Xianfu Wang\*, Department of Mathematics and Statistics, Okanagan University College, Kelowna, B.C. V1V 1V7, Canada.

email: xwang@ouc.bc.ca

# ARE CONE-MONOTONE FUNCTIONS GENERICALLY INTERMEDIATELY DIFFERENTIABLE?

### Abstract

On a separable Banach space, we show that a cone-monotone function is generically intermediate differentiable provided its Dini-derivatives are finite along every direction and the cone has nonempty interior.

# 1 Introduction

Let X be a Banach space with dual space  $X^*$ , let  $A \subset X$  be a non-empty open set, and let  $K \subset X$  be a closed convex cone with  $\operatorname{int}(K) \neq \emptyset$ . The open ball with center x and radius r is denoted by  $B_r(x)$ . We say that  $f: A \to \mathbb{R} \cup \{+\infty\}$  is K-increasing on a set A if  $f(x+k) \geq f(x)$  whenever  $x \in A, x+k \in A$  for  $k \in K$ . The upper Dini derivative of f at  $x \in A$  in the direction v is defined by

$$f^+(x;v) := \limsup_{t \downarrow 0} \frac{f(x+tv) - f(x)}{t},$$

and the lower Dini derivative of f at  $x \in A$  in the direction v by

$$f_{+}(x;v) := \liminf_{t \downarrow 0} \frac{f(x+tv) - f(x)}{t}.$$

 $<sup>\</sup>label{thm:constraint} \mbox{Key Words: Separable Banach space, cone-monotone function, pointwise Lipschitz function, intermediate derivative}$ 

Mathematical Reviews subject classification: 46G05

Received by the editors July 22, 2003

Communicated by: B. S. Thomson

<sup>\*</sup>Research supported by the Natural Sciences and Engineering Research Council of Canada and by Grant-In-Aid of OUC.

We observe that both  $f_+(x;\cdot)$  and  $f^+(x;\cdot)$  are K-monotone whenever f is. Following [4] we say that f is intermediately differentiable at x if there exists a continuous linear functional  $x^*$  on X such that

$$f_+(x;v) \le \langle x^*, v \rangle \le f^+(x;v)$$
 for every  $v \in X$ .

This is the same as, there exists  $x^* \in X^*$  such that for every  $v \in X$  there exists  $t_n \downarrow 0$  with

$$\lim_{n \to \infty} \frac{f(x + t_n v) - f(x)}{t_n} = \langle x^*, v \rangle.$$

Fabian and Preiss [4] showed that for a large class of Banach spaces which includes the Asplund spaces, a locally Lipschitz function on an open subset of such a space is intermediately differentiable on a residual subset of its domain. It is our goal in this note to show that under mild assumptions, when X is separable, this also holds for cone-monotone functions.

# 2 Main Results

We begin with an observation on upper and lower Dini derivatives.

**Lemma 1.** Let  $f: X \to \mathbb{R}$  be K-increasing. Fix  $x \in X$  and  $e \in \text{int}(K)$ .

- (i) If  $f^+(x;e) < +\infty$ , then  $f^+(x;v) < +\infty$  for every  $v \in X$ . Therefore, if  $f^+(x;v) = +\infty$  for some  $v \in X$ , then  $f^+(x;k) = +\infty$  for every  $k \in \text{int}(K)$ .
- (ii) If  $f_+(x; -e) > -\infty$ , then  $f_+(x; v) > -\infty$  for every  $v \in X$ . Therefore, if  $f_+(x; v) = -\infty$  for some  $v \in X$ , then  $f_+(x; -k) = -\infty$  for every  $k \in \text{int}(K)$ .

PROOF. (i) Assume  $f^+(x;v) = +\infty$  for some v. Because  $e \in \text{int}(K)$ , there exists  $\epsilon > 0$  such that  $e + B_{\epsilon}(0) \subset K$ . We have

$$f^+(x;\epsilon \frac{v}{\|v\|}) \le f^+(x;e);$$

so  $f^+(x;e) = +\infty$ . This contradicts the assumption.

