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Abstract

We give a characterization of the quantization dimension of Borel probabil-
ity measures onRd in terms ofε-quantization numbers. Using this concept,
we show that the upper rate distortion dimension is not greater than the upper
quantization dimension of order one. We also prove that the upper quantiza-
tion dimension of a product measure is not greater than the sum of that of its
marginals. Finally, we introduce the notion of theε-essential radius for a given
measure to construct an upper bound for its quantization dimension.

1 Introduction

Quantization problems originate in engineering technologies such as signal process-
ing or data compression. In return, mathematical results concerning quantization
have a large variety of applications to other sciences (see [5]). Mathematically, the
quantization problem is to approximate a given probability measureµ by a finitely
supported probability measureν with respect to theLr–Wasserstein (or Kantorovich)
metric given by

ρr (µ, ν) := inf
Q

(∫
‖x− y‖r

dQ (x, y)
)1/r

,

where the infimum is taken over all Borel probability measuresQ on Rd × Rd with
marginalsµ, ν, and1 ≤ r < ∞. One of the main goals is to determine then-th
quantization error

Vn,r (µ) := inf
ν∈Pn

(ρr (µ, ν))r
,
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wherePn denotes the set of probability measures with at mostn ∈ N supporting
points. Note that this number is also determined by the following formula

Vn,r(µ) = inf
{∫

min
a∈α

‖x− a‖r
dµ : α ⊂ Rd, card(α) ≤ n

}
, (1.1)

which is more suitable for our purposes (cf. [2, Lemma 3.1]). The efficiency of this
approximation can be expressed by the convergence rate ofen,r (µ) := (Vn,r(µ))1/r

tending to0 asn increases. This leads to the notion of quantization dimension first
introduced by ZADOR (cf. [9]). For a Borel probability measureµ on Rd fulfilling
themoment condition

∫
‖x‖r

dµ < ∞ theupperandlower quantization dimension
of µ of orderr ≥ 1 are defined by

Dr(µ) := lim sup
n→∞

log n

− log en,r(µ)
, Dr(µ) := lim inf

n→∞

log n

− log en,r(µ)
.

Theupperand lower quantization dimension of order infinityare defined in the
same fashion by replacingen,r(µ) with then-th covering radiusen,∞(µ) given by

en,∞(µ) := inf

{
sup

x∈supp(µ)

min
a∈α

‖x− a‖ : α ⊂ Rd, card(α) ≤ n

}
,

wheresupp(µ) denotes the topological support of the measureµ. Several authors,
especially GRAF and LUSCHGY, have treated the quantization dimension systemati-
cally (see e.g. [1, 2, 3, 4, 7, 8]).

This paper is organized as follows. In Theorem 2.1 we give as the main result
a description of the quantization dimension of finite order in terms of quantization
numbers defined in (2.1) below. As a first application of this theorem we solve a
question on the upper rate distortion dimension which is left open in [2, p. 163].
As a second application we prove an inequality for the upper quantization dimension
of product measures. Finally, we introduce theε-essential radius of orderr of a
probability measure to give an upper bound for its quantization dimension by theε-
essential covering rate. An example is included to show that our concept can be used
to give a good upper bound for the quantization dimension when ther-th moment is
finite but all the(r + δ)-moments,δ > 0, are infinite.

2 Quantization Numbers

For r ∈ [1,∞] let us call

nr,ε(µ) := inf{n ≥ 1 : en,r(µ) ≤ ε} (2.1)
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the ε-quantization number ofµ of order r. Note that this quantity has previously
been used in the proof of [2, Theorem 11.10]. From [2, Theorem 11.7] we already
know that

D∞(µ) = lim sup
n→∞

log n∞,ε(µ)
− log ε

, D∞(µ) = lim inf
n→∞

log n∞,ε(µ)
− log ε

.

It is natural to ask whether analogous equalities also hold for the quantization dimen-
sion of finite order. We state the answer in the following theorem.

Theorem 2.1. Let1 ≤ r < ∞, and letµ be a Borel probability measure onRd with∫
‖x‖r

dµ < ∞. Then fornr,ε(µ) defined as above we have

Dr(µ) = lim sup
ε→0

log nr,ε(µ)
− log ε

and Dr(µ) = lim inf
ε→0

log nr,ε(µ)
− log ε

.

