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MAXIMUM ENTROPY AND MOMENT
PROBLEMS

Abstract

We study moment problems in which one searches for a probability
density on Rn by using insufficient information given in an integral form.
We characterize the existence of the representing densities for a finite
multi–sequence of moments by the solvability of a concrete finite system
of equations. Its solution provides the (unique) representing density
of maximum entropy allowed by the given data, that turns out to be
the exponential of a polynomial to be determined. For all densities of
this form, the system to be solved can be taken linear to be provided
sufficiently many moments are known.

1 Introduction

A truncated problem of moments can be stated as follows. Let T be a mea-
surable space endowed with a fixed nonnegative measure m. Let uα, α ∈ A
be a finite family of known functions on T . Given a finite set γ = (γα)α of
numbers γα (α ∈ A), one asks to establish if there exist measures µ ≥ 0 on T
such that ∫

T

uα(t)dµ(t) = γα (α ∈ A). (1)

In particular, one looks for absolutely continuous measures µ = fm with
f ≥ 0. If (1) holds, then µ (resp. f) is called a representing measure (resp.
density) for the sequence γ. The problem is then to characterize those sets γ
which have nonnegative representing measures, study the set of the solutions
and find or approximate such measures µ.
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We shall assume that T is a compact subset of either n–dimensional real
space, or the n–dimensional torus Tn. To fix the notation, we start by stating
the results in the case when T ⊂ Rn and m is the Lebesgue measure on T .
However, our method applies with minor modifications to more general situa-
tions, including both cases mentioned here. We will consider only absolutely
continuous representing measures fm, with nonnegative density f from L1(T )
– the space of all (classes of) measurable functions that are Lebesgue integrable
on T with respect to m. Set a := cardA. We characterize the existence of
such representing densities by the solvability of the following system∫

T

uα(t) e
P

β∈A xβ uβ(t) dm(t) = γα (α ∈ A) (2)

of a equations with a unknowns xα (α ∈ A). Therefore if our problem (1) has
any absolutely continuous solution µ = fm, then it will necessarily have also
a solution of the form from above. The concrete form of (2) then should allow
the study of the existence of (or approximate) the vector x = (xα)α∈A ∈ Ra,
see for instance [1], [3]; note also Remark 1 in this sense. When the system
(2) (see (24) and (29), too) has a solution, it is unique and provides the (also
unique) representing density f∗ having maximal entropy, by the formula

f∗(t) = f∗,x(t) = exp (
∑
α∈A

xαuα(t)) (t ∈ T ).

Namely, f∗ maximizes the Boltzmann’s integral −
∫

f ln fdm amongst all the
absolutely continuous measures µ = fm ≥ 0 satisfying the equalities (1).

For powers moment problems, we show that if there exists an integrable
representing density of the form f∗ = exp (

∑
α∈A xαuα) on the whole space

Rn or Tn, then knowing the moments γα, α ∈ A+A provides the values of xα

(α ∈ A) by solving a compatible and determined linear system (30). Note the
following example. Let n = 1 and γ0, γ1, γ2 ∈ R. Set uα(t) = tα (α = 0, 1, 2).
In this case one can use (2) to compute xα by hand. Namely, assume that
f∗(t) := exp (x0 + x1t + x2t

2), t ∈ R is integrable and satisfies (2). Since
f∗ ∈ L1(R), we have x2 < 0. Hence by the Leibniz–Newton formula we have∫

f ′∗dt = 0 and
∫

(tf∗(t))′dt = 0, where f ′ denotes the derivative of f . It
follows that x1γ0 +2x2γ1 = 0 and γ0 +x1γ1 +2x2γ2 = 0. Then x1 = γ0γ1d

−1,
x2 = −γ2

0d−1 and x0 = ln(γ0/
∫

exp (x1t + x2t
2) dt), where d := γ0γ2 − γ2

1 .
Hence f∗(t) = C exp [−(t − s)2/d ] is a multiple of the Gauss distribution
of mean s = γ1/2 and dispersion d. Thus we get the well–known fact that
the maximum entropy probability density of given mean and dispersion is the
normal one, see [17] for instance. Similar computations providing x in terms
of the known data γα, α ∈ A can be done also when A = {α = (α1, . . . , αn) ∈
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Zn
+ | α1 + · · · + αn ≤ 2}. (This moment problem has been solved in [11] by

different methods.)
The solution in the above example is valid if and only if γ0 > 0 and

γ0γ2− γ2
1 > 0. This agrees with the theory of the truncated problem of power

moments, existing for n = 1. Namely, a set (γα)2k
α=0 (6= 0) has nonnegative rep-

resenting measures (resp. densities) on R ⇔ the quadratic form (γα+β)k
α,β=0

is nonnegative (resp. positive) definite [4]. Similar characterizations hold for
A := {0, 1, . . . , k} and T := an interval in R, for A := {−k, . . . , k} and T := T
(with uα(eiθ) := eiαθ and m := dθ), as well as in other 1–dimensional cases [4],
[6], [13], [24]. They are based on the possibility to represent any nonnegative
polynomial (resp. trigonometrical polynomial) on R (resp. T) as a sum of
squares [21]. Namely the existence of µ can be characterized by the existence
of a functional Lγ on polynomials such that Lγ tα = γα and Lγp ≥ 0 for any
p ≥ 0 on T [18]. Then by the Hahn–Banach theorem it suffices to ask Lγp ≥ 0
for those p =

∑
α∈A cαuα such that p(t) ≥ 0, t ∈ T [18], [24]. The problem

is to describe these polynomials p. If they are (or can be expressed in terms
of) sums of squares, then conditions like Lγ(|q|2) ≥ 0 for all q lead to charac-
terizations as above. This method is not applicable for n > 1 when the set of
nonnegative polynomials is more difficult to handle [8]. (For instance, not all
of them can be written as sums of squares.) The same questions appear for
trigonometric moment problems on Tn [15], [23].

There are also other approaches providing the existence of certain “maxi-
mum entropy”-type solutions [6], [13], but usually their proofs (operator the-
oretic or complex analytic) can work only in the case n = 1. Various results
exist in certain multidimensional cases, too [7], [10], [11], [22], [25]. Note in
particular a complete solution of the truncated moment problem for finitely-
atomic measures and flat data in the sense of [11]. Also, the existence of a
maximum entropy (in another sense) solution is proved in [7] for an operator-
valued truncated trigonometric moment problem when n = 2 and A =an
infinite band in Z2.