(ii) Assume  $f_+(x;v) = -\infty$  for some v. Since  $e \in \text{int}(K)$ , there exists  $\epsilon > 0$  such that

$$f_+(x; -\epsilon \frac{v}{\|v\|}) \ge f_+(x; -e),$$

so  $f_+(x;-e) = -\infty$ . This contradicts the assumption.

Now we can formulate our result.

**Theorem 1.** Let X be a separable Banach space and  $K \subset X$  be a closed convex cone with non-empty interior. Suppose that  $f: X \to \mathbb{R}$  is continuous and K-increasing. If there exists  $e \in \operatorname{int}(K)$  such that  $f^+(x; e) < \infty$  and  $f_+(x; -e) > -\infty$  for every  $x \in X$ , then f is generically intermediately differentiable on X.

PROOF. Choose a countable dense set  $\{k_i\}_{i=1}^{\infty}$  from int(K). For latter convenience, we let  $k_1 = e$ . Write

$$Y_p = \text{span}\{k_1, \dots, k_p\}, \text{ and } B_{Y_p} := \left\{ \sum_{i=1}^p l_i k_i : |l_i| \le 2 \text{ for } 1 \le i \le p \right\}.$$

(a): Finding intermediate derivatives on a finite dimensional space. Define  $O_n :=$ 

$$\left\{ x \in X \middle| \sup_{v \in B_{Y_p}} \left| \frac{f(x + t_x v) - f(x)}{t_x} - \langle x^*, v \rangle \right| < \frac{1}{n} \text{ for some } t_x > 0 \right.$$
and  $x^* \in X^* \right\}.$ 

Because f is continuous and  $B_{Y_p}$  is compact,  $O_n$  is open. Indeed, let  $x \in O_n$ . There exists  $\epsilon > 0$  such that  $B_{\epsilon}(x) \subset O_n$ . Suppose not. Then there exists  $x_m \to x$  such that for every m there exists  $v_m \in B_{Y_n}$  such that

$$\left| \frac{f(x_m + t_x v_m) - f(x_m)}{t_x} - \langle x^*, v_m \rangle \right| \ge \frac{1}{n}.$$

Because  $B_{Y_p}$  is compact, there exists a subsequence of  $(v_m)_{m\in\mathbb{N}}$ , without relabeling, say  $v_m \to v \in B_{Y_p}$ . Taking the limit, we have

$$\left| \frac{f(x + t_x v) - f(x)}{t_x} - \langle x^*, v \rangle \right| \ge \frac{1}{n}.$$

This contradicts the choice of x.

Borwein, Burke, and Lewis [2] show that when f is K-monotone, f is Gâteaux differentiable almost everywhere on X. This shows that  $O_n$  is dense in X. It follows that  $G_p := \bigcap \{O_n | n \in \mathbb{N}\}$ , is a dense  $G_\delta$  in X. Let  $x \in G_p$ . We will show that f is intermediately differentiable at x. As  $x \in G_p$ , for every n, there exists  $t_n > 0$  such that

$$\left| \frac{f(x + t_n v) - f(x)}{t_n} - \langle x_n^*, v \rangle \right| < \frac{1}{n} \text{ whenever } v \in B_{Y_p}.$$
 (1)

For fixed v, we have

$$-\frac{1}{n} + \frac{f(x + t_n v) - f(x)}{t_n} \le \langle x_n^*, v \rangle \le \frac{1}{n} + \frac{f(x + t_n v) - f(x)}{t_n}.$$

So by Lemma 1

$$-\infty < f_{+}(x;v) \le \liminf_{n \to \infty} \langle x_{n}^{*}, v \rangle \le \limsup_{n \to \infty} \langle x_{n}^{*}, v \rangle \le f^{+}(x;v) < \infty.$$
 (2)

