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Stwosza 57, 80-952 Gdańsk, Poland. email: fox@math.univ.gda.pl

SYMMETRIC DERIVATIVES ON SUBSETS
OF THE REAL LINE AND

MONOTONICITY

Abstract

We define and investigate the symmetric derivative for functions de-
fined on a subset of the real line. We give an example of a continuous
function with a positive symmetric derivative everywhere which is not
monotonic. When the domain is measurable or has the Baire property,
then a positive symmetric derivative does imply monotonicity on a big
set.

Definition 1. We say that a function f : R → R is symmetrically differen-
tiable at a point x ∈ R if the limit

lim
h→0

f(x + h)− f(x− h)
2h

exists. (We allow infinite values.) The value of this limit is called the sym-
metric derivative of f .

Many properties of ordinary derivative are preserved by its symmetric
counterpart. We state a few monotonicity theorems.

Theorem 2. [5, Cor. 5.2] Let the function f : R → R have a positive sym-
metric derivative everywhere. Then f is increasing on the set of its points of
continuity. More precisely there is an increasing function g such that f agrees
with g on its points of continuity.
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Theorem 3. [5, Thm. 5.5] Let the function f : R → R have a positive symmet-
ric derivative everywhere on a measurable set E. Then f is locally increasing
at almost every point of E (i.e., almost every point x of E has a neighborhood
U such that whenever y < x < z and y, z ∈ U then f(y) < f(x) < f(z)).

Theorem 4. [5, Thm. 5.4] Let the function f : R → R have a positive sym-
metric derivative on a set E that has the Baire property. Then there is an
open set G so that E \G is meager and f is increasing on each component of
G.

Note that in Definition 1 the value of f at the point x is not involved,
in fact the function need not even even be defined at x to be symmetrically
differentiable there. This gives rise to the definition of the symmetric derivative
of a function defined on a subset of the real line.

Definition 5. Let A ⊂ R. We say that a function f : A → R is symmetrically
differentiable at a point x ∈ R if the limit

lim
h→0

f(x + h)− f(x− h)
2h

exists, taking h from the set {h ∈ R : x ± h ∈ A}. (We assume that this set
has an accumulation point at 0.) We allow infinite values.

Not surprisingly, in the general case, theorems for the functions defined on
the entire real line do not hold for functions defined only on a subset of R. We
illustrate how different the two cases can be by the following theorem.

Fact 6. [4, Thm. 2.1.3] There is a set X ⊂ R such that for any function
f : R → [−∞,∞] there is a function g : X → R which is symmetrically differ-
entiable and its symmetric derivative is equal to f . (Note that although g is
not defined everywhere it has symmetric derivative everywhere).

We give now a stronger counterexample as we assume the function to be
continuous and its domain to be measurable.

Theorem 7. There is a set A ⊂ (0, 1), measurable (with measure arbitrarily
close to 1), having the Baire property and a function f : A → {0, 1} continuous
at every point in A with symmetric derivative zero at every point in (0, 1).

Proof. Let C be the Cantor ternary set; i.e., C is the set of points x =
0.x1x2 . . . which have only 0’s and 2’s in ternary expansion. (x =

∑∞
i=1

xi

3i .
In case of non-uniqueness of representation, it is enough that at least one
of them contains only 0’s and 2’s (e.g. 1

3 = 0.100 · · · = 0.0022 · · · ∈ C)).
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The set A0 = (0, 1) \ C is open and consists of components being intervals
{x = 0.x1x2 . . . xn1y1y2 . . . ;xi ∈ {0, 2}, yi ∈ {0, 1, 2}}. We group them into
two types:

• type I: first digit 1 is at an even place,

• type II: first digit 1 is at an odd place.

Define the function f0 : A0 → {0, 1}, where f0 is 0 on intervals of type I
and f0 is 1 on type II intervals. Then f0 is continuous. We will define our
function f as a restriction of f0.

Claim. For every a ∈ C there is a sequence of components of A0 of the same
type converging to a and symmetric reflections of these components about a
overlap with each other.

To argue for the claim fix a ∈ C and take any component I of A0 which
upon symmetric reflection around a (i.e., 2a − I) is not contained entirely
in some other component of A0. The interval 2a − I must contain infinitely
many components of A0 of both types. Clearly we may select, in this way, a
sequence of intervals of one type only, satisfying the hypotheses of the claim.

