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SOME COMMENTS ON THE H 1-INTEGRAL

Abstract

In this note we consider two natural attempts to give a descriptive
characterization for H1-primitives, and discuss why these attempts fail.
Meanwhile we get a new descriptive definition of the Henstock integral.
Also, we prove that every Henstock integrable function can be written
as a sum of a Lebesgue integrable and an H1-integrable ones.

Let E ⊂ R. By |E| we denote the Lebesgue outer measure of E. We denote
by I the σ-ideal of sets, the basis of which is the family of all Fσ null sets. If
F : E → R and A ⊂ E is nonvoid, then ωF (A) = supF (A) − inf F (A), i.e.,
ωF (A) is the oscillation of F on A. We say that F is Baire*1 if for every set
A ⊂ E, closed in E, there is a portion I ∩A 6= ∅ of A such that F � (I ∩A) is
continuous. (Recall that for E = clE, F is Baire*1 iff there exist a sequence
{En}n of closed sets, such that

⋃∞
n=1 En = E and for each n, F � En is

continuous.)
By a division we mean a finite collection of tagged intervals (I, x), x ∈ I,

in which intervals I are pairwise nonoverlapping. (In papers [4] and [6] we
used the name partial tagged partition instead.) If for all (I, x) we have x ∈ E,
then we say that the division is anchored in a set E. A division is called a
partition of an interval 〈a, b〉 if the union of intervals I from this division gives
the whole 〈a, b〉. For two divisions P1 and P2 we will write P1 w P2 iff for
every (I, x) ∈ P1 there is a (J, y) ∈ P2 with I ⊂ J . Any positive function δ
defined on R we call a gauge. We say that a division P is δ-fine if for every
(I, x) ∈ P we have I ⊂ (x− δ(x), x + δ(x)).

Let F : 〈a, b〉 → R. When I = 〈c, d〉 ⊂ 〈a, b〉, by ∆F (I) we mean the
increment F (d) − F (c). For convenience, the character F will stand for two
functions: the point one and the interval-point one, given by formula (I, x) 7→
∆F (I).

For classical notions of AC∗-, ACG∗-, VB∗-, and VBG∗-functions we refer
the reader to [5].
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1 On H1-Primitives

We have proved in [4], Example 4.2, that (contrary to the claim presented
in the original paper [2]) the class of H1-primitives is a proper subset of the
class of Henstock primitives, i.e., of all ACG∗-functions. Thus, the problem
of characterizing H1-primitives, Problem 4.3 in [4], emerges. As the space of
H1-integrable functions is not closed under the uniform limit, see [3], it seems
to be natural to look for a characterization of the wider class of primitives,
namely the class of primitives of uniform limits of H1-integrable functions.
(We may refer to this wider class as to the class of functions H1-integrable in
the extended sense; we will use accordingly the name extended H1-integral.)

Definition 1.1. We call a function f : 〈a, b〉 → R, H1-integrable to I ∈ R if
there exists a gauge δ defined on 〈a, b〉, such that for any ε > 0 one can find a
partition π1 of 〈a, b〉, such that for every δ-fine partition π w π1,∣∣∣ ∑

(I,x)∈π

f(x)|I| − I
∣∣∣ < ε.

The following theorem was proved in [4], Corollary 3.5 and Theorem 3.7
there.

Theorem 1.2. The function f : 〈a, b〉 → R is H1-integrable if and only if it
is Henstock integrable and there exists an E ∈ I, such that f � (〈a, b〉 \ E) is
Baire*1 in its domain.

The function f : 〈a, b〉 → R is H1-integrable in the extended sense if and
only if it is Henstock integrable and there exists an E ∈ I, such that f �
(〈a, b〉 \ E) is Baire 1 in its domain.

1.1 The Set of Nondifferentiability

Consider the following fact.

Observation 1.3. Suppose that F is an ACG∗-function differentiable outside
an E ∈ I. Then, F is Henstock primitive of a function f , which is H1-
integrable in the extended sense.

Proof. F is a Henstock primitive of

f(x) =

{
F ′(x) if x ∈ 〈a, b〉 \ E

0 if x ∈ E.