Let  $\mathbb{Q}$  denote rational numbers. Let

$$D_p := \Big\{ \sum_{i=1}^p r_i k_i | r_i \in \mathbb{Q}, |r_i| \le 1 \Big\}.$$

Since  $D_p$  is countable, we write  $D_p := \{d_1, d_2, \ldots\}$ . For  $d_1$ , by (2) we may take a subsequence of  $(\langle x_n^*, d_1 \rangle)_{n \in \mathbb{N}}$  such that  $\langle x_{n1}^*, d_1 \rangle$  converges as  $n1 \to \infty$ ; For  $d_2$ , by (2) we may take a subsequence of  $(\langle x_{n1}^*, d_2 \rangle)_{n \in \mathbb{N}}$  such that  $\langle x_{n2}^*, d_2 \rangle$  converges as  $n2 \to \infty$ . Continuing in this way, we obtain  $(x_{nn}^*)_{n \in \mathbb{N}}$  such that for every  $d_k$  we have

$$\langle x_{nn}^*, d_k \rangle$$
 converges as  $nn \to \infty$ . (3)

Associated with  $(x_{nn}^*)_{n\in\mathbb{N}}$  are  $t_{nn}\downarrow 0$  which verifies

$$\left|\frac{f(x+t_{nn}v)-f(x)}{t_{nn}}-\langle x_{nn}^*,v\rangle\right|<\frac{1}{nn} \text{ for all } v\in B_{Y_p}.$$

For every  $v \in X$  we let

$$g(v) := \limsup_{nn \to \infty} \frac{f(x + t_{nn}v) - f(x)}{t_{nn}}.$$

Clearly,  $f_+(x;v) \leq g(v) \leq f^+(x;v)$  for all  $v \in X$ . We proceed to show that g is linear on  $Y_p$ .

Now for every  $d_k \in D_p$ , by (3)

$$g(d_k) = \limsup_{nn \to \infty} \frac{f(x + t_{nn}d_k) - f(x)}{t_{nn}} = \lim_{nn \to \infty} \langle x_{nn}^*, d_k \rangle.$$

From (1), when  $r_i \in \mathbb{Q}$  and  $|r_i| \leq 1$  we have

$$\left| \frac{f(x + t_{nn} \sum_{i=1}^{p} r_i k_i) - f(x)}{t_{nn}} - \langle x_{nn}^*, \sum_{i=1}^{p} r_i k_i \rangle \right| < \frac{1}{nn},$$

$$\left| \frac{f(x + t_{nn}(-k_i)) - f(x)}{t_{nn}} - \langle x_{nn}^*, (-k_i) \rangle \right| < \frac{1}{nn},$$

and

$$\left| \frac{f(x + t_{nn}(-\sum_{i=1}^{p} r_i k_i)) - f(x)}{t_{nn}} - \langle x_{nn}^*, -\sum_{i=1}^{p} r_i k_i \rangle \right| < \frac{1}{nn}.$$

As  $nn \to \infty$ , we obtain

$$g\left(\sum_{i=1}^{p} r_i k_i\right) = \sum_{i=1}^{p} r_i g(k_i),\tag{4}$$

whenever  $r_i \in \mathbb{Q}$  and  $|r_i| \leq 1$ . Because g is K-increasing and K is a convex cone, for each  $l_1, l_2, \ldots, l_p$  we can find rationals  $\hat{l}_1 \geq l_1, \ldots, \hat{l}_p \geq l_p$  such that

$$g\left(\sum_{i=1}^{p} l_i k_i\right) \le g\left(\sum_{i=1}^{p} \hat{l}_i k_i\right) = \sum_{i=1}^{p} \hat{l}_i g(k_i),$$

where the equality follows from (4). Letting  $\hat{l}_1 \to l_1, \dots, \hat{l}_p \to l_p$ , we obtain

$$g\Big(\sum_{i=1}^{p} l_i k_i\Big) \le \sum_{i=1}^{p} l_i g(k_i).$$

Similarly, we have  $g\left(\sum_{i=1}^{p} l_i k_i\right) \ge \sum_{i=1}^{p} l_i g(k_i)$ . Hence

$$g\left(\sum_{i=1}^{p} l_i k_i\right) = \sum_{i=1}^{p} l_i g(k_i),$$

when  $|l_i| \le 1$  for  $1 \le i \le p$ . Because g is positive homogeneous, g is linear on  $Y_p$ .

