Vilmos Prokaj, Department of Probability and Statistics, Eötvös Loránd University, Budapest, Hungary. email: prokaj@cs.elte.hu

A CHARACTERIZATION OF SINGULAR MEASURES

Abstract

Denote by μ a probability Borel measure on the real line and by τ_{c} the translation by c. We show that μ is singular with respect to Lebesgue measure if and only if the set of those c for which μ and $\tau_{c} \mu$ are mutually singular is dense (Theorem 1). Another characterization of singularity (Theorem 10.) is the existence of a set of full μ measure that has continuum many disjoint translates. This result is also linked to some known results about σ-porous sets.

Kakutani [2] has an old and famous theorem concerning the singularity or mutual absolute continuity of infinite product measures. We borrow the main tool of his investigation, namely the "inner product" ρ of probability measures defined on the same measurable space,

$$
\rho(\mu, \nu)=\int\left(\frac{d \mu}{d \pi}\right)^{1 / 2}\left(\frac{d \nu}{d \pi}\right)^{1 / 2} d \pi
$$

where both μ, and ν are absolutely continuous with respect to the measure π. ρ does not depend on the choice of π, so if it makes the considerations easier we may assume that $\pi=\mu+\nu$.

The two probability measure μ, ν are the same if $\rho(\mu, \nu)=1$ and mutually singular if $\rho(\mu, \nu)=0$.

In what follows T denotes \mathbb{R} / \mathbb{Z}, the circle group and λ, Lebesgue (Haar) measure on $T . \tau_{c}$ denotes translation by c; i.e., $\tau_{c}(x)=x+c$ and $\tau_{c} \mu$ stands for measure defined by $\tau_{c} \mu(A)=\mu(A-c)$ for any c. Also $\bar{\mu}(A)=\mu(-A)$.

One of the main theorems of the paper is the following assertion.
Theorem 1. Let μ be a Borel measure on T. Then μ is singular with respect to Haar measure λ if and only if the set

$$
M=\left\{c \in T: \mu \perp \tau_{c} \mu\right\}
$$

[^0]is a dense, G_{δ}, of full Haar measure; i.e., $\lambda(M)=1$.
The proof of Theorem 1 is based on some lemmas the aim of which is to show that the non-negative real function $f(c)=\rho\left(\mu, \tau_{c} \mu\right)$ is upper semicontinuous and that the integral mean of f is zero on any interval. These two facts prove the necessity of the condition in Theorem 1 at once.

The opposite direction follows from two facts.
(i) If $\mu(A)=\int_{A} g d \lambda$, then $\rho\left(\mu, \tau_{c} \mu\right)=\int_{T} \sqrt{g(x) g(x-c)} d x$. Therefore

$$
\int_{T} f(c) d c=\int_{T} \int_{T} \sqrt{g(x) g(x-c)} d x d c=\left(\int_{T} \sqrt{g}\right)^{2}>0
$$

(ii) If $\mu=\alpha \mu_{a c}+(1-\alpha) \mu_{s}$ where $\mu_{a c} \ll \lambda$ and $\mu_{s} \perp \lambda$, then $f(c)=$ $\rho\left(\mu, \tau_{c} \mu\right) \geq \alpha \rho\left(\mu_{a c}, \tau_{c} \mu_{a c}\right)$.
Denote by \mathcal{M} the family of Borel probability measures on T, and by w the weak topology on \mathcal{M}; i.e., the weakest topology on \mathcal{M} such that for all continuous functions $h: T \rightarrow \mathbb{R}$ the mapping $\nu \mapsto \int h d \nu$ is continuous. With this topology \mathcal{M} is a compact metric space. In what follows any topological notion in connection with \mathcal{M} refers to the w topology.

Lemma 2. Let $\nu \in \mathcal{M}$. The mapping $c \mapsto \tau_{c} \nu$ is continuous.
Proof. It is enough to show that for any continuous function $h: T \rightarrow \mathbb{R}$ the composition

$$
c \mapsto \int_{T} h d\left(\tau_{c} \nu\right)=\int_{T}\left(\tau_{c} h\right) d \nu
$$

is a continuous real function which follows from the uniform continuity of h.

