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ON THE POINTS OF REGULARITY OF
MULTIVARIATE FUNCTIONS OF

BOUNDED VARIATION

Abstract

In the one-dimensional case it is well-known that functions of bounded
variation on R possess at most a countable number of non-regular points.
In this paper we will show that multivariate functions f : Rn → R of
bounded variation satisfying the condition lim|x|→∞ f(x) = 0 are non-
regular at most on a subset of Rn of Lebesgue measure zero. Moreover,
we will point out that this result is best possible.

1 Introduction

Since Jordan’s famous theorem on the representation of a one-dimensional
function of bounded variation as the difference of two nondecreasing functions
it is well-known that univariate functions of bounded variation possess at
most a countable number of discontinuities, all of the first kind (cf. [5], p. 188,
Theorem 10 or [21], p. 19, Theorem (2.8)). Especially, for f ∈ BV (R) and
x ∈ R the one-sided limits

lim
h→0+

f(x + h) and lim
h→0+

f(x− h) (1)

exist, and for all x ∈ R except at most a countable number of points f satisfies
the one-sided continuity condition

f(x) = lim
h→0+

f(x + h) = lim
h→0+

f(x− h), (2)

resp. – in view of the title of our paper – the so-called regularity condition

f(x) =
1
2

(
lim

h→0+
f(x + h) + lim

h→0+
f(x− h)

)
. (3)
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In the following, we will take a look at the related question in case of multi-
variate functions of bounded variation. We will give weak sufficient conditions
which imply something like one-sided continuity resp. regularity in this mul-
tidimensional setting, too. Therefore, this paper may be seen in the quite
classical tradition of [22] and the main motivation to write it is due to the
fact that uni- and multivariate functions of bounded variation are of increas-
ing interest in different fields of application (without claim of completeness we
mention [11, 12, 13, 16, 8, 14, 19, 23, 9, 3, 4, 7]).

2 Notation

First of all, we have to decide what we mean when we speak of functions of
bounded variation in more than one variable. Generally, there are a number of
different, but related definitions which all may have their advantages in special
situations. (For an entire presentation of these definitions and a discussion of
their relations compare [6], [1], and [2], and the references given there.) In
the sequel we will follow the definition connected with the names of Vitali,
Lebesgue, Fréchet, and de la Vallée Poussin which proved to be useful in the
theory of measure and integration, too (for original references see [17] and [20];
classical textbooks which cover these topics are primary [18], and, moreover,
[10] and [15]).

We start with some preliminaries. Let n ∈ N be given arbitrarily. For
a, b, x ∈ Rn with a ≤ b (i.e., ai ≤ bi, 1 ≤ i ≤ n ) we define

(a, b) :={x ∈ Rn | ai < xi < bi, 1 ≤ i ≤ n},
[a, b] :={x ∈ Rn | ai ≤ xi ≤ bi , 1 ≤ i ≤ n},

Cor[a, b] :={x ∈ Rn | xi = ai ∨ xi = bi , 1 ≤ i ≤ n}
γ(x, a) :=|{i ∈ {1, ..., n} | xi = ai}|. (4)

In (4) |·| denotes the number of distinct elements of the set under consideration.
Now, for a given function f : Rn → R the so-called corresponding interval
function 4f of f is defined for all bounded intervals [a, b] ⊂ Rn by

4f [a, b] :=
∑

x∈Cor[a,b]

(−1)γ(x,a)f(x) . (5)

In case n = 1 definition (5) reduces to

4f [a, b] = f(b)− f(a) = f(b1)− f(a1)

and in case n = 2 to

4f [a, b] = f(b1, b2)− f(b1, a2)− f(a1, b2) + f(a1, a2).
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Let us note that the interval function 4f is known to be additive, i.e., [a, b] =
[a(1), b(1)] ∪ [a(2), b(2)] , (a(1), b(1)) ∩ (a(2), b(2)) = ∅, implies

4f [a, b] = 4f [a(1), b(1)] +4f [a(2), b(2)].

Now we are prepared to give the following basic definition.

Definition 2.1. A function f : Rn → R is called
– monotone increasing on Rn, if for all [a, b] ⊂ Rn we have 4f [a, b] ≥ 0
– of (uniform) bounded variation on Rn (or simply f ∈ BV (Rn)), if there
exists a constant K > 0 such that the interval function 4̄f defined for all
[a, b] ⊂ Rn by

4̄f [a, b := sup
{ r∑

i=1

|4f [a(i), b(i)]| :
(
[a(i), b(i)] ⊂ [a, b]∧

(a(i), b(i)) ∩ (a(j), b(j)) = ∅, i 6= j
)
, 1 ≤ i, j ≤ r, r ∈ N

} (6)

satisfies the inequality sup{4̄f [a, b] | [a, b] ⊂ Rn} ≤ K.