The full moment problems (when A = Zn
+ or Zn) received satisfactory

answers for a large class of supports T , see [10], [13], [14], [18], [24], [25]. In
this case one can complete the space of all polynomials with respect to the
inner product (tα, tβ) := γα+β to a Hilbert space H, then study the operators
induced on H by the multiplication with the coordinate functions ti [5], [12],
[14], [25]. However, as noted in [11], this idea has a limited applicability in
the truncated case, when H is not invariant under ti.

Thus the moment problems for n > 1 and A =finite have received rather
partial answers. For heuristic reasons and without claim of rigor, we sketch
below the idea of our approach, based on Shannon’s idea. Suppose that
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m(T ) = γ0 = 1 and set Fα(f) =
∫

T
uα(t)f(t)dm − γα (α ∈ A). Assume

the existence of the representing densities f ≥ 0 of γ with
∫

T
fdm = 1. Then

among them there exists one probability density f∗ having the maximum de-
gree of randomness allowed by the conditions (1). (This implies in particular
that f∗ is strictly positive and smooth on T .) Namely, this density maxi-
mizes the entropy functional H(f) := −

∫
T

f ln f dm with the restrictions
Fα(f) = 0 (α ∈ A). Since f∗ > 0 on T , it belongs in a certain sense to
the interior of the domain of H. Hence we may apply the method of the
Lagrange multipliers for the conditioned extremum. Then there are xα ∈ R
(α ∈ A) such that f∗ be a critical point of the function L := H +

∑
α∈A xαFα;

namely, L′(f∗) = 0. Thus L′(f∗)g = 0 for all g. Note that L(f) =
∫

T
G(f) dm

where G(f) := −f ln f +
∑

α∈A(uαf − γα). By using the formula L′(f)g =
lims→0 s−1(L(f + sg) − L(f)), it follows that

∫
T

G′(f∗)g dm = 0 for all g.
Hence G′(f∗) = 0. Now G′(f) = − ln f − 1 +

∑
α∈A xαuα. We obtain that ef∗

is the exponential of a linear combination of the functions uα = uα(t) (α ∈ A).
Writing the conditions (1) for µ := f∗m, we obtain the system (2) which must
then have a solution x = (xα)α∈A. In the 2nd section we will rigorously state
and prove these considerations.

The idea from above is a known natural approach to this type of problems,
at least in the case T =finite. One way or another, it was also used or sug-
gested in several problems in which maximum entropy distributions naturally
arise [9], [17], [19], [20]. However, to our knowledge there are no proofs of the
existence of the maximum entropy solution f∗ in the present context. The
form of f∗ = f∗,x was known for n = 1 and T ⊂ R in some particular cases
[9], [17], [20] (see Theorem 0 below), but the existence of the corresponding x
satisfying a system of the form (2) is always—at least implicitly— assumed by
hypothesis. Then it is verified that the (already existing) solution f∗ = f∗,x
defined by f∗,x(t) :=

∑
α∈A xαuα(t) (t ∈ T ) maximizes H among all other

possible (nonnegative) solutions ([20], see the proof of (3)⇒(2) in Theorem
14).

The novelty in the present paper, for any n ≥ 1, is that Theorems 12, 14, 16
are mainly results of existence of the maximum entropy representing density
f∗ = f∗,x(t) given by the parameters x. Namely, we assume only that there is
at least one (arbitrary) nonnegative representing density. Then we prove the
existence of the solution x of (2), and hence of the associated density f∗,x of
maximum entropy. It suffices actually (see Theorem 12) to assume that there
exist representing measures whose absolutely continuous parts are 6≡ 0.

To briefly recall the significance of the maximum entropy solution [9], [17],
[19], let V : (Ω,A, P ) → (T,m) be a random variable with values in T and
absolutely continuous repartition P ◦ V −1 = µ = fm, where (Ω,A, P ) is a
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probability field. Let T be finite with m := the normalized cardinal measure.
The average of the minimum amount of information necessary to determine
the position of V in T proves then to be equal to Shannon’s entropy

H(f) := −
∫

Ω

log2 f(V (ω)) dP (ω) (= −
∑
t∈T

f(t) log2 f(t)),

see for instance [17]. In general, if T is endowed with some arbitrary non-
negative measure m, then the corresponding degree of randomness of V is
measured by

H(V ) := −
∫

Ω

ln f ◦ V dP (= −
∫

T

f ln f dm).

Suppose that the repartition f of V is unknown, but we can find the mean
values of some quantities uα, α ∈ A depending on V . The available data on
V are thus given by the knowledge of the numbers

γα :=
∫

Ω

uα(V (ω)) dP (ω) (=
∫

T

uα(t)f(t) dm(t)) (α ∈ A).

The problem is now to choose the most reliable f by using all this (and only
this) information. The repartition f∗ of the highest degree of randomness
allowed by the conditions (1) is then the natural choice for f , see for instance
[17], [19] for details. Note also in this sense the very interesting result from
below.

Theorem 0. [9] Let n := 1 and T := [a, b] ⊂ R. Let V be a random variable
with uniform distribution on T . If V1, V2, . . . are independent copies of V ,
then the conditional probability of V given the observation

k−1
k∑

i=1

uα(Vi) = γα (α ∈ A, k = 1, 2, . . .)

converges to f∗,x as k →∞.

Therefore in certain moment-type problems it could be of interest to approx-
imate f∗,x (that is, x ∈ Ra). To this aim, one could minimize numerically the
function V from Remark 1, using projected gradients for example. In practice,
for a large class of such problems x can be obtained from a linear system of
na equations if sufficiently many moments are given, see Theorem 17. The
present approach seems to present certain similarities to various problems of
reconstructing the shape or probability density of an object from indirect mea-
surements providing its moments.
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2 Main Results

Remark 1. If γα ∈ R, and uα : T → R are linearly independent continuous
functions, then the functional V = V (x) defined for x = (xα)α∈A by

V (x) =
∫

T

exp (
∑
α

xαuα(t)) dm(t)−
∑
α

γαxα

is smooth, strictly convex and ∂V
∂xβ

(x) =
∫

T
uβ(t)exp(

∑
α xαuα(t))dm(t)−γβ .

Moreover, a solution x of (2) exists if and only if V is bounded from below
and attaints its minimum – in which case the (unique) minimum point of V
is x.