Fact 8. [3, Thm.9 and Cor.10] There is a set K ⊂ R (a countable sum
of perfect (Cantor-like) sets) of measure zero and first category satisfying
∀x∈R∀ε>0∀δ>0 K ∩ (2x − K) ∩ (x + ε, x + ε + δ) has the power of the con-
tinuum.

Lemma 9. There is a set X ⊂ K (thus of measure zero and first category)
such that for each a ∈ R we have:

(a) there exists a sequence {xn} ⊂ X converging to a and symmetric about
a (i.e., {xn} = 2a− {xn})

(b) any sequence {yn} ⊂ X satisfying (a) is almost contained in {xn}; that
is, {yn} \ {xn} is finite

(c) all xn can be chosen from one type of components of A0.

Proof. List {xα : α < c} all real numbers. We will construct the set X by
transfinite induction. We start by choosing a sequence {xn} converging to x0

satisfying (a) and (c). To do this let {In} be a sequence of intervals converging
to x0 such that I2n = 2x0 − I2n−1 (Thus {In} is symmetric about x0.) and
all In are contained in components of A0 of the same type (say, type I). The
Claim guarantees the existence of such a sequence.
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Let K be the set from Fact 8. In every I2n−1 pick a point x2n−1 ∈ K such
that x2n = 2x0 − x2n−1 also belongs to K. (It also belongs to I2n.) By Fact
8 it is possible.

Let X0 = {xn}, X ′
0 = {xn} ∪ {x0}(= X0 ∪ {x0}) and B0 = {x+y

2 : x, y ∈
X ′

0}, Also define g0 : R → [0,∞] by g0(x) = inf{|x−a| : a ∈ X ′
0 & ∃b∈X0

a+b
2 =

x}. Note that g0 is zero only for x0.
Assume we have defined sets Xβ , X ′

β Bβ for β < α and gβ : R → [0,∞]
which is zero only for {xγ : γ ≤ β}. Let V = linQ{

⋃
β<α X ′

β ∪ {xα}} - the
linear space over Q (rationals) generated by numbers in

⋃
β<α X ′

β ∪ {xα}.
Cardinality of V is less than continuum (α < c). We will find a sequence {xn}
satisfying (a) and (c) for xα.

Let {In} be a sequence of intervals converging to xα with I2n = 2xα−I2n−1

(So {In} is symmetric about xα.) and all In’s are contained in components of
A0 of one type. By the Claim such a sequence exists. Let a point x1 ∈ I1 ∩K
and x1 /∈ V be such that x2 = 2xα − x1 belongs to I2 ∩ K (by definition
of V , x2 /∈ V ). By Fact 8 and the fact that V has cardinality smaller than
continuum such a point exists.

We proceed inductively, having points x1, . . . x2n we let Vn = linQ{V ∪{xk :
k ≤ 2n}} and select x2n+1 ∈ (I2n+1∩K)\Vn so that x2n+2 = 2xα−x2n+1 is in
I2n+2 ∩K. (Then it is also not in Vn.) Again since Vn has smaller cardinality
than the continuum and by Fact 8 the point x2n+1 (and x2n+2) can be found.
This way we construct a sequence {xn} satisfying (a) and (c).

Again we define Xα =
⋃

β<α Xβ ∪ {xn}, X ′
α = Xα ∪ {xα}, Bα = {x+y

2 :
x, y ∈ Xα} and gα : R → [0,∞], gα(x) = min{|a−x| : a ∈ X ′

α & ∃b∈Xα

a+b
2 =

x}. gα is zero only for xβ where β ≤ α (because we selected xn’s outside V
thus outside Bβ), which guarantees that (b) is satisfied. The set X =

⋃
α<c Xα

is the set we are looking for.

We return to the proof of Theorem 7. By the Fact 8 we may require
K ⊂ A0 and by Lemma 9 if we restrict the function f0 to the set X, we obtain
a continuous function with symmetric derivative zero everywhere. To enlarge
the domain (of f0|X) it is enough to add to X intervals concentric with every
component of A0 and of arbitrarily big measure (in these components, say 9

10 ,
to obtain a domain which is of measure 9

10 on the interval [0, 1].) Theorem 7
is proved.

