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A CHARACTERIZATION OF SINGULAR
MEASURES

Abstract

Denote by µ a probability Borel measure on the real line and by
τc the translation by c. We show that µ is singular with respect to
Lebesgue measure if and only if the set of those c for which µ and τcµ
are mutually singular is dense (Theorem 1). Another characterization
of singularity (Theorem 10.) is the existence of a set of full µ measure
that has continuum many disjoint translates. This result is also linked
to some known results about σ-porous sets.

Kakutani [2] has an old and famous theorem concerning the singularity or
mutual absolute continuity of infinite product measures. We borrow the main
tool of his investigation, namely the “inner product” ρ of probability measures
defined on the same measurable space,

ρ(µ, ν) =
∫ (

dµ

dπ

)1/2(
dν

dπ

)1/2

dπ

where both µ, and ν are absolutely continuous with respect to the measure π.
ρ does not depend on the choice of π, so if it makes the considerations easier
we may assume that π = µ + ν.

The two probability measure µ, ν are the same if ρ(µ, ν) = 1 and mutually
singular if ρ(µ, ν) = 0.

In what follows T denotes R/Z, the circle group and λ, Lebesgue (Haar)
measure on T. τc denotes translation by c; i.e., τc(x) = x + c and τcµ stands
for measure defined by τcµ(A) = µ(A− c) for any c. Also µ̄(A) = µ(−A).

One of the main theorems of the paper is the following assertion.

Theorem 1. Let µ be a Borel measure on T . Then µ is singular with respect
to Haar measure λ if and only if the set

M = {c ∈ T : µ ⊥ τcµ}

Key Words: singular measure, σ-porous set
Mathematical Reviews subject classification: 28A12, 28A35, 28A05
Received by the editors September 15, 2003
Communicated by: R. Daniel Mauldin

805



806 Vilmos Prokaj

is a dense, Gδ, of full Haar measure; i.e., λ(M) = 1.

The proof of Theorem 1 is based on some lemmas the aim of which is
to show that the non-negative real function f(c) = ρ(µ, τcµ) is upper semi-
continuous and that the integral mean of f is zero on any interval. These two
facts prove the necessity of the condition in Theorem 1 at once.

The opposite direction follows from two facts.

(i) If µ(A) =
∫

A
gdλ, then ρ(µ, τcµ) =

∫
T

√
g(x)g(x− c) dx. Therefore∫

T

f(c) dc =
∫

T

∫
T

√
g(x)g(x− c) dx dc =

( ∫
T

√
g

)2

> 0.

(ii) If µ = αµac + (1 − α)µs where µac � λ and µs ⊥ λ, then f(c) =
ρ(µ, τcµ) ≥ αρ(µac, τcµac).

Denote by M the family of Borel probability measures on T, and by w
the weak topology on M; i.e., the weakest topology on M such that for all
continuous functions h : T → R the mapping ν 7→

∫
h dν is continuous. With

this topology M is a compact metric space. In what follows any topological
notion in connection with M refers to the w topology.

Lemma 2. Let ν ∈M. The mapping c 7→ τcν is continuous.

Proof. It is enough to show that for any continuous function h : T → R the
composition

c 7→
∫

T

h d(τcν) =
∫

T

(τch) dν

is a continuous real function which follows from the uniform continuity of
h.

The next lemma essentially appears in [2]. We present here a simpler
martingale based proof for the sake of completeness.

Lemma 3. Let Fn be an increasing sequence of σ-algebras on T such that the
algebra ∪nFn generates the σ-algebra of Borel sets and let µ, ν two probability
measure on T. Then the sequence ρ(µ|Fn

, ν|Fn
) is decreasing and

ρ(µ, ν) = lim
n→∞

ρ(µ|Fn
, ν|Fn

)

Proof. Let π = (µ + ν)/2. Then (T, π) is a probability field and both

ξn =
dµ|Fn

dπ|Fn

and ηn =
dν|Fn

dπ|Fn
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are non-negative bounded martingales on it with respect to {Fn : n ∈ N} .
Therefore these martingales converge almost everywhere and in Lp (1 ≤ p <

∞) also. Moreover their limits are dµ
dπ and dν

dπ respectively, since ∪nFn gener-
ates the Borel σ-algebra.