Proof. For every real numbers cα we have∑
β,δ

∂2V

∂xβ∂xδ
(x)cβcδ =

∫
T

(
∑

β

cβuβ(t) )2exp (
∑
α

xα uα(t) ) dm(t) ≥ 0,

with equality iff all cα = 0. Use also the equality

V (y)− V (x) = V ′(x)(y − x) +
1
2
V ′′(x)(y − x, y − x) + o(‖y − x‖2),

showing as it is known that any critical point x of the (strictly convex) func-
tion V is a local (and hence global) minimum point. We omit the details.

Let then T be a compact subset of Rn, with nonempty interior. Let m
denote n–dimensional Lebesgue measure. We assume that m(T ) = 1 and
m(∂ T ) = 0, where ∂ T denotes the boundary of T . Let A ⊂ Zn

+ be a finite set
with 0 ∈ A. Let γα ∈ R for α ∈ A, and set γ := (γα)α∈A. We assume γ0 = 1.
Set uα(t) := tα = tα1

1 . . . tαn
n for t = (t1, . . . tn) ∈ T and α = (α1, . . . , αn) ∈ A.

Notation. Let PA be the linear space of polynomial functions on T generated
by the monomials uα, α ∈ A. Consider on PA the restriction of the supremum
norm | p |∞:= maxt∈T | p(t) | (p ∈ R[X]). Let P ∗

A denote the dual of PA. For
t ∈ T , let δt ∈ P ∗

A denote the Dirac functional δtp := p(t), p ∈ PA. For b =
(dα)α∈A ∈ (P ∗

A)a, define the operator Bb on PA by Bbuα =
∑

β∈A dα(uβ)uβ

(α ∈ A). If dα = δt(α) for some set τ := (t(α))α∈A of points t(α) ∈ T (α ∈ A),
then we set det (τ) =the determinant of Bb.

Remark 2. [2] Let b := (dα)α∈A ∈ (P ∗
A)a. Then b is a basis iff Bb is invertible.

There exist algebraic bases b of the form b = (δt(α))α∈A with t(α) ∈ T \ ∂T ,
and so {τ | det(τ) 6= 0} is dense in T a.
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Theorem 3. [2] Let f ∈ L1(T ) \ {0} be nonnegative almost everywhere on
T . Let (γα)α∈A be a finite set of power moments of the measure µ = fm + ν,
where ν ≥ 0 is a singular measure. Namely, γα =

∫
T

uα dµ (α ∈ A). Then
there exists g ∈ C∞(Rn) with infT g > 0 such that γα =

∫
T

uαg dm (α ∈ A).

Notation. Let γ = (γα)α∈A be a fixed sequence of power moments, having
at least one representing density f ∈ L1

+(T ) (nonnegative and Lebesgue in-
tegrable on T ). We shall prove then the existence of a representing density
of maximum entropy. To this aim, we may assume by Theorem 3 that f is
Riemann integrable and bounded (from below and above) on T by some finite
and strictly positive constants. From now on, we fix such a function f . In
what follows, the symbol c (or c1, c2 . . .) will always stand for a finite positive
constant depending only on the initial data of the problem (like n, T , f , A,
γ). We endow Rn with the norm | t |:= maxn

l=1 | tl | for t = (tl)n
l=1 ∈ Rn.

Then call cube any set K = K(t0, s) := {t; | t − t0 |≤ s} where t0 ∈ Rn and
s > 0; its side length σK , resp. diameter are of course 2s, resp. 2s

√
n.

Lemma 4. There exists c1 = c1(n, T ) > 0 such that for any ε > 0 there are:
(1) a finite set of cubes Ki ⊂ T , i ∈ {1, . . . , N} of the same size, such that

m(Ki ∩ Kj) = 0 for any i 6= j, the diameter of each Ki is less than ε and
m(T \ (∪N

i=1Ki)) < ε;
(2) a set τ = {t(i)}N

i=1 of points t(i) ∈ Ki, such that for any i 6= j we have

| t(i)− t(j) |> c1 N−1/n, (3)

and for any distinct points t1, . . . , ta of the set τ , δt1 , . . . , δta is a basis of P ∗
A.

Moreover, c2 ≤ N1/n σKi ≤ c3 for some constants c2 = c2(T ), c3 = c3(T ).

Proof. Take two cubes K, K ′, that we fix from now on, with T ⊂ K and K ′

in the interior of T . More precisely, take K ′ =
∏n

i=1[ai, ai + b] ⊂ int T . Let
(ei) be the canonical basis of Rn. Then let K be the union of the (2k0 + 1)n

translates K ′ + b
∑n

i=1 jiei of K ′ over all j1, . . . , jn ∈ Z with |ji| ≤ k0, where
k0 ∈ N is fixed large enough so that T ⊂ K. Let ε > 0 be arbitrary. Then take
an integer l′ = l′ε ≥ 1 sufficiently big such that the cubes of sides b/l′ have
diameters less than ε. We divide each side of K into l := (2k0 + 1)l′ equal
compact intervals. Consider the corresponding cubic subdivision K = Kε of
K consisting of all the ln products of n such intervals. Then choose those
cubes of K, denoted by Ki = Ki,ε for i ∈ {1, . . . , N} with N = Nε, that are
included in T . If l′ is sufficiently large (1) is fulfilled. Moreover we can assume
K ′ ⊂ ∪N

i=1Ki. For each i ∈ {1, . . . , N} let t(i) be, for the moment, the center
of Ki. We have N ≥ l′n, since here exist at least those cubes Ki covering K ′.
Set c1 = b/2. Hence

inf
i 6=j

| t(i)− t(j) |= b/l′ ≥ bN−1/n > c1 N−1/n.
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Now let S1, S2, . . . be an enumeration of all N !/ a!(N−a)! subsets {δt1 , . . . , δta}
of {δt(1), . . . , δt(N)} having a elements. Apply successively Remark 2 for each
Sj . That is, by successive small perturbations of the tuple (t(1), . . . , t(N))
we can insure that all Sj are basis of P ∗

A, and the (strict) inequality (3) still
holds. Now the side length σKi

= b/l′ of the cubes Ki in the subdivision K of
K is ≥ 2−1c1 N−1/n, see (3) and note that t(i) ∈ Ki. Thus N1/nσKi ≥ c1/2.
Also, N is less or equal than the cardinal ln of K, which gives an estimate of
the form N1/nσKi

≤ c3 using l = (2k0 + 1)l′.