The proof of this theorem relies on an elementary observation, stated in the fol-
lowing lemma.

Lemma 2.2. Let (βn)n≥1 be a non-increasing sequence of non-negative real num-
bers with limn→∞ βn = 0 and defineB (ε) := inf {n ∈ N : βn ≤ ε}. Suppose
either of the two conditions holds.

1. There existsN ≥ 1 such thatβn = 0 for all n ≥ N .

2. The sequence(βn)n≥1 is strictly decreasing.

We then have

lim sup
n→∞

log n

− log βn
= lim sup

ε→0

log B (ε)
− log ε

, lim inf
n→∞

log n

− log βn
= lim inf

ε→0

log B (ε)
− log ε

.

PROOF. First suppose that Condition 1 holds. Without loss of generality we assume
that N is the smallest integer fulfilling Condition 1. IfN = 1, then the lemma
trivially holds. Otherwise we haveβN−1 > 0. Since for any0 < ε < βN−1, we have
B (ε) = N andβN = 0, the equalities in the lemma hold.

Now we assume that(βn)n≥1 is strictly decreasing. Then for alln ∈ N we have
βn > 0 and by the definition ofB (ε), we know that

(I) βB(ε) ≤ ε, (II) βB(ε)−1 > ε, and (III) B(β(n)) = n.
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It follows that

lim sup
n→∞

log n

− log βn

by (III)
= lim sup

ε→0

log B (ε)
− log βB(ε)

by (I)
≤ lim sup

ε→0

log B (ε)
− log ε

by (II)
≤ lim sup

ε→0

log B (ε)
− log βB(ε)−1

= lim sup
ε→0

log (B (ε)− 1)
− log βB(ε)−1

by (III)
= lim sup

n→∞

log n

− log βn
,

proving the first equality stated in the lemma. Since the argument above also holds if
we interchange “lim sup” with “ lim inf”, the second equality in the lemma follows.

PROOF OFTHEOREM 2.1. For any Borel probability measureµ fulfilling the mo-
ment condition

∫
‖x‖r

dµ < ∞, which is additionally supported on a set with infinite
cardinality, we have that(en,r(µ))n∈N is a strictly decreasing sequence converging to
zero. This is a direct consequence of [2, Theorem 4.1, Theorem 4.12, Lemma 6.1]).
Hence, Condition 2 of Lemma 2.2 is satisfied for this sequence.

If on the other handcard supp (µ) < ∞, then clearly Condition 1 of Lemma 2.2
is satisfied. Combining both observations the theorem follows.

Remark.We remark that the crucial property of strict monotonicity is in general not
shared by the sequence of covering radiien,∞(µ). This follows from a simple counter
example - the classical Cantor set - whereen,∞(µ) = en−1,∞(µ) for infinitely many
n ∈ N.

3 Applications

In this section, we will use the observation of Theorem 2.1 to prove four propositions,
stated within the following three subsections. In there we make use of the notion of
n-optimal sets. If the infimum in the definition (1.1) ofVn,r(µ) is attained for some
setα, then we callα ann-optimal set of orderr. The collection of alln-optimal sets
of orderr is denoted byCn,r(µ). Note that under the moment condition

∫
‖x‖r

dµ <
∞ the setCn,r(µ) is never empty and that we havelimn→∞ Vn,r(µ) = 0.

Rate Distortion Dimension

Let us recall a question left open in [2] concerning an upper bound for the upper rate
distortion dimension. We start by giving its definition.

Again, letµ be a Borel probability onRd with
∫
‖x‖r

dµ < ∞ andQ a Borel
probability onRd × Rd. By Q1, Q2 we denote the first and second marginal ofQ,
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respectively. IfQ1 = µ, then theaverage mutual informationI(µ,Q) of Q is given
by

I(µ,Q) :=
∫

h(x, y) log h(x, y) d(µ⊗Q2)(x, y)

wheneverQ is absolutely continuous with respect toµ⊗Q2 andh is the correspond-
ing Radon-Nikodym derivative, otherwiseI(µ,Q) := ∞. Now, theupperandlower
rate distortion dimension of orderr of µ are defined to be

dimR(µ) := lim sup
ε→0

Rµ,r(εr)
− log ε

, dimR(µ) := lim inf
ε→0

Rµ,r(εr)
− log ε

,

whereRµ,r(t) is therate distortion function of orderr defined by

Rµ,r(t) := inf
{

I(µ,Q) : Q1 = µ,

∫
||x− y||r dQ(x, y) ≤ t

}
.