The next lemma essentially appears in [2]. We present here a simpler martingale based proof for the sake of completeness.

Lemma 3. Let \mathcal{F}_{n} be an increasing sequence of σ-algebras on T such that the algebra $\cup_{n} \mathcal{F}_{n}$ generates the σ-algebra of Borel sets and let μ, ν two probability measure on T. Then the sequence $\rho\left(\left.\mu\right|_{\mathcal{F}_{n}},\left.\nu\right|_{\mathcal{F}_{n}}\right)$ is decreasing and

$$
\rho(\mu, \nu)=\lim _{n \rightarrow \infty} \rho\left(\left.\mu\right|_{\mathcal{F}_{n}},\left.\nu\right|_{\mathcal{F}_{n}}\right)
$$

Proof. Let $\pi=(\mu+\nu) / 2$. Then (T, π) is a probability field and both

$$
\xi_{n}=\frac{\left.d \mu\right|_{\mathcal{F}_{n}}}{\left.d \pi\right|_{\mathcal{F}_{n}}} \text { and } \eta_{n}=\frac{\left.d \nu\right|_{\mathcal{F}_{n}}}{\left.d \pi\right|_{\mathcal{F}_{n}}}
$$

are non-negative bounded martingales on it with respect to $\left\{\mathcal{F}_{n}: n \in \mathbb{N}\right\}$. Therefore these martingales converge almost everywhere and in $L_{p}(1 \leq p<$ $\infty)$ also. Moreover their limits are $\frac{d \mu}{d \pi}$ and $\frac{d \nu}{d \pi}$ respectively, since $\cup_{n} \mathcal{F}_{n}$ generates the Borel σ-algebra.

By definition

$$
\rho\left(\left.\mu\right|_{\mathcal{F}_{n}},\left.\nu\right|_{\mathcal{F}_{n}}\right)=\left.\int \sqrt{\xi_{n} \eta_{n}} d \pi\right|_{\mathcal{F}_{n}}=\int \sqrt{\xi_{n} \eta_{n}} d \pi
$$

This last integral tends to $\rho(\mu, \nu)$ by the dominated convergence theorem.
We also need that the sequence $\rho\left(\left.\mu\right|_{\mathcal{F}_{n}},\left.\nu\right|_{\mathcal{F}_{n}}\right)$ is decreasing. To see this we use the conditional version of the Cauchy-Schwarz inequality; i.e.,

$$
E\left(\sqrt{\xi_{n+1} \eta_{n+1}} \mid \mathcal{F}_{n}\right) \leq \sqrt{E\left(\xi_{n+1} \mid \mathcal{F}_{n}\right) E\left(\eta_{n+1} \mid \mathcal{F}_{n}\right)}=\sqrt{\xi_{n} \eta_{n}}
$$

holds almost everywhere. Taking the expectation of both sides we get the desired inequality.

Lemma 4. $\rho: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ is upper semi-continuous.
Proof. We have to show that ρ is upper semi-continuous at any point of $\mathcal{M} \times \mathcal{M}$. So let μ_{0} and ν_{0} be two probability Borel measure on T and \mathcal{F}_{n} be a sequence of finite σ-algebras of Borel sets of T, such that $\cup \mathcal{F}_{n}$ is generating. Moreover we can choose each \mathcal{F}_{n} in such a way that for any $A \in \mathcal{F}_{n}$ we have $\mu_{0}(\partial A)=\nu_{0}(\partial A)=0$. Let $\rho_{n}(\mu, \nu)=\rho\left(\left.\mu\right|_{\mathcal{F}_{n}},\left.\nu\right|_{\mathcal{F}_{n}}\right)$. Since \mathcal{F}_{n} is finite