Notation. For any ε > 0, we let τ be a set (t(i))N
i=1 of points t(i) ∈ Ki given

by Lemma 4. (we shall sometimes omit stating the dependence on ε.) Let
P = Pε be the measure on Rn defined by

P = N−1
N∑

i=1

δt(i). (4)

Lemma 5. There exists c4 = c4(T ) such that for any ε > 0 and any approxi-
mation ∪N

i=1Ki of T , with points t(i) ∈ Ki as in Lemma 4, we have

P (K(t, r)) ≤ c4 rn (t ∈ Rn, r > σKi). (5)

Proof. We follow the proof of Lemma 4. The side length of K(t, r) is 2r.
Also, the side length of any Ki is ≥ c2N

−1/n. Hence the number ν of those
cubes Ki in the subdivision K of K such that Ki ∩ K(t, r) 6= ∅ is of order
(2r/c2N

−1/n)n; namely, we have an estimate of the form ν ≤ c (2r/c2N
−1/n)n.

By (4) we get

P (K(t, r)) ≤ N−1ν ≤ N−1c (2r/c2N
−1/n)n = 2ncc−n

2 rn.

Lemma 6. There are c5 = c5(T ) and c6 = c6(T, a) such that for any (K, τ) as
in Lemma 4 and any subset T ′ of {t(1), . . . t(N)} with P (T ′) > c6N

−1 there
exist distinct points ti ∈ T ′, i = 1, . . . , a with the property that for any i 6= j
there is a coordinate index l = li,j ∈ {1, . . . , n} with

| (ti)l − (tj)l |≥ c5 (P (T ′)/a)1/n. (6)

Proof. We have σKi
≤ c3N

−1/n, see Lemma 4. Set c5 = c
−1/n
4 , see Lemma

5, and c6 = acn
3 c4. For p := P (T ′), set r = (p/ac4)1/n. Since p > c6N

−1,
r > σKi . Then (5) holds for any ball of radius r. We can assume a ≥ 2. We
prove by induction on 2 ≤ m ≤ a that there are t1, . . . , tm ∈ T ′ such that the
estimate (6) holds for any i, j ∈ {1, . . . ,m} with ti 6= tj , for some li,j . Let
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m := 2. Let t1 ∈ T ′ be arbitrary. If T ′ ⊂ K(t1, r), then by the inequalities (5)
we have

p = P (T ′) ≤ P (K(t1, r)) ≤ c4 rn = p/a,

whence a ≤ 1 which is false. Hence there is t2 ∈ T ′ \K(t1, r). Since | t2− t1 |≥
r, there exists an index l = l1,2 such that

| (t2)l − (t1)l |≥ (p/ac4)1/n = c5(p/a)1/n

Now let m < a. Assume that we have found t1, . . . , tm ∈ T ′ such that the
estimates (6) hold for i, j = 1, . . . ,m with ti 6= tj , then show that they hold
for any i, j ∈ 1, . . . ,m + 1 with ti 6= tj . If T ′ ⊂ ∪m

i=1K(ti, r), then again (5)
gives

p = P (T ′) ≤ P (∪m
i=1K(ti, r)) ≤ m

m
max
i=1

P (K(ti, r)) ≤ m c4 rn = mp/a,

whence a ≤ m which is false. Hence there is tm+1 ∈ T ′ \ ∪m
i=1K(ti, r). Since

all | tm+1 − ti |≥ r, for each i ∈ {1, . . . ,m} there exists an index l = li,m+1

with
| (tm+1)l − (ti)l |≥ (p/ac4)1/n = c5(p/a)1/n.

Lemma 7. There exists c7 = c7(T ) such that the following holds. For any
(K, τ) as in Lemma 4 and T ′ as in Lemma 6, let t1, . . . , ta ∈ T ′ satisfying (6).
Let vi ∈ R for i ∈ {1, . . . , a}. For any i, i0 ∈ {1, . . . , a} with i 6= i0, fix l = li,i0
such that | (ti0)l − (ti)l |≥ c5 (P (T ′)/a)1/n. Then set

pi,i0(x) = (xl − (ti)l)(ti0)l − (ti)l)−1 (i 6= i0, x ∈ T, l = li,i0),

Li0(x) =
∏

1≤i≤a, i 6=i0

pi,i0(x) (x ∈ T ).

Let L =
∑a

i=1 viLi. Then L(ti) = vi for i ∈ {1, . . . , a} and

|L|∞ ≤ c7 P (T ′)(1−a)/n · a
max
i=1

|vi|. (7)

Proof. One can assume | vi |≤ 1. We have Li(tj) = δij for i, j = 1, . . . , a.
Then L(ti) = vi. Applying the estimates (6) to the denominators of pi,i0 , we
obtain

|pi,i0 |∞ ≤ 2 max
t∈T

| t | c−1
5 (a/P (T ′))1/n.

Hence |Li0 |∞ ≤ c1−a
5 a

a−1
n P (T ′)(1−a)/n. Use also |L| ≤ amaxi |Li|.
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Notation. We will apply Lemmas 4–7 for ε = εk := 1/k (k = 1, 2, . . .). Then
for each k ≥ 1 we fix some cubes Ki = Ki,k (i ∈ {1, . . . , N}), where N = Nk,
as well as a set τ = τk = (t(i))N

i=1 of points t(i) = t(i, k) ∈ Ki satisfying (3)
with c1 independent of k. Let P = Pk be defined by (4). Set mk := m(Ki)
and x0

i = x0
i (k) := f(t(i, k)) for i ∈ {1, . . . , N}. Set c8 = 2−1 infT f (> 0) and

c′8 = supT f . Then c8 ≤ x0
i ≤ c′8. Set ρ = ρ(k) := mk

∑Nk

i=1 x0
i (k),

aiα = aiα(k) := t(i, k)αmk (α ∈ A).

Let S denote the N–dimensional simplex

S = Sk := {x = (xi)N
i=1 ∈ RN | xi ≥ 0,

N∑
i=1

xi = ρ}.

Set D = D(k) := {x ∈ S | xi > 0, i = 1, . . . , N}. Define H = Hk : S → R by

H(x) := −
N∑

i=1

xi lnxi (x ∈ S)

(with 0 ln 0 := 0). Then
∑N

i=1 aiαx0
i is the Riemann sum of the function uαf

corresponding to (K, τ) and so

|
N∑

i=1

aiαx0
i − γα |→ 0 as k →∞ (8)

because
∫

T
uαfdt = γα. If k0 is sufficiently large, then for k ≥ k0 we have

ρ(k) ≤ 2; 2−1 ≤ mkNk ≤ 2; (9)

the first estimate holds by (8) for α := 0 since γ0 = 1 and ρ = ρ(k) is the
Riemann sum of f , whence ρ(k) → 1. For the second one, note that by Lemma
4 (1) we get, for ε := 1/k, that mkNk → m(T ) = 1.