KAWABATA and DEMBO proved in [6] that the upper and lower rate distortion di-
mension do not depend onr and are equal to the upper and lower Rényi information
dimension respectively. In [2, Theorem 11.10] it is proved that

dimR(µ) ≤ D1(µ) ≤ Dr(µ).

The following proposition covers the corresponding inequalities for the upper rate
distortion dimension questioned in [2] and will prove to be a straightforward conse-
quence of Theorem 2.1.

Proposition 3.1. Let 1 ≤ r < ∞ and letµ be a Borel probability measure onRd

with
∫
‖x‖r

dµ < ∞. Then we have

dimR(µ) ≤ D1(µ) ≤ Dr(µ).

PROOF. We use the fact from [2, p. 163] thaten,r(µ) ≤ ε impliesRµ,r(εr) ≤ log n.
By observing the definition ofnr,ε(µ) = inf{n ≥ 1 : en,r(µ) ≤ ε} we clearly have
Rµ,r (εr) ≤ log nr,ε(µ). It follows that

dimR(µ) ≤ lim sup
ε→0

log nr,ε(µ)
− log ε

.

Thus, the inequalities follow from Theorem 2.1.
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Quantization Dimension of Product Measures

As another application we will give bounds for the upper quantization dimension of
product measures. In [2, Lemma 4.15], the authors have already studied the relation-
ship between then-th quantization error of a random variable onRd and that of its
one-dimensional marginals, but the quantization dimension of product measures is
not considered there.

Let µ1, µ2 be Borel probability measures respectively onRd1 , Rd2 . Let µ :=
µ1⊗µ2 be the product measure ofµ1, µ2 onRd1+d2 . Especially, we haveµ(A×B) =
µ1(A)µ2(B) for all measurable setsA andB. Let‖ · ‖1, ‖ · ‖2 be two arbitrary norms
respectively onRd1 , Rd2 . For anyw = (x, y) ∈ Rd1+d2 we define

‖w‖ := ‖x‖1 + ‖y‖2 .

Then‖ · ‖ is a norm onRd1+d2 . Since, on finite-dimensional spaces, quantization
dimensions do not depend on the norms used, we will henceforth adopt the norms
introduced above.

Proposition 3.2. Let 1 ≤ r < ∞, and letµi be a Borel probability measure onRdi

satisfying the moment condition
∫
‖x‖r

dµi < ∞, i = 1, 2. Then

max
{
Dr(µ1), Dr(µ2)

}
≤ Dr(µ1 ⊗ µ2) ≤ Dr(µ1) + Dr(µ2).

PROOF. Let α ∈ Cn,r(µ1 × µ2) be ann-optimal set of orderr and letα1, α2 re-
spectively denote the projections ofα ontoRd1 , Rd2 . Then clearlyα ⊂ α1 × α2 and
card(αi) ≤ n, i = 1, 2. Using this and the fact that(A + B)r ≥ Ar + Br for any
A,B ≥ 0 andr ≥ 1, we have

Vn,r(µ1 ⊗ µ2) =
∫

min
a∈α

‖w − a‖r
d(µ1 ⊗ µ2)(w)

≥
∫

min
a∈α1×α2

‖w − a‖r
d(µ1 ⊗ µ2)(w)

≥
∫

Rd1

min
b∈α1

‖x− b‖r
1 dµ1(x) +

∫
Rd2

min
c∈α2

‖y − c‖r
2 dµ2(y)

≥Vn,r(µ1) + Vn,r(µ2) ≥ max {Vn,r(µ1), Vn,r(µ2)} .