$$
\begin{equation*}
\rho_{n}(\mu, \nu)=\left.\int\left(\frac{\left.d \mu\right|_{\mathcal{F}_{n}}}{\left.d \pi\right|_{\mathcal{F}_{n}}}\right)^{1 / 2}\left(\frac{\left.d \nu\right|_{\mathcal{F}_{n}}}{\left.d \pi\right|_{\mathcal{F}_{n}}}\right)^{1 / 2} d \pi\right|_{\mathcal{F}_{n}}=\sum_{A \in \mathcal{A}\left(\mathcal{F}_{n}\right)} \sqrt{\mu(A) \nu(A)} \tag{1}
\end{equation*}
$$

where π is as above and $\mathcal{A}\left(\mathcal{F}_{n}\right)$ denotes the collection of atoms of \mathcal{F}_{n}. Since \mathcal{F}_{n} was chosen in such a way that for each for $A \in \mathcal{F}_{n}$ the evaluation mapping $\mu \mapsto$ $\mu(A)$ is continuous at μ_{0} and at ν_{0}, equation (1) shows that ρ_{n} is continuous at $\left(\mu_{0}, \nu_{0}\right)$ for each $n . \rho$ is a pointwise decreasing limit of the sequence ρ_{n} so ρ is upper semi-continuous at $\left(\mu_{0}, \nu_{0}\right)$.

From Lemmas 2 and 4 we have that $f(c)=\rho\left(\mu, \tau_{c} \mu\right)$ is upper semi continuous for any $\mu \in \mathcal{M}$. The next lemma deals with the integral mean of f.

Lemma 5. Let I be an subinterval of T. Then $\int_{I} f d \lambda=0$.

Proof. For the proof we can assume that I is an interval of positive Haar measure. Put

$$
\nu(A)=\frac{1}{\lambda(I)} \int_{I} \tau_{c} \mu(A) d c
$$

for any Borel set A. Then ν is the convolution of two probability measures one of which is absolutely continuous with respect to the Haar measure. So ν is a probability Borel measure. If $\lambda(A)=0$, then $\lambda(A-x)=0$ for all $x \in T$ so the application of the Fubini theorem

$$
\begin{aligned}
\nu(A) & =\frac{1}{\lambda(I)} \int_{I} \tau_{c} \mu(A) d c=\frac{1}{\lambda(I)} \int_{I} \int_{T} \chi_{A}(c+x) d \mu(x) d c \\
& =\frac{1}{\lambda(I)} \int_{T} \int_{I} \chi_{A}(c+x) d c d \mu(x)=\frac{1}{\lambda(I)} \int_{T} \lambda((A-x) \cap I) d \mu(x)=0
\end{aligned}
$$

so ν is absolutely continuous with respect to the Haar measure. This means that

$$
0=\rho(\mu, \nu)=\lim _{n} \sum_{A \in \mathcal{A}\left(\mathcal{F}_{n}\right)} \sqrt{\mu(A) \nu(A)}
$$

where \mathcal{F}_{n} is a sequence of finite σ-algebras such that $\cup_{n} \mathcal{F}_{n}$ generates the Borel σ-algebra. By the concavity of square root

$$
\sqrt{\nu(A)}=\sqrt{\frac{1}{\lambda(I)} \int_{I} \tau_{c} \mu(A) d c} \geq \frac{1}{\lambda(I)} \int_{I} \sqrt{\tau_{c} \mu(A)} d c
$$

so

$$
\begin{aligned}
\frac{1}{\lambda(I)} \int_{I} f(c) d c & =\frac{1}{\lambda(I)} \int_{I} \rho\left(\mu, \tau_{c} \mu\right) d c \\
& =\frac{1}{\lambda(I)} \int_{I} \lim _{n} \sum_{A \in \mathcal{A}\left(\mathcal{F}_{n}\right)} \sqrt{\mu(A) \tau_{c} \mu(A)} d c \\
& \leq \lim _{n} \sum_{A \in \mathcal{A}\left(\mathcal{F}_{n}\right)} \frac{\sqrt{\mu(A)}}{\lambda(I)} \int_{I} \sqrt{\tau_{c} \mu(A)} d c \\
& \leq \lim _{n} \sum_{A \in \mathcal{A}\left(\mathcal{F}_{n}\right)} \sqrt{\mu(A) \nu(A)}=\rho(\mu, \nu)=0 .
\end{aligned}
$$

