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BORSIK’S BILATERAL
QUASICONTINUITY OF FUNCTIONS OF
TWO VARIABLES

Abstract

In his lecture [1] Borsik introduces some notions of the bilateral
quasicontinuity of applications of topological spaces. In this paper I
define analogously the bilateral semi-quasicontinuities and investigate
some functions of two variables whose sections are bilaterally quasicon-
tinuous or bilaterally semiquasicontinuous.

Let (R,T.) be the set of all reals with the Euclidean topology T, and let
(X,Tx), (Y,Ty) be topological spaces.

A function h : X — R is quasicontinuous [res. upper semiquasicontinuous]
{lower semiquasicontinuous} at a point x € X if for every positive real n and
for every open set I containing x there is a nonempty open set J C I such that
h(J) € (h(x)—n, h(z)+7) [resp. h(J) C (~o0, hlx)-+n) {h(J) C (h(z)—1,0)}
(see [5, 6]).

A function f : R — R is said to be left-hand (right-hand) sided qua-
sicontinuous at a point z if for each real » > 0 and for each neighbor-
hood V € T, of f(z) there exists a nonempty set G C (x —r,z) N f~1(V)
(G C (z,x+7r)Nf1(V)) belonging to T.. A function f : R — R is bilaterally
quasicontinuous at z if it is both left-hand and right-hand sided quasicontin-
uous at this point.

Analogously, we can define the bilateral upper (or lower) semiquasiconti-
nuity of functions of a real variable.

In his talk [1] J. Borsik shows some possibilities to define a bilateral quasi-
continuity for functions defined on metric or topological spaces. His definitions
are the following;:
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A function f : X — Y is B-quasicontinuous at a point € X if for every
neighborhood V' of f(x) and for every open connected set A € Tx such that
x € cl(A) (here cl(A) denotes the closure of the set A) there exists an open
nonempty set G C AN f~1(V).

In [2] Borsik observes that if (X,Tx) is a locally connected space, then
B-quasicontinuity implies quasicontinuity.

In the case where X is a metric space, Borsik proposes also other gener-
alizations of the bilateral quasicontinuity of functions of real variable. One of
these is the following.

A function f : X — Y is S-quasicontinuous at x € X if for every neighbor-
hood V € Ty of f(x) and for every x # y € X there is an open nonempty set
G C S(y,d(z,y))Nf~1(V), where d denotes the metric in X and S(y,d(z,y)) =
{t € X;d(t,y) < d(z,y)}.

One of the more important theorems concerning quasicontinuity is the
following theorem of Kempisty ([5]).

Theorem 1. If the sections f,(t) = f(x,t) and fY(t) = f(t,y), z,y,t €R, of
a function f : R? — R are quasicontinuous, then f is also quasicontinuous on
(R2, T, x T,).

There are, however, functions f : R? — R having continuous sections f,
and fY, z,y € R, which are not B-quasicontinuous ([2], Th. 7). Moreover the
following theorem is proved in [2].

Theorem 2. Let (X,Tx) and (Y, Ty) be Baire locally separable metric spaces
and let (Z,T7) be a regular space. If the sections f, and f¥, x € X and
y €Y, of a function f : X XY — Z are S-quasicontinuous, then f is S-
quasicontinuous.

In regards to this theorem, we observe that there is a function f : R? — R
which has continuous sections f, and fY, where x,y € R, and which is not
B-quasicontinuous. The following theorem, however, is true.

Theorem 3. Suppose that (X, Tx) is a locally connected Baire space, (Y, Ty)
is a topological space such that each point y € Y has a neighborhood with a
countable basis and (Z,Tz) is a topological regular space. Let f : X XY — Z be
a function such that the sections f,(t) = f(z,t) and fY(z) = f(z,y), z,z € X
and t,y € Y, are B-quasicontinuous. Then f satisfies the following condition:

(a) for each point (z,y) € X xY and each neighborhood W € Tz of f(z,y)
and for all connected sets U € Tx and V € Ty such that x € cl(U)
and y € cl(V) there are nonempty sets G € Tx and H € Ty such that
GxHCf1W)nUxV).
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PRrROOF. Fix a point (z,y) € X x Y, a set W € T containing f(x,y) and
connected sets U € Tx and V € Ty such that z € cl(U) and y € cl(V). The
topological space (Z,T7) is regular, so there are disjoint sets Wy, Wy € Ty
such that f(z,y) € Wy € W and Z \ W C Ws. Since the section f¥ is B-
quasicontinuous at x, there is a nonempty set A € Tx which is contained in
(f¥)"1(W1) N U. From the hypothesis of our theorem it follows that there
is a set V3 € Ty having a countable basis (B,) of subsets of Ty and such
that y € V3 C V. Since the sections f; are B-quasicontinuous at y, for each
point ¢ € A there is a set By, such that fi(By)) C Wi. But (X,Tx) is a
Baire space, so the set A is of the second category. Since the basis (B,,) is
countable, there is a positive integer k such that the set E = {t € A;n(t) = k}
is of the second category. There is a nonempty set G € Tx contained in
A such that the intersection £ N G is dense in G. Let H = B,. We will
prove that f(G x H) C W. Of course, assume in order to obtain a contradic-
tion, that there is a point (z1,y1) € G x H such that f(z1,y1) ¢ W. Then
f(z1,y1) € Wa. Since the section f¥' is quasicontinuous at x, there is a
nonempty set Uy € Tx contained in G such that f¥1(U;) C Wy. But the set
E NG is dense in G and U; € T is nonempty and contained in G, so there is
a point o € ENU;. Then f(xs,y1) € W1, is a contraction with f¥(Uy) C Wy
and W1 NWy = 0. So, f(G x H) C W and the proof is completed. O

In next example we show that some hypotheses of the last theorem are
important.