Hence, the first inequality follows. To show the second inequality, letβi ∈ Cni,r(µi)
for n1, n2 ∈ N. We then havecard(β1 × β2) = n1n2 such that by Fubini’s theorem
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we get

Vn1n2, r(µ1 ⊗ µ2) ≤
∫

Rd1×Rd2

min
a∈β1×β2

‖w − a‖r
d(µ1 ⊗ µ2)(w)

≤2r

∫
Rd1×Rd2

(min
b∈β1

‖x− b‖r
1 + min

c∈β2
‖y − c‖r

2) dµ1(x) dµ2(y)

=2r

∫
Rd1

min
b∈β1

‖x− b‖r
1 dµ1 + 2r

∫
Rd2

min
c∈β2

‖y − c‖r
2 dµ2

=2rVn1,r(µ1) + 2rVn2,r(µ2).

It follows that
nr,ε2(r+1)/r (µ1 ⊗ µ2)) ≤ nr,ε(µ1)nr,ε(µ2).

Using Theorem 2.1 we conclude

Dr(µ1 ⊗ µ2) = lim sup
ε→0

log nr,ε(µ1 ⊗ µ2)
− log ε

= lim sup
ε→0

log nr,ε2(r+1)/r (µ1 ⊗ µ2)
− log ε− ((r + 1)/r) log 2

≤ lim sup
ε→0

log nr,ε(µ1) + log nr,ε(µ2)
− log ε

≤Dr(µ1) + Dr(µ2).

An Upper Bound for the Quantization Dimension

Finally, we give an upper bound for the quantization dimension in terms of theε-
essential covering rate of orderr which involves theε-essential radius defined in
(3.1) below.

In general, the upper quantization dimension of a Borel probability measure on
Rd is not bounded byd if its support is not compact. This is illustrated by [2, Example
6.4], where the lower quantization dimension equals infinity since then-th quantiza-
tion error of orderr is comparable withlog n. On the other hand, for Borel probability
measuresµ with

∫
‖x‖r+δ

dµ < ∞ for some positiveδ we haveDr(µ) ≤ d (cf. [2,
Theorem 6.2]). In particular, if the absolutely continuous part with respect toλd does
not vanish, we know thatDr(µ) = d. By some straightforward modifications of [2,
Example 6.4] it is easy to show that for arbitrary larges ∈ [0,∞] there exists a Borel
probability measureµ with Dr(µ) = s. Therefore, it is significant to examine when
the upper quantization dimension is finite or even bounded byd.
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We define theε-essential radius ofµ of orderr by

Rr,ε(µ) := inf

{
R :

∫
B(0,R)C

‖x‖r
dµ < εr

}
, (3.1)

whereB(0, R) denotes the closed ball centered at0 with radiusR, andB(0, R)C

denotes its complement. Letmr,ε(µ) denote the smallest number of balls with radii
ε coveringsupp(µ) ∩B(0, Rr,ε(µ)). Theupperandlower ε-essential covering rate
are then respectively defined by

∆r(µ) := lim sup
ε→0

log mr,ε(µ)
− log ε

, ∆r(µ) := lim inf
ε→0

log mr,ε(µ)
− log ε

.

Proposition 3.3. Let 1 ≤ r < ∞, and letµ be a Borel probability measure onRd

fulfilling the moment condition
∫
‖x‖r

dµ < ∞. Then we have

Dr(µ) ≤ ∆r(µ), Dr(µ) ≤ ∆r(µ).

PROOF. For anyε > 0, by the moment condition, there existsR > 0 such that∫
B(0,R)C

‖x‖r
dµ < εr.

By the continuity of measures and the definition ofRr,ε(µ), we know that∫
B(0,Rr,ε(µ))C

‖x‖r
dµ ≤ εr.

Let mr,ε(µ) ∈ N be defined as above. Then there exists a collection ofmr,ε(µ)
balls with radiusε coveringsupp(µ) ∩B (0, Rr,ε (µ)). Let us denote the set of their
centers by{xi : 1 ≤ i ≤ mr,ε(µ)} we have

min
1≤i≤mr,ε(µ)

‖x− xi‖ ≤ ε,

while for any point outsideB(0, Rr,ε(µ)) we have

min
0≤i≤mr,ε(µ)

‖x− xi‖ ≤ ‖x− 0‖ = ||x||.

It follows that

Vmr,ε(µ)+1,r(µ) ≤
∫

min
0≤i≤mr,ε(µ)

‖x− xi‖r
dµ

≤
∫

B(0,Rr,ε(µ))

εrdµ +
∫

B(0,Rr,ε(µ))C

‖x‖r
dµ

≤εr + εr ≤ 2εr.