The index k ≥ 1 from above will be fixed and omitted in the Lemmas 8–11.

Lemma 8. Define the functions Fα (α ∈ A) on S by Fα(x) =
∑N

i=1 aiα(xi −
x0

i ). Take Zα = {x ∈ S | Fα(x) = 0}. Set K =
⋂

α∈A Zα. Then there are
y = (yi)i=1,...,N ∈ K∩D and λα ∈ R (α ∈ A) such that H(y) = maxx∈K H(x)
and

yi = exp (
∑
α∈A

λαaiα) (i = 1, . . . , N). (10)
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Proof. Note that x0 = (x0
i )i ∈ K ∩D. Since H is continuous and K 6= ∅ is

compact, there is y ∈ K with H(y) = maxK H. We prove that y ∈ D. Since
x0 ∈ D, we can assume y 6= x0. Set h(s) = H(sx0 + (1 − s)y) for s ∈ [0, 1].
Then h is of class C1 on (0, 1) and continuous on [0, 1]. For 0 < s < 1,

h′(s) = −
N∑

i=1

(ln(sx0
i + (1− s)yi) + 1)(x0

i − yi). (11)

Then h′(s) = σ1(s) + σ2(s), where σ1(s) = −
∑

i | yi=0(ln sx0
i + 1)x0

i (≥ 0) and

σ2(s) = −
∑

i | yi>0

(ln(sx0
i + (1− s)yi) + 1)(x0

i − yi).

Suppose y 6∈ D. There is i0 with yi0 = 0. Then the sums σ1(s), 0 < s < ε
have at least one term > 0, if ε > 0 is sufficiently small. Hence lims→0 σ1(s) =
+∞. Also, lims→0 σ2(s) = σ2(0). Then lims→0 h′(s) = +∞. Hence (h(s) −
h(0))/s > 0 if s > 0 is enough small. Then sx0 + (1 − s)y 6= y since y 6= x0

and
H(sx0 + (1− s)y)−H(y) = s(h(s)− h(0)) /s > 0.

This is impossible since sx0 + (1 − s)y ∈ K and H(y) = maxT H. Thus
y ∈ D ∩K. Then H(y) = maxK H ≥ maxD∩K H ≥ H(y), whence

H(y) = max{H(x) | xi > 0, i = 1, . . . , N ; Fα(x) = 0, α ∈ A}.

Then we may apply the method of Lagrange multipliers on the (open) domain
{x ∈ RN | xi > 0} containing y. Thus there are λα ∈ R (α ∈ A) such that y
is a critical point of the function L := H +

∑
α∈A λαFα defined on {x ∈ RN |

xi > 0}. Using ∂L/∂xi(y) = 0 we obtain yi = exp (−1 +
∑

α∈A λαaiα), i =
1, . . . , N. Then denote (−1 + λ0ai0)/ai0 by λ0.

Remark 9. Let y, x0 and h be as stated in the proof of Lemma 8. Then for
any s in a neighborhood of the interval [0, 1] we have

h′′(s) = −
∑

i=1,...,N

((x0
i − yi)2(sx0

i + (1− s)yi)−1 ≤ 0.

Thus y (resp. 0) is a point of maximum for H (resp. h) and h′(0) = 0. By
(11),

−
∑

i=1,...,N

(ln yi + 1)(x0
i − yi) = 0. (12)
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Notation. Let {π} denote the number of i ∈ 1, N for which a property π
holds.

Remark 10. If y is given by Lemma 8, then for sufficiently large v

N−1{yi ≤ v} ≥ 1− 4/v. (13)

Proof. We have {yi ≤ v} + {yi > v} = N . Using mk

∑N
i=1(yi − x0

i ) =
F0(y) = 0 and (9), we get also

v

2N
{yi > v} ≤ mkv{yi > v} ≤ mk

∑
i|yi>v

yi

≤ mk

N∑
i=1

yi = mk

N∑
i=1

x0
i = ρ ≤ 2.

Notation. For each k ≥ 1, let y = y(k) be a solution of the maximum problem
solved by Lemma 8, given by some numbers λα = λα(k) as in (10).

Lemma 11. There exist constants c9, c10, c11 depending only on T , a, f such
that for any y = (yi)i=1,...,N given by Lemma 8

N−1{c9 ≤ yi ≤ c10} ≥ c11. (14)

Proof. Set c′ = 2−1 min{1/e, minT f} and c′′ = max{1/e, maxT f}. Let
i ∈ {1, . . . , N}; we consider the following cases concerning the index i:

1. c′ ≤ yi ≤ c′′. Then we have an estimate of the form | (ln yi+1)(x0
i −yi) |≤ c

with c = c(T, a, f). (Recall that x0
i = f(t(i)) ∈ [c8, c

′
8].) Hence

|
∑

i|c′≤yi≤c′′

(ln yi + 1)(x0
i − yi) |≤ c {c′ ≤ yi ≤ c′′}. (15)

2. yi > c′′. Then (ln yi + 1)(x0
i − yi) ≤ 0 and so∑

i|yi>c′′

(ln yi + 1)(x0
i − yi) ≤ 0. (16)

3. yi < c′. Then ln yi + 1 ≤ ln c′ + 1 < 0, x0
i − yi ≥ minT f − c′ ≥ c′ and

−(ln yi + 1)(x0
i − yi) ≥ −(ln c′ + 1)c′ (=: c′′′). Hence

−
∑

i|yi<c′

(ln yi + 1)(x0
i − yi) ≥ c′′′ {yi < c′}. (17)
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By the inequalities (15), (16), (17) and the equation (12), we obtain

c′′′ {yi < c′} ≤ −
∑

i|yi<c′

(ln yi + 1)(x0
i − yi) =

∑
i|c′≤yi≤c′′

(ln yi + 1)(x0
i − yi) +

∑
i|yi>c′′

(ln yi + 1)(x0
i − yi) ≤ c {c′ ≤ yi ≤ c′′}.

Then {yi < c′} ≤ c′/c′′′ {c′ ≤ yi ≤ c′′}. Also, {yi < c′}+ {c′ ≤ yi ≤ c′′} ≤ N .
Hence {yi < c′} ≤ c/c′′′ (N−{yi < c′}), and so (c′/c′′′ +1){yi < c′} ≤ c/c′′′ N .
Then N−1{yi < c′} ≤ c/(c + c′′′) and hence

N−1{yi ≥ c′} ≥ c′′′/(c + c′′′). (18)

Set E := {i = 1, . . . , N | yi ≥ c′} and F = Fv := {i = 1, . . . , N | yi ≤ v} for
v > 0. By (13), we have P (F ) ≥ 1− 4/v. By (18), P (E) ≥ c′′′/(c + c′′′). Now

P (E) + P (F )− P (E ∩ F ) = P (E ∪ F ) ≤ 1.