It can be easily shown that in case of f ∈ BV (Rn) the interval function
4̄f defined in (6) is additive and nonnegative. Moreover, the same is true for
the interval functions 4Pf

and 4Nf
induced by f via

4Pf
[a, b] :=

1
2
(4̄f [a, b] +4f [a, b]), [a, b] ⊂ Rn, (7)

4Nf
[a, b] :=

1
2
(4̄f [a, b]−4f [a, b]), [a, b] ⊂ Rn.

Therefore, we have the so-called Jordan decomposition of 4f into the differ-
ence of two nonnegative additive interval functions 4Pf

and 4Nf
,

4f [a, b] = 4Pf
[a, b]−4Nf

[a, b], [a, b] ⊂ Rn. (8)

At this point we recall that to any nonnegative additive interval function 4
there corresponds an outer (Carathéodory) measure m∗

4 on Rn defined by

m∗
4(M) := inf

{
r∑

i=1

4[a(i), b(i)] | M ⊂
r⋃

i=1

(a(i), b(i)) , r ∈ N ∪ {∞}

}

for ∅ 6= M ⊂ Rn and m∗
4(∅) := 0. As usual the σ-algebra of sets M ⊂ Rn

satisfying
m∗
4(N) = m∗

4(N ∩M) + m∗
4(N \M), N ⊂ Rn, (9)
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is called the set of measurable sets with respect to m∗
4 (or m4 ) and the set

function m4 defined for all M ⊂ Rn satisfying (9) by

m4(M) := m∗
4(M) (10)

is referred to as the (Carathéodory) measure induced by 4. Now, we return
to an arbitrary function f ∈ BV (Rn). By means of (7) – (10) the (i.g. signed)
finite measure mf ,

mf := m4Pf
−m4Nf

, (11)

is well-defined on the σ-algebra of sets measurable with respect to mPf
:=

m4Pf
and mNf

:= m4Nf
. The measure mf is called Lebesgue-Stieltjes mea-

sure induced by f and is, by definition, intimately connected with the interval
function 4f . For example, we have the following result where the formulation
“for almost all” has to be interpreted as usual with respect to the ordinary
n-dimensional Lebesgue measure.

Lemma 2.2. Let f : Rn → R be monotone increasing on Rn and a, b ∈
Rn, a < b. Then we have the inequality mf ((a, b)) ≤ 4f [a, b] ≤ mf ([a, b]).
Moreover, for almost all a ∈ Rn and almost all b ∈ Rn, b > a, we have the
equality mf ((a, b)) = 4f [a, b] = mf ([a, b]).

Proof. Compare [18], p. 68, Theorem (6.2) and p. 62, Theorem (4.1) (ii).

3 Points of Regularity and BV (Rn)

First of all, a few words should be said about the order of smoothness which can
be expected for functions f ∈ BV (Rn). On the one hand, it is well-known that
any function f : Rn → R which is independent of one of the variables xi, i ∈
{1, . . . , n} may behave arbitrary worse with respect to the other variables
xj , j 6= i, but always belongs to BV (Rn) (cf. [15], 46.6s, p. 249). This implies,
for example, that in case n = 2 the space BV (R2) contains bounded functions
which are everywhere discontinues (both in x1 and x2) or which are non-
measurable in the sense of Lebesgue (cf. [1], Theorem 15, p. 722). These
results show that we may not be too optimistic in view of strong smoothness
results (especially, in view of continuity or regularity). On the other hand, the
space BV (Rn) should reflect at least some of the nice properties of BV (R) and,
therefore, under some appropriate restrictions we would expect a few positive
results. The first (and, as far as we know, the only) paper which takes a
detailed look at these problems is [22]. In this paper the authors completely
determine the structure of the discontinuities of different types of so-called
multivariate increasing functions and implicitly also for the difference of two of
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these functions. (For details compare [22] and, moreover, the references given
there; see also [1], Paragraph 6, pp. 721ff.) In the following, although using a
similar terminology as in [22], we will differ from [22] in two essential points.
First, we will use a different definition of monotonicity (compare Definition 2.1)
and, caused by this, we will only consider functions f ∈ BV (Rn) which satisfy
a kind of regularity condition at infinity, precisely lim|x|→∞ f(x) = 0. Secondly,
we will prove our results with the help of a measure theoretic approach which
wasn’t utilized in [22].