(3.2)
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By the definition ofnr,ε(µ), we immediately havenr,21/rε(µ) ≤ mr,ε(µ)+1 and by
Theorem 2.1 we conclude

Dr(µ) = lim sup
ε→0

log nr,ε(µ)
− log ε

= lim sup
ε→0

log nr,21/rε(µ)
− log ε− (1/r) log 2

≤ lim sup
ε→0

log mr,ε(µ)
− log ε

= ∆r(µ).

The inequality for the lower quantization dimension follows immediately by just re-
placing “lim sup” by “ lim inf”.

Remark.The inequality (3.2) in the above proof also shows the known fact that under
the moment conditionlimn→∞ Vn,r(µ) = 0.

Next, we illustrate Proposition 3.3 by an example.

Example. Let C be the middle-third Cantor set onR and ν the classical Cantor
measure. Letµi, i ∈ N be the Cantor measure on the Cantor set(C + 2i), where
C + 2i := {x + 2i : x ∈ C}, i.e, µi = ν ◦ S−1

i , whereSi : x 7→ x + 2i. Let
µ :=

∑∞
i=1 siµi, wheresi := c · (2ii11)−r and

c :=

( ∞∑
i=1

(2ii11)−r

)−1

.

Then we have
∫
‖x‖r

dµ < ∞ and
∫
‖x‖r+δ

dµ = ∞ for all δ > 0, but using
Proposition 3.3 we getDr(µ) < s + 1/10, wheres = dimH C. This can be seen as
follows. ∫

‖x‖r
dµ =

∞∑
i=1

si

∫
xr dµi =

∞∑
i=1

si

∫
[0,1]

(x + 2i)r dν

≤2rc
∞∑

i=1

1
i11r

< ∞

∫
‖x‖r+δ

dµ =
∞∑

i=1

si

∫
xr+δ dµi =

∞∑
i=1

si

∫
[0,1]

(x + 2i)r+δ dν

≥c
∞∑

i=1

2iδ

i11r
= ∞
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For anyε > 0, takek(ε) := [ε−r/(11r−1)] + 2, where[x] denotes the integer part of
x. Then it follows that ∫

B(0,2k(ε)+1)C

xr dµ < Arεr,

whereAr = 2rc, implying thatRr,Aε ≤ 2k(ε) + 1.
On the other hand, forε small enough, there exists some integerK ≥ 1 such that

3−K ≤ Aε < 3−K+1,

and hence each Cantor setC+2i can be covered by2K balls of radiiAε. Combining
this observations we get

mr,Aε(µ) ≤ k(ε) · 2K ≤ k(ε)2
− log(Aε)

log 3 +1.

It follows thatDr(µ) ≤ ∆r(µ) ≤ s + 1/10 < 1.

Proposition 3.3 provides us with an upper bound for the quantization dimension
by means of some covering number which is not difficult to calculate in many inter-
esting cases. However, by a careful examination of the proof, we find that we can
further refine the upper bound in terms of the quantization number. Letµr,ε be the

conditional probability measureµr,ε = µ( · ∩B(0,Rr,ε(µ)))
µ(B(0,Rr,ε(µ))) and write

`(µ) := lim sup
ε→0

log nr,ε(µr,ε)
− log ε

, `(µ) := lim inf
ε→0

log nr,ε(µr,ε)
− log ε

,

wherenr,ε(µr,ε) is theε-quantization number of orderr of µr,ε. Clearly, we have
nr,ε(µr,ε) ≤ mr,ε(µ).

Proposition 3.4. Letµ be a Borel probability measure onRd with
∫
‖x‖r

dµ < ∞.
Then

Dr(µ) ≤ `(µ), Dr(µ) ≤ `(µ).

PROOF. For anyε > 0 and eachn ∈ N note that∫
B(0,Rr,ε(µ))

min
1≤i≤n

‖x− ai‖r
dµ ≤

∫
B(0,Rr,ε(µ))

min
1≤i≤n

‖x− ai‖r
dµr,ε.

Thus, we havenr,2(1/r)ε(µ) ≤ nr,ε(µr,ε)+1 and the corollary follows from Theorem
2.1.
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