Of course, F ′ is Baire one in its domain. Thus, by Theorem 1.2, f is H1-
integrable in the extended sense.
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The H1-integral is in some sense close to the Riemann integral. Therefore,
the following conjecture seems to be justified. Every H1-primitive is differ-
entiable outside an E ∈ I, as all Riemann primitives are. If this were true,
it would imply an interesting characterization of primitives of functions H1-
integrable in the extended sense. These are the ACG∗-functions differentiable
outside an E ∈ I. Moreover, since H1-integrability of a function depends on
its behavior outside an E ∈ I, it would give us a descriptive definition of the
extended H1-integral. Alas, the claim is false.

It is well known that the set of nondifferentiability points of an absolutely
continuous function (even a Lipschitz function) can be generic. (Nevertheless,
it is always a null set.) But this is not the case for H1-primitives. These
are differentiable almost everywhere and outside a first category set. (This
follows from Theorem 1.2.) However, there are sets of the first category and
of measure zero which do not belong to I. The simplest example of such a
set is a dense null Gδ subset of nowhere dense perfect set of positive measure.
The exceptional set we shall indicate below is of this kind. With the usual
notation d(A, x) and d(A, x) for the upper and lower density of a measurable
set A ⊂ R at a point x, we have the following example.

Example 1.4. There exists a closed set D ⊂ 〈0, 1〉 and a Gδ subset P ⊂ D,
dense in D, such that for each x ∈ P one has d(D,x) = 1 and d(D,x) = 0.

Construction. Take any open set O1 ⊂ 〈0, 1〉, dense in 〈0, 1〉, with 〈0, 1〉\O1

perfect. Let {I(1)
i }i be the family of components of O1. For each i, let J

(1)
i

be a closed interval concentric with I
(1)
i , with 0 < |J (1)

i | < 1
2 |I

(1)
i |. Let D1 =

〈0, 1〉 \
⋃

i(I
(1)
i \ J

(1)
i ).

We proceed by induction. Having defined On−1, Dn−1, I
(n−1)
i ’s, and

J
(n−1)
i ’s, we take an open set On, dense in Dn−1, with Dn−1 \ On perfect,

satisfying the following three conditions:

(a) On ⊂ On−1.

(b) On does not intersect the union
⋃

i(I
(n−1)
i \ J

(n−1)
i ).

(c) For each i, letting 〈x, y〉 = J
(n−1)
i , for each z ∈ J

(n−1)
i

|On ∩ 〈x, z〉| ≤ 1
2n

(z − x), |On ∩ 〈z, y〉| ≤ 1
2n

(y − z).

Let {I(n)
i }i be the family of components of On. For each i, let J

(n)
i be a closed

interval concentric with I
(n)
i , with

0 < |J (n)
i | < 1

2n
|I(n)

i |. (1)
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Put Dn = Dn−1 \
⋃

i(I
(n)
i \ J

(n)
i ).

We put D =
⋂∞

n=1 Dn and P =
⋂∞

n=1

⋃
i J

(n)
i . It is clear that P ⊂ D, P is

dense in D, and it is of Gδ type. Fix an x ∈ P and take arbitrary h > 0 and n.
There exist an m ≥ n and an i such that (x− h, x + h) ⊃ I

(m)
i , x ∈ intJ

(m)
i .

Denote by y and z those endpoints of I
(m)
i and J

(m)
i respectively, which are

closer to x. In view of (c) we get

|〈z, 2x− z〉 ∩D| ≥ |〈z, 2x− z〉 \Om+1| ≥ 2
(

1− 1
2m+1

)
(x− z) if x > z,

|〈2x− z, z〉 ∩D| ≥ |〈2x− z, z〉 \Om+1| ≥ 2
(

1− 1
2m+1

)
(z − x) if x < z.

Hence d(D,x) = 1. On the other hand, by (1),

|〈y, 2x− y〉 ∩D| ≤ |J (m)
i | < 1

2m
|I(m)

i | if x > y,

|〈2x− y, y〉 ∩D| ≤ |J (m)
i | < 1

2m
|I(m)

i | if x < y.

Since (1− 1
2m )|I(m)

i | < |I(m)
i | − |J (m)

i | < 2|x− y|, we have

1
2m

|I(m)
i | < 2

2m − 1
|x− y|.

That means d(D,x) = 0. We are done.

Corollary 1.5. There exists an H1-integrable function f whose primitive is
symmetrically nondifferentiable on a set which does not belong to I.