Example 1. Let X =Y = Z = R, let Tx = Ty be the density topology
in R (2, 7]) and let Tz be the Euclidean topology in R. There is ([3]) an
approzimately continuous function g : R — [0,1] such that the set g=1(0) is
dense and of Lebesgue measure zero and g(R) = [0,1]. Let f(x,y) = g(x —y).
Then the sections f, and fY, z,y € R, are continuous (as mappings from
(R, Ty) to (R,T.)). There is a point (u,v) such that f(u,v) =1.

ProOF. We will prove that f is not quasicontinuous at (u,v). For this assume,
to the contrary, that f is quasicontinuous at (u,v). Since f(u,v) = 1, there
are nonempty sets A, B € T, such that f(z,y) > 3 for (z,y) € Ax B. But the
sets A, B € Ty are nonempty, so they are of positive Lebesgue measure and
consequently, by the Steinhaus theorem from [7], the set A— B = {z —y;x €
A, y € B} has nonempty Euclidean interior int(A — B). Since the set g~1(0)
is dense, there is a point z € g71(0) N (A — B). Then z = x — y, where = €
A, y€ Bandg(z) = g(x—y) = f(z,y) =0 < L. This contradicts the relation
(z,y) € A x B and this contradiction proves that f is not quasicontinuous at
(u,v). O
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Now we can introduce, similarly to Borsik’s B-quasicontinuity, the notions
of upper and lower B-semiquasicontinuities of real functions.

A function f : X — R is upper (resp. lower) B-semiquasicontinuous at
a point © € X if for each real > 0 and each connected set A € Tx such
that = € cl(A) there is a nonempty set G € Tx contained in A for which
F(G) € (=00, f(z) + 1) (resp. F(G)C (f(x) -, o).

As in Borsik’s article [2] for the quasicontinuity, we can observe that if
(X,Tx) is a locally connected space, then the upper (lower) B semiquasicon-
tinuity of f : X — Y implies the upper (lower) semiquasicontinuity of f.

Let £(X,R) be the family of all functions g : X — R which are upper and
lower B-semiquasicontinuous at each point z € X.

In Theorems 4 and 5 we suppose that (Y, Ty ) is a locally connected Baire
topological space and (X, Tx) is a second countable topological space.

Theorem 4. Let f : X XY — R be a function such that the sections
fv e E(X,R) fory € Y. If the sections f,, x € X, are upper (lower) B-
semiquasicontinuous, then for all points (u,v) € X xY, for all connected sets
V € Tx and all connected sets W € Ty with u € cl(V) and y € cl(W), and for
each real n > 0 there are nonempty sets G € Tx and H € Ty such that GXxH C
VxW and f(G x H) C (=00, f(u,v) +n) (f(Gx H) C (f(u,v) —n,00)).

Proor. Fix a point (z,y) € X X Y, a positive real  and connected sets
V e Ty and W € Y such that z € cl(V) and y € cl(W). Let (V,,) be a
countable basis of T'x open sets in V.

Since the section f, is upper B-semiquasicontinuous at y, there is a non-
empty open set P C W such that f(x,u) < f(z,y)+ 7 for u € P. The sections
f*, u € P, are also upper B-semiquasicontinuous at x, so for each point u € P
there is a nonempty open set V,,(,) C V such that f(v,u) < f(z,u) + § for
v € Vy(u)- Since (Y, Ty) is a Baire space, the set P is of the second category.
So there is a positive integer n such that the set P, = {u € P;n(u) = n} is
of the second category. There is a nonempty set @ C int(cl(P,)) belonging to
Tx.

If (v, 1) € Vo x Py, then f(v,u) < f(w,u)+2 < f(z,y)+ 347 = f(2,y)+1.
If (v,u) € Vi, x @, then f(v,u) < f(z,y) + 4 < f(z,y) + 7. Really, if there
is a point (vo,up) € Vi x Q with f(up,v0) > f(x,y) + &, then from the
lower semi-quasicontinuity of the section f,, at wo follows then there is a
nonempty set @1 C @ belonging to Ty such that f(vo,u) > f(z,y) + 2 for
u € Q1. Consequently, there is a point u; € P, N Q. Since f(vg,u1) >
f(z,y) + Z, we obtain a contradiction and the proof in the case of the upper
semi-quasicontinuity is completed. The proof of the lower semi-quasicontinuity
is analogous. O

As an immediate corollary we obtain the following.
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Theorem 5. If the sections f, € E(Y,R), z € X and f¥ € E(X,R), y €Y,
then for each real n > 0, for each point (u,v) € X XY and for all connected
sets V € Tx and W € Ty with u € cl(V) and y € cl(W) there are nonempty
sets G1,Go € Tx and Hy, Hy € Ty such that GiUGy, CV, HHUHy C W,
f(Gl X Hl) - (*OO,f(”qu) + 77) and f(GZ X H?) C (f(u,v) - 77700)'
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