By definition

ρ(µ|Fn
, ν|Fn

) =
∫ √

ξnηndπ|Fn
=

∫ √
ξnηndπ.

This last integral tends to ρ(µ, ν) by the dominated convergence theorem.
We also need that the sequence ρ(µ|Fn

, ν|Fn
) is decreasing. To see this we

use the conditional version of the Cauchy-Schwarz inequality; i.e.,

E(
√

ξn+1ηn+1|Fn) ≤
√

E(ξn+1|Fn)E(ηn+1|Fn) =
√

ξnηn

holds almost everywhere. Taking the expectation of both sides we get the
desired inequality.

Lemma 4. ρ : M×M→ R is upper semi-continuous.

Proof. We have to show that ρ is upper semi-continuous at any point of
M×M. So let µ0 and ν0 be two probability Borel measure on T and Fn be a
sequence of finite σ-algebras of Borel sets of T , such that ∪Fn is generating.
Moreover we can choose each Fn in such a way that for any A ∈ Fn we have
µ0(∂A) = ν0(∂A) = 0. Let ρn(µ, ν) = ρ(µ|Fn

, ν|Fn
). Since Fn is finite

ρn(µ, ν) =
∫ (

dµ|Fn

dπ|Fn

)1/2(
dν|Fn

dπ|Fn

)1/2

dπ|Fn =
∑

A∈A(Fn)

√
µ(A)ν(A) (1)

where π is as above and A(Fn) denotes the collection of atoms of Fn. Since Fn

was chosen in such a way that for each for A ∈ Fn the evaluation mapping µ 7→
µ(A) is continuous at µ0 and at ν0, equation (1) shows that ρn is continuous
at (µ0, ν0) for each n. ρ is a pointwise decreasing limit of the sequence ρn so
ρ is upper semi-continuous at (µ0, ν0).

From Lemmas 2 and 4 we have that f(c) = ρ(µ, τcµ) is upper semi con-
tinuous for any µ ∈ M. The next lemma deals with the integral mean of
f.

Lemma 5. Let I be an subinterval of T. Then
∫

I
f dλ = 0.
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Proof. For the proof we can assume that I is an interval of positive Haar
measure. Put

ν(A) =
1

λ(I)

∫
I

τcµ(A) dc

for any Borel set A. Then ν is the convolution of two probability measures one
of which is absolutely continuous with respect to the Haar measure. So ν is
a probability Borel measure. If λ(A) = 0, then λ(A− x) = 0 for all x ∈ T so
the application of the Fubini theorem

ν(A) =
1

λ(I)

∫
I

τcµ(A) dc =
1

λ(I)

∫
I

∫
T

χA(c + x) dµ(x) dc

=
1

λ(I)

∫
T

∫
I

χA(c + x) dc dµ(x) =
1

λ(I)

∫
T

λ((A− x) ∩ I) dµ(x) = 0

so ν is absolutely continuous with respect to the Haar measure. This means
that

0 = ρ(µ, ν) = lim
n

∑
A∈A(Fn)

√
µ(A)ν(A)

where Fn is a sequence of finite σ-algebras such that ∪nFn generates the Borel
σ-algebra. By the concavity of square root

√
ν(A) =

√
1

λ(I)

∫
I

τcµ(A) dc ≥ 1
λ(I)

∫
I

√
τcµ(A) dc,

so

1
λ(I)

∫
I

f(c) dc =
1

λ(I)

∫
I

ρ(µ, τcµ) dc

=
1

λ(I)

∫
I

lim
n

∑
A∈A(Fn)

√
µ(A)τcµ(A) dc

≤ lim
n

∑
A∈A(Fn)

√
µ(A)

λ(I)

∫
I

√
τcµ(A) dc

≤ lim
n

∑
A∈A(Fn)

√
µ(A)ν(A) = ρ(µ, ν) = 0.