Proof. Take the set D constructed in Example 1.4 and put f = χ
D. Since f

is Baire*1, it is H1-integrable (Theorem 1.2). The primitive of f is symmet-
rically differentiable exactly at points at which the density of D exists, so we
apply the fact that P /∈ I.

In a descriptive definition of an integral, a derivative of a primitive must
be integrable for an arbitrary extension to the set where it does not exist.
But, by Theorem 1.2 the H1-integrability of a function depends on its values
outside an E ∈ I. Hence, Corollary 1.5 shows that for the H1-integral the
exceptional set can be too large, if we consider the ordinary derivative (even
the symmetric one). Since the primitive of f = χ

D is monotone, it seems
natural to suppose there is no generalized derivative for which the exceptional
set of nondifferentiability would always belong to I. Having this in mind we
can make the following assertion.
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Statement 1.6. Descriptive definitions of the H1-integral and of the extended
H1-integral are unavailable.

1.2 A Variational Equivalence

In the second attempt we take into consideration the variational equivalence
which is used to define an integral in the H1 sense.

In the sequel let θ and γ be interval-point functions; i.e., functions defined
on family of tagged subintervals of 〈a, b〉.

Definition 1.7. We say that θ and γ are strongly equivalent on a set E ⊂ 〈a, b〉
if there exists a gauge δ on E such that for each ε > 0 one can find a partition
πε of 〈a, b〉, such that for all δ-fine divisions P w πε, anchored in E, we have∑

(I,x)∈P |θ(I, x)− γ(I, x)| < ε.

We say that F : 〈a, b〉 → R is I-null if F is strongly equivalent to zero on
each A ∈ I.

Note that f is H1-integrable to primitive F iff the functions (I, x) 7→ f(x)|I|
and F are strongly equivalent on 〈a, b〉. This follows from the Saks-Henstock
lemma for the H1-integral.

I-nullity is a substitute for the condition of absolute continuity of varia-
tional measure, which is considered in the theory of the Henstock integral.

Definition 1.8. Let δ be a gauge on E ⊂ 〈a, b〉. By δ-variation of θ on E,
denoted by V θ

δ (E), we mean the supremum of values

|∆|θ(P) =
∑

(I,x)∈P

|θ(I, x)|, (2)

taken over all δ-fine divisions P anchored in E. The infimum of V θ
δ (E), taken

over all gauges δ, we name the variational measure of E induced by θ. We
denote it by µθ(E). We say that µθ is absolutely continuous if µθ(N) = 0 for
all null sets N ⊂ 〈a, b〉.

The following theorem was proved in [1], Theorem 1.

Theorem 1.9. Let F : 〈a, b〉 → R. Then, µF is absolutely continuous iff F is
an ACG∗-function.

Let θ be additive; i.e., θ(I ∪ J, x) = θ(I, x) + θ(J, x) for any two nonover-
lapping intervals I and J , with a common endpoint x. Then, comparing two
conditions: the I-nullity of θ and the absolute continuity of µθ, we see that
in the first one the equivalence to zero is understood in a strengthened sense,
but on a smaller class of sets.
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We will show that for F : 〈a, b〉 → R, the I-nullity is equivalent to the
ACG∗ property and so it cannot characterize H1-primitives.

Lemma 1.10. Let F be strongly equivalent to zero on sets E1, E2, E3, . . . .
Then, it is strongly equivalent to zero on

⋃∞
n=1 En.

Proof. Let F be strongly equivalent to zero on E1, E2, E3, . . . using gauges
δ1, δ2, δ3, . . . respectively. Since µF (En) = 0, we can assume that V F

δn
(En) <

1
2n and that En’s are pairwise disjoint. We define δ(x) = δn(x) when x ∈ En.
Consider arbitrary ε > 0. For each n, there are partitions πn of 〈a, b〉 such that
for all δn-fine divisions P w πn, anchored in En, we have |∆|F (P) < ε

2n+1 . We
may assume that . . . w π3 w π2 w π1. There is an N so that 1

2N−1 < ε. Take
a δ-fine division P w πN , anchored in

⋃∞
n=1 En. Let Pn = {(I, x) ∈ P : x ∈

En}. Since Pn is δn-fine and Pn w πN w πn, n = 1, 2, . . . , N , we have

|∆|F (P) <

N∑
n=1

|∆|F (Pn) +
∞∑

n=N+1

|∆|F (Pn) <

<

N∑
n=1

ε

2n+1
+

∞∑
n=N+1

V F
δn

(En) <
ε

2
+

1
2N

< ε.