### (b): From finite dimensional spaces to a dense linear span.

Write  $Y = \bigcup_{p=1}^{\infty} Y_p$ . Because  $\{k_i\}_{i=1}^{\infty}$  is dense in K, and X = K - K, Y is dense in X. For each  $Y_p$ , by (a) there exists  $G_p$ , a dense  $G_{\delta}$  subset of X, such that for every  $x \in G_p$  there exists  $g: X \to \mathbb{R}$  satisfying

- (i) g is linear on  $Y_p$ ;
- (ii) g is K-increasing on X and  $g(v) \leq f^+(x; e)$  for  $v \leq_K e$  with  $v \in X$ ;
- (iii)  $f_+(x;v) \le g(v) \le f^+(x;v)$  for  $v \in X$ .

Let  $G:=\bigcap_{p=1}^{\infty}G_p$  and  $x\in G$ . By (ii), there exists  $g:X\to\mathbb{R}$  satisfying (i), (ii), and (iii) such that  $\langle g,y\rangle\leq\langle g,e\rangle\leq f^+(x;e)$ , when  $y\leq_K e$  and  $y\in Y_p$ . (Note here that we use  $\langle g,y\rangle$  because g is linear on  $Y_p$ .) Because  $e\in \mathrm{int}(K)$ , there exists a  $\alpha>0$  such that  $B_{\alpha}(0)\subset\{y\in X:y\leq_K e\}$ . Therefore,

$$\langle g, y \rangle \le \frac{f^+(x; e)}{\alpha} ||y|| \text{ for } y \in Y_p.$$

By the Hahn-Banach theorem, there exists  $x^* \in X^*$  such that  $x^*|_{Y_p} = g|_{Y_p}$  and  $\langle x^*, y \rangle \leq \frac{f^+(x;e)}{\alpha} ||y||$ , for  $y \in X$ . Set

$$C_p := \left\{ x^* \in X^* | f_+(x; v) \le \langle x^*, v \rangle \le f^+(x; v) \text{ for } v \in Y_p, ||x^*|| \le \frac{f^+(x; e)}{\alpha} \right\}.$$

Then  $C_p$  is weak\* closed and bounded, so weak\* compact. By (a) we have  $\{C_p : p \in \mathbb{N}\}$  has finite intersection property. Indeed, for any finite number of finite dimensional subspaces  $Y_{p_1}, \ldots, Y_{p_k}$ , there exists p large such that

$$Y_{p_1} \cup Y_{p_2} \cup \ldots \cup Y_{p_k} \subset Y_p$$
.

Since  $x \in G_p$ , we know  $C_p \subset \bigcap_{i=1}^k C_{p_i}$ . It follows that  $C := \bigcap_{p=1}^\infty C_p \neq \emptyset$ . For  $x^* \in C$ , we have

$$f_+(x;y) \le \langle x^*, y \rangle \le f^+(x;y)$$
 for every  $y \in Y$ .

(c): From dense linear space to the separable space.

From (b), for  $x \in G$ , there exists  $x^* \in X^*$  such that

$$f_{+}(x;y) \le \langle x^*, y \rangle \le f^{+}(x;y) \text{ for every } y \in Y,$$
 (5)

where Y is dense in X. For every  $v \in X$ ,  $v + \operatorname{int}(K)$  and  $v - \operatorname{int}(K)$  are open. Because Y is dense in X, there exist  $y_n, z_n \in Y$  arbitrary nearby v such that  $y_n \in v - \operatorname{int}(K)$  and  $z_n \in v + \operatorname{int}(K)$ . That is, we can find  $y_n, z_n \in Y$  such that  $y_n \leq_K v \leq_K z_n$ , while  $y_n \to v$  and  $z_n \to v$  in norm. Now by (5),

$$\langle x^*, y_n \rangle \le f^+(x; y_n) \le f^+(x; v)$$
, and  $\langle x^*, z_n \rangle \ge f_+(x; z_n) \ge f_+(x; v)$ .