After these preliminaries we start with some simple definitions essentially
taken from [22]. From now on let z(s) := (z(s)

1 , . . . , z
(s)
n ), 1 ≤ s ≤ 2n, denote the

2n distinct vectors out of Rn satisfying |z(s)
k | = 1, 1 ≤ k ≤ n, 1 ≤ s ≤ 2n. For

example, in case n = 2 these vectors are (1, 1), (−1, 1), (1,−1), and (−1,−1).
Moreover, for any fixed x ∈ Rn we define the open resp. closed quadrants of x
with respect to z(s) by

Qo(x, z(s)) :={t ∈ Rn | (tk − xk)z(s)
k > 0, 1 ≤ k ≤ n}, 1 ≤ s ≤ 2n,

Q(x, z(s)) :={t ∈ Rn | (tk − xk)z(s)
k ≥ 0, 1 ≤ k ≤ n}, 1 ≤ s ≤ 2n.

With the help of these definitions we are prepared to prove the following
theorem.

Theorem 3.1. Let f ∈ BV (Rn) with lim|t|→∞ f(t) = 0 be given. Then for
all x ∈ Rn and all s ∈ {1, 2, . . . , 2n} we have

lim
t→x

t∈Qo(x,z(s))

f(t) = (−1)n

(
n∏

k=1

z
(s)
k

)
mf (Qo(x, z(s))). (12)

Proof. Let x ∈ Rn and s ∈ {1, . . . , 2n} be given and mf = mPf
− mNf

the decomposition of mf according to (11). Now, for each α > 0 and each
t ∈ Qo(x, z(s)) we consider the cubes Ws,α(t) := [min{t, t + αz(s)},max{t, t +
αz(s)}] and their interior W o

s,α(t) := (min{t, t + αz(s)},max{t, t + αz(s)}). By
means of (11) and Lemma 2.2 we immediately get the inequality

mPf
(W o

s,α(t))−mNf
(Ws,α(t)) ≤ 4f [min{t, t + αz(s)},max{t, t + αz(s)}]

≤ mPf
(Ws,α(t))−mNf

(W o
s,α(t)).

(13)

For α →∞ we have

lim
α→∞

Ws,α(t) = Q(t, z(s)),

lim
α→∞

W o
s,α(t) = Qo(t, z(s)).

(14)
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Moreover, since lim|y|→∞ f(y) = 0 we also get by means of (5)

lim
α→∞

4f [min{t, t + αz(s)},max{t, t + αz(s)}]

= lim
α→∞

∑
y∈Cor(Ws,α(t))

(−1)γ(y,min{t,t+αz(s)})f(y)

=(−1)n

(
n∏

k=1

z
(s)
k

)
f(t).

(15)

Using (14) and (15) we conclude from (13) for α →∞ that

mPf
(Qo(t, z(s)))−mNf

(Q(t, z(s))) ≤ (−1)n

(
n∏

k=1

z
(s)
k

)
f(t)

≤ mPf
(Q(t, z(s)))−mNf

(Qo(t, z(s))).

(16)

If we now make use of the set identities

Qo(x, z(s)) = lim
t→x

t∈Qo(x,z(s))

Qo(t, z(s)),

Qo(x, z(s)) = lim
t→x

t∈Qo(x,z(s))

Q(t, z(s)),

we obtain from (16) for t → x, t ∈ Qo(x, z(s)) that

mPf
(Qo(x, z(s)))−mNf

(Qo(x, z(s))) = (−1)n

(
n∏

k=1

z
(s)
k

)
lim
t→x

t∈Qo(x,z(s))

f(t),

which implies (12) by means of (11).

Remark. The result of the above theorem may be read as follows. For
f ∈ BV (Rn) with lim|x|→∞ f(x) = 0 the limits

lim
t→x

t∈Qo(x,z(s))

f(t), 1 ≤ s ≤ 2n, (17)

exist for all x ∈ Rn. On the other hand, we have no information about the
existence (or behavior) of limits like (17) if we allow the approaching points t
to lie on one of the hyperplanes H(x, k),

H(x, k) := {t ∈ Rn | tk = xk}, 1 ≤ k ≤ n. (18)
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Since in case n = 1 the limits (17) coincide with the one-sided limits (1) and
the hyperplanes (18) degenerate to the point x, the result of Theorem 3.1
seems to be an appropriate extension to the multivariate case (see also [22] in
this context).

In the following we will take a look at the second point of interest in connec-
tion with continuity and regularity of functions f ∈ BV (Rn), lim|x|→∞ f(x) =
0, more precisely, we want to examine under which conditions the limits (17)
are equal to f(x) (compare (2)) or — in formal analogy of (3) — to find those

points x ∈ Rn which satisfy f(x) = 2−n

2n∑
s=1

lim
t→x

t∈Qo(x,z(s))

f(t).