Theorem 1.11. Suppose that F : 〈a, b〉 → R is an ACG∗-function. Then, it
is I-null.

Proof. Take an A ∈ I and let A ⊂
⋃∞

n=1 An where all An = clAn are null
sets and F is AC∗ on each An. Fix an n. We will show that F is strongly
equivalent to zero on An, using any gauge δ. We may assume that a, b ∈ An.
Let (ai, bi), i = 1, 2, 3, . . . , be intervals contiguous to An in 〈a, b〉. Take an
ε > 0. There are intervals 〈ci, di〉 ⊂ (ai, bi) such that

∞∑
i=1

(
ωF (〈ai, ci〉) + ωF (〈di, bi〉)

)
< ε. (3)

Also, there is an η > 0 such that∑
k

|Ik| < η ⇒
∑

k

ωF (Ik) < ε (4)

for each family {Ik}k of nonoverlapping intervals with endpoints in An. One
can find an N so that ∣∣∣∣〈a, b〉 \

N⋃
i=1

(ai, bi)
∣∣∣∣ < η. (5)
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Set R =
{
(〈ai, ci〉, ai), (〈di, bi〉, bi)

}N

i=1
. Complete R to any partition πε

of 〈a, b〉. Consider a δ-fine division P w πε, anchored in An. Let

P ′ = {(I, x) ∈ P : I ⊂ 〈ai, ci〉 ∪ 〈di, bi〉, i = 1, 2, . . . , N}.

By (3) |∆|F (P ′) < ε, by (4) and (5) |∆|F (P \ P ′) < ε. Thus |∆|F (P) < 2ε.
By Lemma 1.10, F is strongly equivalent to zero on A.

Theorem 1.12. Suppose that F : 〈a, b〉 → R is I-null. Then, it is an ACG∗-
function.

Proof. Suppose first that F is not a VBG∗-function. Then, by the proof of
Theorem 1 in [1], we get that there exists a closed null set N ⊂ 〈a, b〉 with
µF (N) ≥ 1. Hence F is not strongly equivalent to zero on N , a contradiction.

Now, we will prove that µF is absolutely continuous. Take any null set
D ⊂ 〈a, b〉. We may assume that D is Borel. Let

⋃
n En = 〈a, b〉, where

for each n the set En is closed and F is VB∗ on En. Fix an n and consider
the value µF (D ∩ En). Let G be the piecewise linear extension of F � En,
G is of bounded variation. The variational measure µF defined on subsets
of En is the regular Borel measure defined by variation of G, |.|G. So, the
value µF (D ∩ En) = |D ∩ En|G can be approximated by values |P |G, where
the P ’s are closed subsets of D ∩ En. Since F is I-null, all these imply that
|P |G = µF (P ) = 0. Thus, there must be µF (D ∩ En) = |D ∩ En|G = 0. So,
µF (D) = 0. By Theorem 1.9, F is an ACG∗-function.

In fact, we proved above that for the absolute continuity of µF it is enough
to assume that µF is zero only on Fσ null sets. But then, this value may be
approximated by sums of the kind (2), in a strengthened way.

The equivalence of I-nullity and the property ACG∗ allows another de-
scriptive definition of the Henstock integral.

Corollary 1.13. An f : 〈a, b〉 → R is Henstock integrable iff there exists an
I-null function F such that F ′(x) = f(x) for almost all x ∈ 〈a, b〉.

1.3 Riemann Primitives

We end this section with an observation related to the still open problem of
characterizing the class of Riemann primitives.

Observation 1.14. There exists a bounded H1-integrable function f , which
is a derivative, but whose primitive is a primitive of no Riemann integrable
function.



796 Piotr Sworowski

Proof. One can easily construct a bounded Baire*1 approximately continu-
ous function f , discontinuous exactly at points of some nowhere dense perfect
set of positive measure. Such a function f is H1-integrable and it differs from
every Riemann integrand on a set of positive measure.

Every Riemann primitive is Lipschitz and differentiable outside an E ∈ I.
However, these two properties do not characterize Riemann primitives.