Consequently

P (E ∩ F ) ≥ P (E) + P (F )− 1 ≥ c′′′/(c + c′′′) + 1− 4/v − 1.

Then take for instance v := 8(c/c′′′+1). We obtain P (E ∩F ) ≥ 1/(2cc′′′+2).
The desired conclusion follows for c9 = c′, c10 = v and c11 = 1/(2c′/c′′′ +
2).

Theorem 12. Let γ = (γα)α∈A be a finite set of power moments of a measure
µ = fm + ν ≥ 0, with f ∈ L1(T ) \ {0} and ν singular with respect to m.
Namely,

∫
T

tα dµ(t) = γα (α ∈ A). Then there exist xα ∈ R (α ∈ A) such that∫
T

tαexp (
∑
β∈A

xβtβ) dm(t) = γα (α ∈ A).

Proof. By Theorem 3, we can assume µ = fm with f continuous and
minT f > 0. For any x = (xα)α∈A ∈ Rn, define the function gα(·, x) on T
by gα(t, x) = tαexp (

∑
β∈A xβtβ). We apply Lemma 4 for ε := 1/k (k ≥ 1).

Consider then a sequence of approximations of T by unions of cubes ∪N
i=1Ki,

with N = Nk and Ki = Ki(k) and a sequence τ = τk of sets τ = (t(i))N
i=1

of points t(i) = t(i, k) ∈ Ki, i ∈ {1, . . . , N} satisfying the inequalities (3) etc.
For each k ≥ 1, let σαk(x) denote the corresponding Riemann sum of gα(·, x)
(x ∈ Rn). Namely,

σαk(x) :=
Nk∑
i=1

gα(t(i, k), x)mk =
N∑

i=1

t(i)αexp (
∑
β∈A

xβt(i)β)mk.



620 C.-G. Ambrozie

By Lemma 8, for each k ≥ 1 there are λα = λα(k) (α ∈ A) such that the
vector y = (yi)N

i=1 with yi = exp (
∑

α∈A λαaiα) is in K, see (10). Take
xα = xαk := λα(k)mk. Set x = x(k) = (xαk)α∈A. Thus

yi = exp (
∑
α∈A

xαt(i)α), i = 1, . . . , N. (19)

Since y ∈ K, y ∈ Zα for all α ∈ A. Using (19) and Fα(y) = 0 we obtain

N∑
i=1

aiαx0
i =

N∑
i=1

aiαyi =
N∑

i=1

t(i)αmkexp (
∑
β∈A

xβt(i)β) = σαk(x(k)). (20)

By (8) and (20), we have then sets x(k) = (xαk)α∈A (k ≥ 1) such that

| σαk(x(k))− γα |→ 0 as k →∞, (α ∈ A). (21)

We apply Lemma 11. Set

T ′ = T ′
k := {t(i) | i = 1, . . . , N, c9 ≤ yi ≤ c10}.

Hence P (T ′) ≥ c11, see (14) and the definition (4) of P . There is k0 ≥ 1 such
that c11 > c6N

−1
k for all k ≥ k0. By the definition of T ′ and (10), we obtain

c9 ≤ exp
∑

α∈A λαaiα ≤ c10 for every i = 1, N such that t(i) ∈ T ′. Since
aiα = t(i, k)αmk and λα(k)mk = xαk, we get

∑
α∈A xαkt(i, k)α ∈ [ln c9, ln c10].

Define qk ∈ PA by qk(t) =
∑

α∈A xαktα (t ∈ T ). Thus | qk(t) |≤ C for all
t ∈ T ′

k, where C = max(| ln c9|, | ln c10|). By Lemma 6, in each T ′
k (k ≥ k0)

there exist some points t1 = t1(k), . . . , ta = ta(k) such that the estimates (6)
hold. Let L be the Lagrange–type interpolation polynomial defined in Lemma
7 for vi := qk(ti). Then L(ti) = qk(ti) for i = 1, . . . , a. Since δti , i = 1, . . . , a
is a basis of P ∗

A (see Lemma 4, (2)), then L = qk. By (7), we obtain the
estimates

|qk|∞ ≤ c7 P (T ′)(1−a)/nC ≤ c7c
(1−a)/n
11 C =: C ′ (22)

where the C ′ = C ′(T, a, f) is independent of k ≥ k0. Now define ν on PA by

ν(p) = max
α∈A

| xα | (p = p(t) =
∑
α∈A

xαtα).

Since T has nonempty interior, dim PA = a and ν is a well–defined norm, see
Remark 2. The norms | · |∞ and ν(·) are equivalent modulo some constants of
type c. Then (22) implies that all the sequences (xαk)k≥1, α ∈ A are bounded.
Hence by successively considering subsequences we can assume them conver-
gent. Take xα ∈ R (α ∈ A) such that limk→∞ xαk = xα. Set x = (xα)α∈A.
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Hence gα(t, x(k)) → gα(t, x) (k → ∞) for any α ∈ A, uniformly with respect
to t ∈ T (=bounded). Since the convergence is uniform on T , we easily con-
clude σαk(x(k)) − σαk(x) → 0 as k → ∞ (see (9), too). Together with (21),
this implies σαk(x) − γα → 0. Now for each α ∈ A, σαk(x) is the Riemann
sum of the function gα(·, x). Letting k →∞, we obtain

∫
T

gα(t, x) dm(t) = γα

for any α ∈ A. Then
∫

T
tαexp (

∑
β∈A xβtβ) dm(t) = γα (α ∈ A).

Notation. For f ∈ L1
+(T ) with

∫
T

f dm = 1, set H(f) = −
∫

T
f ln fdm ∈

[−∞,+∞) if either max(f ln f, 0) or min(f ln f, 0) has finite integral.

Lemma 13. [20] Let f, g ∈ L1
+(T ), T+ ={t ∈ T |f(t) > 0}. If

∫
T+

(f−g) dm ≥
0, then ∫

T+

f ln(f/g) dm ≥ 0

with equality if and only if f = g almost everywhere with respect to m.

