof. In order to apply Theorem 3.1, we put T = { 1
k : k ∈ N} ∪ {0},

f( 1
k , x) = gk(x) for k ∈ N, and f(0, x) = g(x). Then v( 1

k ) = V (gk, X) and
v(0) = V (g,X). By the lower semicontinuity of v at 0, lim infk→∞ v( 1

k ) ≥
v(0).

Now we give a condition equivalent to the continuity of the function v.

Theorem 3.2. Let T be a compact metric space, (Y, d) a metric space, and
f : T × [a, b] → Y . Assume that f(·, x) is continuous for each x ∈ [a, b], and
f(t, ·) is continuous of bounded variation for each t ∈ T . The function v is
continuous on T if and only if the sequence (ϕn) of functions ϕn : T → R
given by

ϕn(t) =
2n∑

k=1

d

(
f

(
t, a + (k − 1)

b− a

2n

)
, f

(
t, a + k

b− a

2n

))
, t ∈ T,

is uniformly convergent on T .

Proof. Since for a fixed t ∈ T the function f(t, ·) is continuous on [a, b],
v(t) = limn→∞ ϕn(t) (see [8]; the proof given there for the real-valued case
also holds for functions with values in a metric space). ¿From the continuity
of f(·, x) (for every x) it follows that the functions ϕn are continuous on T .

By the above remarks, the proof of sufficiency is obvious. Let us show
necessity. Observe that for k ∈ {1, . . . , 2n} we have

d

(
f

(
t, a + (k − 1)

b− a

2n

)
, f

(
t, a + k

b− a

2n

))
≤ d

(
f

(
t, a + (2k − 2)

b− a

2n+1

)
, f

(
t, a + (2k − 1)

b− a

2n+1

))
+d

(
f

(
t, a + (2k − 1)

b− a

2n+1

)
, f

(
t, a + 2k

b− a

2n+1

))
.

Consequently, 0 ≤ ϕn ↗ v, and ϕn, v are continuous on T . Hence by the Dini
theorem, (ϕn) converges to v uniformly on T .
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Let (Y, d) be a metric space. Remind that a function g : [a, b] → Y is
absolutely continuous if for any ε > 0 there exists δ > 0 such that for any
finite number of points a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b the
condition

∑n
i=1(bi − ai) < δ implies

∑n
i=1 d(g(bi), g(ai)) < ε. It appears that

such functions have analogous properties as in the real-valued case. Recently
V. V. Chistyakov and R. E. Svetic [3] obtained the following result.

Theorem 3.3. If g : [a, b] → Y is absolutely continuous, then for almost all
x ∈ (a, b) there exists the limit (called the metric derivative of g at x)

|g′|(x) = lim
h→0

d(g(x + h), g(x))
h

,

and the following integral formula holds

V (g, [a, b]) =
∫ b

a

|g′|(x) dx.

This integral formula is an extension of the corresponding result for con-
tinuously differentiable functions with values in a normed space (cf. [1]).

For f : T × [a, b] → Y absolutely continuous in the second variable we
denote by |f ′x|(t, ·) the metric derivative of f(t, ·). Hence,

v(t) =
∫ b

a

|f ′x|(t, x) dx.

In order to apply this formula in the study of the continuity of v, we have
to assume that the metric derivative |f ′x| depends continuously on t. But for
fixed x ∈ (a, b), the function |f ′x|(·, x) may be defined not for all t ∈ T (or even
undefined). Therefore we shall assume that |f ′x| can be extended to a function
g defined on T × [a, b] which satisfies some regularity conditions. For example,
for f(t, x) = |t − x| the function g ≡ 1 is such an extension. More precisely,
we impose the following assumption:

(A) The function f(t, ·) is absolutely continuous for every t ∈ T , and there
exists a function g : T × [a, b] → R continuous in t and such that for each
t ∈ T , g(t, x) = |f ′x|(t, x) for almost all x ∈ [a, b].

In particular, the assumption (A) is satisfied if Y is a normed space, f
is differentiable in the second variable and this derivative is continuous on
T × [a, b].

Theorem 3.4. Let T and Y be metric spaces and f : T × [a, b] → Y . Assume
(A). Moreover, assume that there exists an integrable function h : [a, b] → R
such that g(t, x) ≤ h(x) for all (t, x) ∈ T × [a, b]. Then v is continuous.
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Proof. Let t0 ∈ T and a sequence (tn) ⊂ T converging to t0 be arbitrary but
fixed. By the Lebesgue Dominated Convergence Theorem we obtain

lim
k→∞

v(tk) = lim
k→∞

∫ b

a

|f ′x|(tk, x)| dx = lim
k→∞

∫ b

a

g(tk, x) dx

=
∫ b

a

g(t0, x) dx = v(t0).

It shows the continuity of v.

In the next theorem we prove the Lipschitz continuity of the function v.

Theorem 3.5. Let (T, %) and (Y, d) be metric spaces, and f : T × [a, b] → Y .
Assume (A). Moreover, suppose that g(·, x) satisfies the Lipschitz condition;
i.e., |g(s, x)−g(t, x)| ≤ h(x)%(s, t) for all s, t ∈ T , x ∈ [a, b], where h : [a, b] →
R is an integrable function. Then the function v is Lipschitzian.

Proof. Fix s, t ∈ T . Then

|v(s)− v(t)| =

∣∣∣∣∣
∫ b

a

|f ′x|(s, x) dx−
∫ b

a

|f ′x|(t, x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

g(s, x) dx−
∫ b

a

g(t, x) dx

∣∣∣∣∣ ≤
∫ b

a

|g(s, x)− g(t, x)| dx

≤

(∫ b

a

h(x) dx

)
%(s, t).

Remark 3.1. Since we use the Lebesgue integral, it suffices if the estimations
in the assumptions of Theorems 3.4 and 3.5 hold for almost all x ∈ [a, b].
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