2 Main Result: Henstock=Lebesgue+H1

In view of Example 4.2 in [4], another problem arises. Can every Henstock
integrable function be written as the sum of a Lebesgue integrable function
and an H1-integrable one (Problem 4.5 in [4])? We will answer this question
in affirmative. We say that f is integrable on a set E in the improper sense
if fχ

E is integrable on every subinterval 〈c, d〉 ⊂ (inf E, supE) and if a finite
double limit of

∫ d

c
fχ

E exists when c → inf E, d → supE.

Lemma 2.1. Let a set E ⊂ 〈a, b〉 be closed, I ⊂ 〈a, b〉 be an open interval.
Suppose that f : 〈a, b〉 → R is Lebesgue integrable in the improper sense on the
set E ∩ I. Then, f = f1 + f2 on E ∩ I, where f1 is Lebesgue integrable on
E ∩ I and f2 is Baire*1 on E ∩ I. Moreover, for each η > 0 the function f1

can be chosen so that
∫

E∩I
|f1| < η.

Proof. We may assume that a = inf E, b = supE, I = (a, b), and that
f = 0 outside of E. By assumption, f is Lebesgue integrable on every interval
〈c, d〉 ⊂ (a, b). Pick two monotone sequences in (a, b): an → a, bn → b, a1 = b1.
Since the integral of f is absolutely continuous on each interval 〈an+1, an〉, by
Lusin’s theorem on C-property one can find a closed subset Pn ⊂ E∩(an+1, an)
such that

(a) f � Pn is continuous,

(b)
∫
〈an+1,an〉\Pn

|f | < η
2n+1 .

In the same way we find closed subsets Rn ⊂ E ∩ (bn, bn+1). Put f2 = f on⋃∞
n=1(Pn ∪Rn), 0 otherwise, f1 = f − f2. By (a), it is clear that the function

f2 is Baire*1 on E ∩ I. By (b), we have
∫

E∩I
|f1| < 2

∑∞
n=1

η
2n+1 = η.

Theorem 2.2. Every Henstock integrable function f : 〈a, b〉 → R can be writ-
ten as a sum f = f1 + f2, where f1 is Lebesgue integrable, f2 is H1-integrable.
Moreover, for each ε > 0 the function f1 can be chosen so that

∫ b

a
|f1| < ε.

Proof. We use transfinite induction. We define transfinite sequences:
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1. {Uα}α<Ω of open sets in 〈a, b〉 (ascending),

2. {Jα}α<Ω of families of open subintervals of 〈a, b〉.

Put U1 = ∅, denote E1 = 〈a, b〉 \ U1 = 〈a, b〉.
Let Jα be the family of all open intervals I such that f is Lebesgue in-

tegrable on Eα ∩ I in the improper sense, Eα = 〈a, b〉 \ Uα. Put Uα+1 =
Uα ∪ (Eα ∩

⋃
Jα). For a limit ordinal β put Uβ =

⋃
α<β Uα, Jβ = ∅. For all

α’s let Iα denote the family of all compound intervals of
⋃

Jα. (Then Iα is
countable and

⋃
Iα =

⋃
Jα.) Because every closed set contains a portion on

which f is Lebesgue integrable, if Uα 6= 〈a, b〉, then Uα  Uα+1. Since {Uα}α

is ascending, by the Cantor–Baire principle there exists an α < Ω such that
Uα = 〈a, b〉. Denote {Pn}∞n=1 = {I ∩ Eβ}I∈Iβ ,β≤α. For each n, apply Lemma
2.1 for E = Eβ and η = ε

2n to find an appropriate sum f = f
(n)
1 + f

(n)
2 on

Pn = Eβ ∩ I. Note that the Pn’s are pairwise disjoint and
⋃∞

n=1 Pn = 〈a, b〉.
Put fi(x) = f

(n)
i (x) if x ∈ Pn, i = 1, 2. One has∫ b

a

|f1| <
∞∑

n=1

∫
Pn

|f (n)
1 | <

∞∑
n=1

ε

2n
= ε,

so f1 is Lebesgue integrable. As f2 = f − f1, f2 is Henstock integrable. Each
function f

(n)
2 is Baire*1 on an Fσ set Pn. Hence, the so-defined function

f2 : 〈a, b〉 → R is Baire*1. In view of Theorem 1.2, f2 is H1-integrable.

Let us conclude this note with the following query.

Question 2.3. Does there exist a function, H1-integrable in the extended
sense, which cannot be written as the sum of an H1-integrable one and a
derivative?

Acknowledgment. The author wishes to thank the referee for his useful
comments.
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