Letting  $n \to \infty$ , we obtain  $f_+(x; v) \le \langle x^*, v \rangle \le f^+(x; v)$ . Therefore,  $x^*$  is an intermediate derivative of f at  $x \in G$ .

Recall that a function  $f: X \to \mathbb{R}$  is quasiconvex if the lower level sets  $S_{\lambda}(f) = \{x \in A | f(x) \leq \lambda\}$  is convex for every  $\lambda \in \mathbb{R}$ . We need the following fact from [1].

**Lemma 2.** Assume f is quasiconvex and lower semicontinuous (l.s.c.) on a Banach space X. Suppose that  $S_{\lambda}$  has non-empty interior. Then for every a with  $f(a) > \lambda$ , there exist an open neighborhood V of a and a convex cone K with non-empty interior, such that f is K-monotone on V.

**Corollary 1.** Let X be a separable Banach space. Suppose that  $f: X \to \mathbb{R}$  is continuous, quasiconvex, and  $f_+(x;v) > -\infty$ ,  $f^+(x;v) < +\infty$  for all  $x, v \in X$ . Then f is intermediately differentiable generically on X.

PROOF. Consider  $\overline{\lambda}$  such that whenever  $\mu < \overline{\lambda} < \lambda$ , the set  $S_{\mu}(f)$  has no interior and  $S_{\lambda}(f)$  has interior. Define

$$\begin{split} A := \{x \in X | \ f(x) < \overline{\lambda}\}, \quad B := \{x \in X | \ f(x) = \overline{\lambda}\}, \\ C := \{x \in X | \ f(x) \leq \overline{\lambda}\}. \end{split}$$

The set  $A = \bigcup_{n=1}^{\infty} A_n$  with  $A_n := \{x \in X | f(x) \leq \overline{\lambda} - 1/n\}$ . Since  $A_n$  has no interior and closed, A is of first category. bdry (B) is also nowhere dense. For each  $x \in (X \setminus C)$ , by Lemma 2, there exists a neighborhood  $U_x$  of x such that f is K-monotone on  $U_x$  for some closed convex cone K with  $\operatorname{int}(K) \neq \emptyset$ . By Theorem 1, f is intermediate differentiable generically on  $U_x$ . Since X is separable, f is generically intermediate differentiable on  $X \setminus C$ .

A function  $f: X \to \mathbb{R} \cup \{+\infty\}$  is called *directionally Lipschitz* at x in the direction  $u \in X$  if there exists  $\epsilon > 0$  such that when  $||z - x|| < \epsilon$ ,  $||h - u|| < \epsilon$ ,  $0 < t < \epsilon$ , one has

$$\frac{f(z+th) - f(z)}{t} < M.$$

In particular,  $f^+(z;h) < M$  when  $||z-x|| < \epsilon$ ,  $||h-u|| < \epsilon$ . Borwein, Burke, Lewis [2] show that if f is directionally Lipschitz at x, then there exists a neighborhood  $U_x$  of x, a continuous linear functional  $\phi \in X^*$ , and a closed convex cone K with  $\operatorname{int}(K) \neq \emptyset$  such that  $f + \phi$  is K-monotone on  $U_x$ . Therefore, we can apply Theorem 1 to  $f + \phi$  on  $U_x$  provided that  $f_+(z,v) > -\infty$  and  $f^+(z;v) < +\infty$  for  $z \in U_x$  and  $v \in X$ . With this in mind, we have the following consequence.

**Corollary 2.** Let X be a separable Banach space,  $A \subset X$  be nonempty open. If f is continuous, directionally Lipschitz at every point of A, and  $f_+(x;v) > -\infty$ ,  $f^+(x;v) < \infty$  for  $x \in A$  and  $v \in X$ , then f is generically intermediate differentiable on A.

We remark that Theorem 1 concerns finite intermediate derivatives. If we remove the finiteness of Dini derivates, the result may fail. This is illustrated by the following modified example from [3, page 288].