Theorem 14. The following statements are equivalent:
(1) there are representing densities f ∈ L1

+(T ) of γ,∫
T

tαf(t) dt = γα (α ∈ A); (23)

(2) there exists a representing density f∗ ≥ 0 such that

H(f∗) = max{H(f) | f = solution of (23) };

(3) there exist some real numbers xβ, β ∈ A such that∫
T

tαexp (
∑
β∈A

xβtβ) dt = γα (α ∈ A). (24)

In this case:
(1’) the maximum entropy representing density f∗ is unique;
(2’) the set x := (xα)α∈A is uniquely determined by the equations (24);
(3’) we have the identity

f∗(t) = exp (
∑
β∈A

xβtβ) (t ∈ T ). (25)

Proof. The main implication (1) ⇒ (3) holds by Theorem 12. To prove
(3) ⇒ (2) assume the existence of a solution x of (24). We use the idea of the
corresponding result from [20] concerning the case when T is an interval. Let f∗
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be defined by the equality (25). By (24), we have
∫

T
tαf∗(t) dm = γα (α ∈ A).

Let f be an arbitrary nonnegative representing density for γ, such that f is
Lebesgue integrable with respect to m. By Lemma 13 and the above equalities,

−
∫

T

f ln f dm ≤ −
∫

T

f ln f∗ dm = −
∫

T

f(t)
∑
α∈A

xαtαdm(t) = −
∑
α∈A

xαγα.

Then −
∑

α∈A xαγα is a fixed upper bound for H(f) over all f which sat-
isfy the equalities (23). This upper bound is attained at least for f = f∗;
namely, we have (2). Now (2) ⇒ (1) is trivial. Therefore (1), (2) and (3)
are equivalent. The uniqueness of the maximum entropy solution follows from
the strict convexity of H [20]. This provides the equality (25) also. Now
x = (xα)α∈A is uniquely determined by γ, see (25) and (1’) (or Proposition
15 from below).

Notation. Let Γ (resp. Γ′) denote the subset of all γ = (γα)α∈A ∈ Ra

that have representing densities in L1
+(T ) (resp. nonnegative representing

measures). Assume γ0 > 0. (The hypothesis γ0 = 1 was not essential in
Theorem 14.)

Proposition 15. For each α ∈ Zn
+ and x = (xα)α∈A ∈ Ra, let

gα(x) :=
∫

T

uα(t)exp (
∑
β∈A

xβuβ(t)) dm(t) (26)

and set g := (gα)α∈A. The function g is a real–analytic diffeomorphism of Ra

onto the open convex cone Γ, and Γ′ is the closure of Γ in Ra.

Proof. By Theorem 14, g : Ra → Γ is surjective. Note that

∂gα / ∂xβ = gα+β , uαuβ = uα+β . (27)

For x, y ∈ Ra we have g(y)− g(x) = (
∫ 1

0
g′(sy + (1− s)x) ds)(y− x) ds, where

g′ is the differential of g. If 〈·, ·〉 denotes the scalar product in Ra, then

〈g(y)− g(x), y − x〉 =
∫ 1

0

∑
α,β∈A

∂gα / ∂xβ(sx + (1− s)y)(yβ − xβ)(yα − xα) ds.

By using also (26) and (27), the previous equality provides

〈g(y)− g(x), y − x〉 =∫ 1

0

∫
T

∑
α,β∈A

uα(t)uβ(t)exp(
∑
δ∈A

(syδ+(1−s)xδ)uδ(t))(yβ−xβ)(yα−xα) dm(t) ds
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=
∫ 1

0

∫
T

(
∑
α∈A

uα(t)(yα − xα))2 exp(
∑
δ∈A

(syδ + (1− s)xδ)uδ(t)) dm(t) ds ≥ 0.

If g(y) = g(x), the right hand side above is null. Hence the polynomial
p(t) :=

∑
α∈A tα(yα − xα) vanishes on T . Since p(t) ≡ 0, y = x. Thus g

is injective. Let v = (vα)α∈A with g′(x)v = 0. Then 〈g′(x)v, v〉 = 0; namely,∑
α,β∈A ∂gα / ∂xβ(x)vαvβ = 0. Using (26) and (27) again, this implies∫

T

(
∑
α∈A

uα(t)vα)2exp (
∑
δ∈A

xδuδ(t)) dm(t) = 0.

This is possible only if the polynomial
∑

α∈A tαvα is null. Hence v = 0.
Therefore g′(x) is injective for any x. Then we can apply the implicit function
theorem to derive that g is a parametrization of Γ as claimed. By Alaoglu’s
theorem, Γ′ is closed. Then Γ ⊂ Γ′. Let γ′ ∈ Γ′ be arbitrary. Then γ′ =
(γ′α)α∈A with γ′α =

∫
T

uαdµ′ for a nonnegative measure µ′. To prove that
γ′ ∈ Γ, let ε > 0 be arbitrary. By the Krein–Milman’s theorem there exist
t′(k) ∈ T and λ(k) > 0, k = 1, . . . ,K such that |

∑K
k=1 λ(k)uα(t′(k))−γα |< ε

(α ∈ A). In particular for α := 0 we obtain |
∑K

k=1 λ(k) |< γ0 + ε. There are
t(k) ∈ T \ ∂T such that | t(k)− t′(k) |< ε for k = 1, . . . ,K. We have also

| uα(t(k))− uα(t′(k)) |≤ C | t(k)− t′(k) |

for a finite constant C = C(T,A). The previous inequalities give

|
K∑

k=1

λ(k)uα(t(k))− γα |≤|
K∑

k=1

λ(k)(uα(t(k))− uα(t′(k)) | +

|
K∑

k=1

λ(k)uα(t′(k))− γα |< (γ0 + ε)Cε + ε.

By convoluting the measure
∑K

k=1 λ(k)δt(k) with a test function ϕ ∈ C∞
0 (Rn)

sufficiently close to δ in P ∗
A and with enough small support, we obtain an

absolutely continuous measure µ of support contained in T \ ∂T and whose
moments γα =

∫
T

uαdµ satisfy an estimate of the form | γα − γ′α |≤ Cε. Set
γ := (γα)α∈A (∈ Γ) and note that ε was arbitrary. �

Notation. Let T denote the unit circle. Let (eiθ1 , . . . , eiθn) be the variable
in Tn. Let Tn be endowed with the measure m := dθ1 . . . dθn. Take T ⊂ Tn

closed, with nonempty interior, such that m(∂T ) = 0. Let A ⊂ Zn be a finite
subset such that 0 ∈ A and A = −A. Let γ = (γα)α∈A with γα ∈ C such that
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γ−α = γα for all α ∈ A. Assume γ0 > 0. Set uα(z) := zα = zα1
1 . . . zαn

n for
z = (eiθ1 , . . . , eiθn) and α = (α1, . . . , αn) ∈ Zn.