Lemma 6. Let μ be a singular probability measure on $T, I \subset T$ a nonempty open interval and $\varepsilon>0$. There exists a closed set $F=-F$ such that $\mu(T \backslash F)<$ ε, and $I \backslash(F+F)=I \backslash(F-F)$ is non empty.

Proof. For an arbitrary Borel measure ν on T let $\bar{\nu}(A)=\nu(-A)$. Since $\lambda=\bar{\lambda}$, we have that $\bar{\mu}$ and $\nu=\frac{1}{2}(\mu+\bar{\mu})$ is also singular with respect to Haar measure λ. By Theorem 1 there is a $c \in I$ such that ν and $\tau_{c} \nu$ are mutually singular. So there is Borel set $E \subset T$ such that $\nu(E)=0$ and $\tau_{c} \nu(T \backslash E)=0$. By regularity there are open sets A, B such that

$$
\begin{aligned}
E \subset A \text { and } \quad \nu(A) & <\varepsilon / 4 \\
T \backslash E \subset B \text { and } \tau_{c} \nu(B) & <\varepsilon / 4
\end{aligned}
$$

Put $F=T \backslash(A \cup(-A) \cup(B-c) \cup(c-B)) . F=-F$ is closed and

$$
\begin{aligned}
\mu(T \backslash F) & =\mu(A \cup(-A) \cup(B-c) \cup(c-B)) \\
& \leq \mu(A)+\mu(-A)+\mu(B-c)+\mu(c-B)=2 \nu(A)+2 \tau_{c} \nu(B)<\varepsilon
\end{aligned}
$$

To prove that $F+F$ does not fill up I it is enough to show that $c \notin F+F$; that is, $F \cap(c-F)=\emptyset$, or $(T \backslash F) \cup(T \backslash(c-F))=T$. This last equality follows from the choice of A and B, i.e. $A \cup B \supset E \cup T \backslash E=T$, and the fact that $B \subset T \backslash(c-F), A \subset T \backslash F$.

Theorem 1 and Lemma 6 have the following interesting corollary.
Theorem 7. Let μ be a singular Borel probability measure on \mathbb{R}. There is a closed set $E=-E$ of positive μ measure such that $E+E=E-E$ is a nowhere dense closed set.

Proof. Let η denote the canonical mapping from \mathbb{R} to $T=\mathbb{R} / \mathbb{Z},(\eta$ is the fractional part function) and $\mu_{0}=\mu \circ \eta^{-1}$. Let $\left\{I_{n}: n \in \mathbb{N}\right\}$ be the enumeration of nonempty open subintervals of T with rational endpoints and $\varepsilon_{n}>0$ such that $\sum \varepsilon_{n}<1$. By Lemma 6 there are closed sets $F_{n}=-F_{n}$ such that $\mu_{0}\left(T \backslash F_{n}\right)<\varepsilon_{n}$, and $I_{n} \backslash\left(F_{n}+F_{n}\right) \neq \emptyset$. Put $\tilde{F}=\cap_{n} F_{n}$. It is clear that $\tilde{F}=-\tilde{F}$ is closed, $\mu_{0}(\tilde{F})>0, \tilde{F}+\tilde{F}$ is closed and $I_{n} \backslash(\tilde{F}+\tilde{F}) \neq \emptyset$. To complete the proof let $F=\eta^{-1} \tilde{F}$.

As a corollary we give a new proof of the fact (proved originally by J. Tkadlec [4]) that there is a closed non- σ-porous set E such that $E+E$ is nowhere dense, so contains no interval. Later we will also prove the existence of a closed non- σ-porous set having continuumly many disjoint translates. Usually both are considered as the property of the σ-ideal of σ-porous sets. We show that these are rather the properties of the σ-ideal of the null sets of singular probability Borel measures. They hold for σ-porous sets as there are singular probability Borel measures taking value zero on porous sets (see [5] and [3]).