Theorem 3.2. Let f ∈ BV (Rn) with lim|t|→∞ f(t) = 0 be given. Then for
almost all x ∈ Rn we have

f(x) = lim
t→x

t∈Qo(x,z(s))

f(t), 1 ≤ s ≤ 2n. (19)

Especially, almost all x ∈ Rn satisfy

f(x) = 2−n
2n∑

s=1

lim
t→x

t∈Qo(x,z(s))

f(t) . (20)

Proof. The proof is similar to that of Theorem 3.1. Let s ∈ {1, . . . , 2n} be
given and mf = mPf

−mNf
the decomposition of mf according to (11). Now,

by means of Lemma 2.2 it is easy to show that for almost all x ∈ Rn we can find
a monotone increasing sequence (αj)j∈N, 0 < α1 < · · · < αj < αj+1 < . . . ,
limj→∞ αj = ∞, with

W o
s,αj

(x) := (min{x, x + αjz
(s)},max{x, x + αjz

(s)}), j ∈ N,

satisfying

mPf
(W o

s,αj
(x))−mNf

(W o
s,αj

(x))

=4Pf
[min{x, x + αjz

(s)},max{x, x + αjz
(s)}]

−4Nf
[min{x, x + αjz

(s)},max{x, x + αjz
(s)}], j ∈ N;

i. e., via (11) and (8)

mf (W o
s,αj

(x)) = 4f [min{x, x + αjz
(s)},max{x, x + αjz

(s)}], j ∈ N. (21)

By means of (14) and (15) (with t = x and α = αj ) identity (21) implies for

j →∞ that mf (Qo(x, z(s))) = (−1)n

(
n∏

k=1

z
(s)
k

)
f(x). Using Theorem 3.1 we

finally obtain (19).
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4 Concluding Remarks

(1) In generalization of the one-dimensional case (cf. [10], p. 161, or [21], p.
224) we may call x ∈ Rn regular with respect to f ∈ BV (Rn), lim|t|→∞ f(t) =
0, if

f(x) = 2−n
2n∑

s=1

lim
t→x

t∈Qo(x,z(s))

f(t). (22)

In this terminology Theorem 3.2 may be reformulated as follows. Almost all
x ∈ Rn are regular with respect to f ∈ BV (Rn), lim|t|→∞ f(t) = 0.
(2) Let us note that, in contrast to the one-dimensional case, it is not possible
to prove for n > 1 that (22) is valid for all x ∈ Rn except at most a countable
number of points. For example, this may be seen by considering the function
g : R2 → {0, 1},

g(x1, x2) :=

{
1 for (0,−1) ≤ (x1, x2) ≤ (0, 1)
0 elsewhere,

which obviously belongs to BV (R2), satisfies lim|t|→∞ g(t) = 0, and possesses
more than a countable number of non-regular points.
(3) We point to the fact that the condition lim

|t|→∞
f(t) = 0 is essential for

f ∈ BV (Rn) to have limits as considered in (17) and to make the definition of
regularity in sense of (22) possible. For example, the function h : R2 → {0, 1},

h(x1, x2) :=

{
1 for x1 ∈ Q
0 elsewhere,

satisfies 4h[a, b] = 0, [a, b] ⊂ R2, and, therefore, belongs to BV (R2). But, the
limits considered in (17) do not exist for any point x ∈ R2.
(4) Finally, let us note that it is possible to formulate a sufficient condition for
a point x ∈ Rn to satisfy (19) resp. (20) in terms of the so-called vanishing
oscillation condition introduced in [18], p. 60. Precisely, the equations (19)
resp. identity (20) are valid for a function f ∈ BV (Rn) with lim|t|→∞ f(t) = 0
at a point x ∈ Rn if the oscillation of the interval function 4f vanishes for all
hyperplanes H(x, k), 1 ≤ k ≤ n, defined in (18) (and this is the case at least
almost everywhere; for details compare [18], Chapter III, Paragraphs 1–6).
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[5] C. Carathéodory, Vorlesungen über reelle Funktionen, Chelsea Publishing
Company, New York, 1968, third edition.

[6] J. A. Clarkson and C. R. Adams, On definitions of bounded variation of
functions of two variables, Trans. Amer. Math. Soc., 35 (1933), 824–854.

[7] S. Y. Galkina, On the Fourier-Haar coefficients of functions of several
variables with bounded Vitali variation, Math. Notes, 70 (2001), 733–743.

[8] P. Gora, Importance of bounded variation condition for stability of an ab-
solutely continuous invariant measure, J. Math. Anal. Appl., 181 (1994),
422–428.

[9] V. Gupta and R. P. Pant, Rate of convergence for the modified Szász-
Mirakyan operators on functions of bounded variation, J. Math. Anal.
Appl., 233 (1999), 476–483.

[10] E. Kamke, Das Lebesgue-Stieltjes Integral, B. G. Teubner Verlagsge-
sellschaft, Leipzig, 1956.

[11] B. Lenze, On multidimensional Lebesgue-Stieltjes convolution operators,
in: “Multivariate Approximation Theory IV” (Eds.: C. K. Chui, W.
Schempp, K. Zeller), ISNM 90, Birkhäuser Verlag, Basel–Boston–Berlin,
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