One can expect that we should confine ourselves to symmetric sets. (A set
A ∈ R is symmetric if for all x ∈ A and all numbers h we have x+h ∈ A ⇐⇒
x− h ∈ A.) However, even this restriction does not help. (We drop, however
the continuity assumption.)



Symmetric Derivatives on Subsets of the Real Line 803

Example 10. Let H be a Hamel base containing 1 and let S be a linear
space over Q spanned by H \ {1}. Define A = {x + k : x ∈ S, k ∈ Z} and
f : A → {0, 1} by

f(x + k) =

{
0 when k is even,

1 when k is odd.

Then f has symmetric derivative zero on A, A is symmetric, and f−1(0) and
f−1(1) are both dense in A.

Proof. The set A is a group, thus symmetric, and f is symmetrically differ-
entiable (we preserve the parity of k in reflections).

Even for the ordinary derivative, there is a function f : Q → R (Q stands
for rational numbers. with f ′(x) = 1 at every x ∈ Q (thus continuous) which
is not monotonic in any interval.

In contrast to the above (especially Theorem 7), when taking the domain
which is “big and nice enough,” we do have positive results similar to Theorems
3 and 4. The following theorems are generalizations of these two.

Theorem 11. Let the function f : E → R, where E has the Baire property,
have a positive symmetric derivative everywhere on the set E. Then there is
an open set G so that E \G is meager and f is increasing on each component
of G.

Proof. The proof is a repetition of the proof of [5, Thm. 5.5] (Theorem 3),
we only use a strengthened lemma (Lemma 12). Let V ⊂ R2 be a relation
defined by

V = {(x− t, x + t) : x± t ∈ E ⇒ f(x + t)− f(x− t)
t

> 0}.

Lemma 12. [2, Thm. 16] Let E ⊂ R have the Baire property and suppose
W ⊂ R2 is a relation having the property that for every x ∈ E there is a
positive number δ(x) so that for every t ∈ R

0 < t < δ(x) ⇒ (x− t, x + t) ∈ W.

Then there is an open set G such that E \ G is of the first category and for
every interval [a, b] contained in G and there is a sequence of points x0 = a <
x1 < · · · < x5 = b belonging to E such that (xi, xi+1) ∈ W for i = 0, 1, 2, 3, 4.

Clearly our V satisfies the assumptions of the lemma. Now if an interval
[a, b] is contained in G, then by the lemma we get points xi and by definition of

V we get
f(xi+1)− f(xi)

xi+1 − xi
> 0 so f(xi+1)−f(xi) > 0, and f(a)−f(b) > 0.
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Theorem 13. Let the function f : E → R, where E is measurable, have
a positive symmetric derivative everywhere on the set E. Then f is locally
increasing (see Theorem 3) at almost every point of E.

Proof. The proof is almost identical to that of Theorem 11. Let V =
{(x− t, x + t) : x± t ∈ E ⇒ f(x+t)−f(x−t)

t > 0}.

Lemma 14. [2, Thm. 17] Let E ⊂ R be measurable and suppose W ⊂ R2 is
a relation having the property that for every x ∈ E there is a positive number
δ(x) so that for every t ∈ R, 0 < t < δ(x) ⇒ (x − t, x + t) ∈ W. Then, for
almost all x ∈ E (in the sense of measure) there is a neighborhoods Ux of x
such that whenever x + t ∈ Ux ∩ E, then there is a monotonic sequence of
points x0 = x, x1, . . . , x5 = x + t all belonging to E and (xi, xi+1) ∈ W for
i = 0, 1, 2, 3, 4.

By the lemma almost every x ∈ E has a neighborhood Ux such that for
x + t ∈ Ux ∩ E we have f(x + t)− f(x) > 0 (or f(x + t)− f(x) < 0 if t < 0)
and f is locally increasing at x.

References

[1] L. Larson, Symmetrical Analysis: A Survey, Real Anal. Exchange, 9 (1983-
84), 154–178.

[2] M. Szyszkowski, Symmetrically Continuous Functions on Proper Subsets
of the Real Line, Real Anal. Exchange, 25 (2) (1999-2000), 547–564.

[3] M. Szyszkowski, Points of Weak Symmetric Continuity, Real Anal. Ex-
change, 24 (1998-99), 807–813.

[4] M. Szyskowski, Ph.D. thesis, West Virginia University, 2000

[5] B. S. Thomson, Symmetric Properties of Real Functions, Marcel Dekker,
1994.