Lemma 6. Let µ be a singular probability measure on T, I ⊂ T a nonempty
open interval and ε > 0. There exists a closed set F = −F such that µ(T \F ) <
ε, and I \ (F + F ) = I \ (F − F ) is non empty.
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Proof. For an arbitrary Borel measure ν on T let ν̄(A) = ν(−A). Since
λ = λ̄, we have that µ̄ and ν = 1

2 ( µ+ µ̄ ) is also singular with respect to Haar
measure λ. By Theorem 1 there is a c ∈ I such that ν and τcν are mutually
singular. So there is Borel set E ⊂ T such that ν(E) = 0 and τcν(T \E) = 0.
By regularity there are open sets A,B such that

E ⊂ A and ν(A) < ε/4,

T \ E ⊂ B and τcν(B) < ε/4.

Put F = T \ (A ∪ (−A) ∪ (B − c) ∪ (c−B)). F = −F is closed and

µ(T \ F ) = µ(A ∪ (−A) ∪ (B − c) ∪ (c−B))
≤ µ(A) + µ(−A) + µ(B − c) + µ(c−B) = 2ν(A) + 2τcν(B) < ε.

To prove that F +F does not fill up I it is enough to show that c /∈ F +F ;
that is, F ∩ (c − F ) = ∅, or (T \ F ) ∪ (T \ (c − F )) = T. This last equality
follows from the choice of A and B, i.e. A ∪B ⊃ E ∪ T \E = T, and the fact
that B ⊂ T \ (c− F ), A ⊂ T \ F.

Theorem 1 and Lemma 6 have the following interesting corollary.

Theorem 7. Let µ be a singular Borel probability measure on R. There is
a closed set E = −E of positive µ measure such that E + E = E − E is a
nowhere dense closed set.

Proof. Let η denote the canonical mapping from R to T = R/Z, (η is the
fractional part function) and µ0 = µ ◦ η−1. Let {In : n ∈ N} be the enumer-
ation of nonempty open subintervals of T with rational endpoints and εn > 0
such that

∑
εn < 1. By Lemma 6 there are closed sets Fn = −Fn such that

µ0(T \ Fn) < εn, and In \ (Fn + Fn) 6= ∅. Put F̃ = ∩nFn. It is clear that
F̃ = −F̃ is closed, µ0(F̃ ) > 0, F̃ + F̃ is closed and In \ (F̃ + F̃ ) 6= ∅. To
complete the proof let F = η−1F̃ .

As a corollary we give a new proof of the fact (proved originally by J.
Tkadlec [4]) that there is a closed non-σ-porous set E such that E + E is
nowhere dense, so contains no interval. Later we will also prove the existence
of a closed non-σ-porous set having continuumly many disjoint translates.
Usually both are considered as the property of the σ-ideal of σ-porous sets.
We show that these are rather the properties of the σ-ideal of the null sets of
singular probability Borel measures. They hold for σ-porous sets as there are
singular probability Borel measures taking value zero on porous sets (see [5]
and [3]).
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Corollary 8 (J. Tkadlec [4]). There is closed non-σ-porous subset E of the
real line, such that E + E is of first category.

Proof. It is well known that there is singular probability Borel measure µ
on the real line, such that each σ-porous set is of µ-measure 0 (see e.g. [5]).
So Theorem 7 shows the existence of such an E.

At the end of this note we also prove another characterization of singular
measures. We will use the following quite widely known lemma. For the sake
of completeness we give a proof rather than a reference.

Lemma 9. Let H be a set of first category on the real line. Then there is a
perfect set C such that (C − C) ∩H ⊂ { 0 } .

Proof. Clearly it’s enough to prove the lemma for H = ∪nFn where Fn

is closed and nowhere dense; moreover Fn ⊂ Fn+1. The set C will be given
with the help of a so called perfect scheme; i.e., a sequence of closed set
Cn ⊃ Cn+1 such that Cn is a disjoint union of closed intervals In,k and
|{l : In+1,l ⊂ In,k}| ≥ 2. Then C = ∩nCn is perfect. If Cn is defined in
such a way that (Cn −Cn)∩ Fn ⊂ [−1/n, 1/n], then (C −C)∩H ⊂ { 0 } also
follows.