Following word–for–word the lines of the case T ⊂ Rn, one easily proves
analogous of Theorems 12, 14 and Proposition 15 for trigonometric moments
on Tn, like Theorem 16 from below. We refer to [2] for Theorem 3 on Tn. To
deal with real moment functions, we take a partition A = A· ∪ (−A·) ∪ {0}.
Then use in proofs the sine and cosine uα–type functions 1, (zα + z−α)/2,
(zα − z−α)/ 2i (α ∈ A·). When T ⊂ Tn, the notation g(x) = γ for x, γ ∈ Ra

of Proposition 15 means that x, γ belong to the a–dimensional R–subspace of
Ca defined by x−β = xβ , β ∈ A. Set uα(eiθ1 , . . . , eiθn) = ei(α1θ1+···+αnθn).

Theorem 16. The following statements are equivalent:
(1) there exists a representing density f ∈ L1

+(T ) of γ, namely∫
T

ei(α1θ1+···+αnθn)f(eiθ1 , . . . , eiθn) dθ1 . . . dθn = γα (α ∈ A); (28)

(2) there exists a representing density f∗ ≥ 0 such that

H(f∗) = max{H(f) | f = solution of (28) };

(3) there are some complex numbers xβ with x−β = xβ (β ∈ A) such that∫
T

uα exp (
∑
β∈A

xβuβ) dθ1 . . . dθn = γα (α ∈ A). (29)

In this case:
(1’) the maximum entropy representing density f∗ is unique;
(2’) the set x := (xα)α∈A is uniquely determined by (29) and x−β = xβ;
(3’) we have the equality f∗ = exp (

∑
β∈A xβuβ).

Since the previous results were proved only for T compact, the existence
of the representing density f∗ on Rn or Tn is assumed below by hypotheses.

Theorem 17. Let T be Rn, resp. Tn. Let γα (α ∈ Zn
+, resp. Zn) have

a representing density f∗ = f∗(t) of the form f∗ = f∗,x = exp (
∑

α∈A xαuα)
with A finite (uα(t) = tα) . If T = Tn, suppose that x−α = xα (α ∈ A). If
T = Rn, assume f∗,x rapidly decreasing. Set xα = 0 for α 6∈ A. Then for any
A′ finite ⊃ A, the numbers xα (α 6= 0) can be uniquely determined from the
linear system ∑

β∈A′\{0}

βjγα+β xβ = vj α (α ∈ A′ \ {0}, 1 ≤ j ≤ n), (30)
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where vj α = −(αj + 1)γα if T = Rn, while vj α = −αjγα and A′ = −A′ if
T = Tn. Also, x0 = ln(γ0/

∫
T

exp (
∑

α∈A′\{0} xαuα)dm).

Proof. Let T = Rn. Let ej ∈ Zn, j = 1, . . . , n denote the canonical basis.
Set x = (xα)α∈Zn

+
. Since f∗,x(t) := exp (

∑
α∈A′ xαuα(t)) is a representing

density of (γα)α∈Zn
+

and f∗,x ∈ S(Rn), then by the Leibniz–Newton formula∫
T

∂

∂tj
[uδ(t)exp (

∑
β∈A′

xβuβ(t) ] dt = 0 (δ ∈ Zn
+, 1 ≤ j ≤ n).

Compute the derivatives under the integral using ∂uδ/∂tj = δjuδ−ej
. Then

integrate term by term and use the notation α = δ − ej ∈ A′ \ {0} to obtain
(30), that therefore must be compatible. To prove that (30) is determined, it
suffices to show that its only solution is 0. Let y = (yα)α∈A′\{0} such that∑

β∈A′\{0}

βjγα+βyβ = vj α (α ∈ A′ \ {0}, 1 ≤ j ≤ n). (31)

For each j and α multiply (31) by βjyα and sum over α ∈ A′ \ {0}. Hence∑
α,β∈A′\{0}

γα+ββ2
j yαyβ = 0 (1 ≤ j ≤ n).

Using γα =
∫

T
uαf∗,x dm and uα+β = uαuβ , we get∫

T

(
∑

β∈A′\{0}

βjyβuβ(t))2exp (
∑
ε∈A′

xεuε(t)) dm(t) = 0.

Hence
∑

β∈A′\{0} βjyβuβ(t) = 0 for all t ∈ T . Then βjyβ = 0 for all j and
β. For any β 6= 0 there is j with βj 6= 0, and so yβ = 0. Thus y = 0.
The same proof works as well for T = Tn. Namely, use ∂uδ/∂θj = iδjuδ to
obtain the corresponding system (30). We have to prove that the only set
y = (yα)α∈A′\{0} satisfying the system (31) and the conditions y−β = yβ ,
β ∈ A′ = −A′ is y = 0. Multiply (31) by βjyα and sum over α ∈ A′ \ {0} to
obtain ∫

T

|
∑

β∈A′\{0}

βjyβuβ |2 exp (
∑
ε∈A′

xεuε) dm = 0 (1 ≤ j ≤ n).

Use the linear independence of uβ in PA′ and proceed as in the first part.
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Remark 18. Suppose that we want to identify the joint repartition fm :=
P ◦(V1, . . . , Vn)−1 of n random variables V1, . . . , Vn with values in R (resp. T),
where m is the Lebesgue measure on T := Rn (resp. Tn). We assume them to
have an unknown degree of correlation which in some sense is finite. Namely,
suppose that the density f ∈ L1(T ) has the form f = exp (

∑
α∈A xαuα) for a

finite set of parameters xα (α ∈ A), where uα(t) = tα (t ∈ T ). More precisely,
xα ∈ R for α ∈ Zn

+ when T = Rn, while x−α = xα ∈ C for α ∈ Zn when
T = Tn. We can identify A (and so f) if we know sufficiently many moments

γα :=
∫

uα ◦ (V1, . . . , Vn) dP (=
∫

T

uα(t)f(t) dm)

of V1, . . . , Vn, by solving the (compatible and determined) linear system (30)
corresponding to α, β ∈ A′ \ {0} for a set A′ enough large (so that A′ ⊃ A)
and letting x = (xα)α∈A′ (due to the uniqueness we will get xα = 0 for all
α 6∈ A).
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