Corollary 8 (J. Tkadlec [4]). There is closed non- σ-porous subset E of the real line, such that $E+E$ is of first category.

Proof. It is well known that there is singular probability Borel measure μ on the real line, such that each σ-porous set is of μ-measure 0 (see e.g. [5]). So Theorem 7 shows the existence of such an E.

At the end of this note we also prove another characterization of singular measures. We will use the following quite widely known lemma. For the sake of completeness we give a proof rather than a reference.

Lemma 9. Let H be a set of first category on the real line. Then there is a perfect set C such that $(C-C) \cap H \subset\{0\}$.

Proof. Clearly it's enough to prove the lemma for $H=\cup_{n} F_{n}$ where F_{n} is closed and nowhere dense; moreover $F_{n} \subset F_{n+1}$. The set C will be given with the help of a so called perfect scheme; i.e., a sequence of closed set $C_{n} \supset C_{n+1}$ such that C_{n} is a disjoint union of closed intervals $I_{n, k}$ and $\left|\left\{l: I_{n+1, l} \subset I_{n, k}\right\}\right| \geq 2$. Then $C=\cap_{n} C_{n}$ is perfect. If C_{n} is defined in such a way that $\left(C_{n}-C_{n}\right) \cap F_{n} \subset[-1 / n, 1 / n]$, then $(C-C) \cap H \subset\{0\}$ also follows.

Let $C_{1}=[0,1]=I_{1,1}$. It is clear that $C_{1}-C_{1} \subset[-1,1]$. Assume that $C_{n}=\cup_{k} I_{n, k}$ is defined where the union is finite and disjoint. Using the fact that F_{n+1} is nowhere dense and closed one can easily see that if I, J are two disjoint intervals, then there are intervals $\tilde{I} \subset I, \tilde{J} \subset J$ such that $(\tilde{I}-\tilde{J}) \cap F_{n+1}=\emptyset$.

Using this we can decrease in finitely many steps the intervals $I_{n, k}$ to $\tilde{I}_{n, k}$ such that $\left(\tilde{I}_{n, k}-\tilde{I}_{n, l}\right) \cap F_{n+1}=\emptyset$ provided that $l \neq k$, and $\left|\tilde{I}_{n, k}\right|<\frac{1}{2(n+1)}$. This latest property implies that $\tilde{I}_{n, k}-\tilde{I}_{n, k} \subset[-1 /(n+1), 1 /(n+1)]$. Let $I_{n+1,2 k-1}$ and $I_{n+1,2 k}$ be the two intervals remaining after the middle third of $\tilde{I}_{n, k}$ is deleted. It is clear that $C_{n+1}=\cup_{k} I_{n+1, k} \subset C_{n}$ and $\left(C_{n+1}-C_{n+1}\right) \cap F_{n+1} \subset$ $[-1 /(n+1), 1 /(n+1)]$. So the sequence $\left(C_{n}\right)$ can be defined with the desired properties and $C=\cap_{n} C_{n}$ is a perfect set such that $(C-C) \cap H \subset\{0\}$.

Theorem 10. Let μ be a probability Borel measure on the real line. Then the following statements are equivalent:
(i) μ is singular with respect to the Lebesgue measure.
(ii) For $\varepsilon>0$ there is a closed set E with $\mu(E)>1-\varepsilon$ and a perfect set C such that $\{c+E: c \in C\}$ is a family of disjoint sets.
(iii) There is an F_{σ} set E of μ measure one, and a perfect set C such that $\{c+E: c \in C\}$ is a family of disjoint sets.