Let C1 = [0, 1] = I1,1. It is clear that C1 − C1 ⊂ [−1, 1]. Assume that
Cn = ∪kIn,k is defined where the union is finite and disjoint. Using the
fact that Fn+1 is nowhere dense and closed one can easily see that if I, J
are two disjoint intervals, then there are intervals Ĩ ⊂ I, J̃ ⊂ J such that
(Ĩ − J̃) ∩ Fn+1 = ∅.

Using this we can decrease in finitely many steps the intervals In,k to Ĩn,k

such that (Ĩn,k−Ĩn,l)∩Fn+1 = ∅ provided that l 6= k, and
∣∣∣Ĩn,k

∣∣∣ < 1
2(n+1) . This

latest property implies that Ĩn,k− Ĩn,k ⊂ [−1/(n+1), 1/(n+1)]. Let In+1,2k−1

and In+1,2k be the two intervals remaining after the middle third of Ĩn,k is
deleted. It is clear that Cn+1 = ∪kIn+1,k ⊂ Cn and (Cn+1 − Cn+1) ∩ Fn+1 ⊂
[−1/(n + 1), 1/(n + 1)]. So the sequence (Cn) can be defined with the desired
properties and C = ∩nCn is a perfect set such that (C − C) ∩H ⊂ { 0 }.

Theorem 10. Let µ be a probability Borel measure on the real line. Then the
following statements are equivalent:

(i) µ is singular with respect to the Lebesgue measure.

(ii) For ε > 0 there is a closed set E with µ(E) > 1− ε and a perfect set C
such that {c + E : c ∈ C} is a family of disjoint sets.
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(iii) There is an Fσ set E of µ measure one, and a perfect set C such that
{c + E : c ∈ C} is a family of disjoint sets.

Proof. (ii) =⇒ (i) Let µ = µac + µs be the Hahn decomposition of µ
into singular and absolutely continuous parts with respect to the Lebesgue
measure. If ε < µac(R), then for any closed F , µ(F ) > 1 − ε implies that
λ(F ) > 0. But this contradicts (ii), since we can assume that F ⊂ [−K, K] for
some K > 0 and L is so large that C ∩ [−L,L] is infinite. In that case⋃

c∈C∩[−L,L]

c + F ⊂ [−K − L,K + L]

Since the sets c+F , c ∈ C ∩ [−L,L] are disjoint, we have that λ(F ) = 0. This
argument proves (ii) =⇒ (i).

(i) =⇒ (iii) Theorem 7 says that for any ε > 0 one can find a closed set
Fε such that µ(Fε) > 1−ε and Fε−Fε is nowhere dense. Put F ′n = ∩k>nF2−k

and E = ∪nF ′n. It is clear that E is an Fσ set, and F ′n ⊂ F ′n+1. Therefore
E −E = ∪(F ′n − F ′n) is of first category. From Lemma 9 there is a perfect set
C such that C −C ∩E −E = { 0 }, so {E + c : c ∈ C} is a family of disjoint
sets.

Finally (iii) =⇒ (ii) is clear.

Theorem 10 has the following corollary, which says that some non σ-porous
sets are so small that on the real line there is enough space for continuumly
many disjoint translates of them. The fact that there is a family of disjoint
non σ-porous sets of continuum cardinality is known. What is probably new
in this statement is that it can be chosen to be the family of translates of a
given set.

Corollary 11. There is a closed non σ-porous set E ⊂ R and a perfect set C
such that {E + c : c ∈ C} is a family of disjoint sets.

Proof. Theorem 10 and the existence of singular measure taking zero on
porous sets proves this statement.

In [1] the authors investigate the so called thin subset of the real line. A
compact set C ⊂ R is called thin if it is true in ZFC that R is not the union
of less than continuumly many translates of C. Another view of Theorem 10
is that it provides a great many examples of thin sets. Indeed for any singular
measure µ there is a set E with property (ii). We may also assume that E is
compact. E is thin since less then continuum translates of it can not cover even
C, as |x + E ∩ C| ≤ 1 for all x ∈ R. Indeed ci ∈ C ∩ (x + E) (i = 1, 2) means
that there are ei ∈ E with ci = x+ei, so ci−ei = x, i.e. c1− c2 = e1−e2 = 0,
this means c1 = c2.
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