Proof. (ii) $\Longrightarrow \quad(i)$ Let $\mu=\mu_{a c}+\mu_{s}$ be the Hahn decomposition of μ into singular and absolutely continuous parts with respect to the Lebesgue measure. If $\varepsilon<\mu_{a c}(\mathbb{R})$, then for any closed $F, \mu(F)>1-\varepsilon$ implies that $\lambda(F)>0$. But this contradicts (ii), since we can assume that $F \subset[-K, K]$ for some $K>0$ and L is so large that $C \cap[-L, L]$ is infinite. In that case

$$
\bigcup_{c \in C \cap[-L, L]} c+F \subset[-K-L, K+L]
$$

Since the sets $c+F, c \in C \cap[-L, L]$ are disjoint, we have that $\lambda(F)=0$. This argument proves $(i i) \Longrightarrow(i)$.
(i) \Longrightarrow (iii) Theorem 7 says that for any $\varepsilon>0$ one can find a closed set F_{ε} such that $\mu\left(F_{\varepsilon}\right)>1-\varepsilon$ and $F_{\varepsilon}-F_{\varepsilon}$ is nowhere dense. Put $F_{n}^{\prime}=\cap_{k>n} F_{2^{-k}}$ and $E=\cup_{n} F_{n}^{\prime}$. It is clear that E is an F_{σ} set, and $F_{n}^{\prime} \subset F_{n+1}^{\prime}$. Therefore $E-E=\cup\left(F_{n}^{\prime}-F_{n}^{\prime}\right)$ is of first category. From Lemma 9 there is a perfect set C such that $C-C \cap E-E=\{0\}$, so $\{E+c: c \in C\}$ is a family of disjoint sets.

Finally $(i i i) \Longrightarrow(i i)$ is clear.
Theorem 10 has the following corollary, which says that some non σ-porous sets are so small that on the real line there is enough space for continuumly many disjoint translates of them. The fact that there is a family of disjoint non σ-porous sets of continuum cardinality is known. What is probably new in this statement is that it can be chosen to be the family of translates of a given set.
Corollary 11. There is a closed non σ-porous set $E \subset \mathbb{R}$ and a perfect set C such that $\{E+c: c \in C\}$ is a family of disjoint sets.

Proof. Theorem 10 and the existence of singular measure taking zero on porous sets proves this statement.

In [1] the authors investigate the so called thin subset of the real line. A compact set $C \subset \mathbb{R}$ is called thin if it is true in ZFC that \mathbb{R} is not the union of less than continuumly many translates of C. Another view of Theorem 10 is that it provides a great many examples of thin sets. Indeed for any singular measure μ there is a set E with property (ii). We may also assume that E is compact. E is thin since less then continuum translates of it can not cover even C, as $|x+E \cap C| \leq 1$ for all $x \in \mathbb{R}$. Indeed $c_{i} \in C \cap(x+E)(i=1,2)$ means that there are $e_{i} \in E$ with $c_{i}=x+e_{i}$, so $c_{i}-e_{i}=x$, i.e. $c_{1}-c_{2}=e_{1}-e_{2}=0$, this means $c_{1}=c_{2}$.

References

[1] Udayan B. Darji and Tamás Keleti, Covering \mathbb{R} with translates of a compact set, Proc. Amer. Math. Soc., 131(8) (2003), 2598-2596 (electronic).
[2] Shizuo Kakutani, On equivalence of infinite product measures, Ann. of Math., (2), 49 (1948), 214-224.
[3] Vilmos Prokaj, On a construction of J. Tkadlec concerning σ-porous sets, Real Anal. Exchange, 27(1) (2001/02), 269-273.
[4] Josef Tkadlec, Constructions of some non- σ-porous sets on the real line, Real Anal. Exchange, 9(2) (1983/84), 473-482.
[5] Josef Tkadlec, Construction of a finite Borel measure with σ-porous sets as null sets, Real Anal. Exchange, 12(1), (1986/87), 349-353.

[^0]: Key Words: singular measure, σ-porous set
 Mathematical Reviews subject classification: 28A12, 28A35, 28A05
 Received by the editors September 15, 2003
 Communicated by: R. Daniel Mauldin