**Example 1.** Let E be a dense  $G_{\delta}$  subset in [0,1] with Lebesgue measure 0. There exists a continuous, strictly increasing function  $f:[0,1] \to \mathbb{R}$  such that  $f'(x) = +\infty$  for every  $x \in E$ . The points at which f has finite intermediate derivative must lie in  $[0,1] \setminus E$ , which is of first category.

# 3 Appendix

We say that  $f: X \to \mathbb{R}$  is Lipschitz at x if

$$L(x) := \limsup_{y \to x} \frac{|f(y) - f(x)|}{\|y - x\|},$$

is finite. Prof. D. Preiss informed me of the following.

**Lemma 3.** Let X be an arbitrary Banach space. Assume that  $f: X \to \mathbb{R}$  is pointwise Lipschitz on X; that is,  $L(x) < +\infty$  for every  $x \in X$ . Then there exists a dense open set O of X such that f is locally Lipschitz on O.

PROOF. Define

$$g_n(x) := \sup_{0 < ||y-x|| < 1/n} \frac{|f(y) - f(x)|}{||y - x||}.$$

Then  $L(x)=\inf_{n\geq 1}g_n(x)$  for every  $x\in X$ . Since  $g_n$  is lower semicontinuous on X, there exists a dense  $G_\delta$  set  $D_n$  of X such that  $g_n$  is continuous at every point of  $x\in D_n$ . Define  $D=\bigcap_{n=1}^\infty D_n$ . Then D is dense  $G_\delta$  in X. At every  $x\in D$ , L is upper semicontinuous. To see this, for  $\epsilon>0$ , there exists  $g_N$  such that  $g_N(x)< L(x)+\epsilon$ . Since  $g_N$  is continuous at x, there exists an open neighborhood  $U_x$  of x such that  $g_N(y)< L(x)+\epsilon$ . Since  $L\leq g_N$ , we have  $L(y)< L(x)+\epsilon$  for  $y\in U_x$ . One can take  $U_x$  to be convex. For every  $y_1,y_2\in U_x$ ,  $[y_1,y_2]\subset U_x$ . By compactness, we have

$$|f(y_2) - f(y_1)| \le (L(x) + \epsilon)||y_2 - y_1||.$$

Hence f is Lipschitz on  $U_x$ . It follows that the set

 $O := \{x \in X \mid \exists \text{ an open set } U_x \text{ containing } x \text{ such that } f \text{ is Lipschitz on } U_x\}$ 

is open and  $D \subset O$ . Thus, O is the required dense and open subset.

**Lemma 4.** Let X be a finite dimensional Banach space and suppose that  $f: X \to \mathbb{R}$  is K-increasing with  $\operatorname{int}(K) \neq \emptyset$ . Then the following are equivalent:

(a) At 
$$x \in X$$
,  $f_+(x; v) > -\infty$  and  $f^+(x; v) < +\infty$  for every  $v \in X$ .

(b) f is Lipschitz at point x.

PROOF. It suffices to show (a) $\Rightarrow$ (b). Suppose (b) does not hold. That is, there exists  $y_n \to x$  such that

$$\lim_{y_n \to x} \sup_{x \to x} \frac{|f(y_n) - f(x)|}{\|y_n - x\|} = \infty.$$

Without relabeling, let us assume

$$\lim_{y_n \to x} \frac{f(y_n) - f(x)}{\|y_n - x\|} = +\infty.$$

The other case is similar. Write  $y_n = x + t_n v_n$  with  $t_n = ||y_n - x||$  and  $v_n = (y_n - x)/t_n$ . As X is finite dimensional, there exists a subsequence of  $(v_n)_{n \in \mathbb{N}}$  converging. Without relabeling we assume  $v_n \to v$ . We have

$$\lim_{t_n\downarrow 0, v_n\to v} \frac{f(x+t_nv_n)-f(x)}{t_n} = +\infty.$$

Take  $e \in \text{int}(K)$ . For n sufficiently large,  $(v - v_n) + e \in \text{int}(K)$ . Since f is K-increasing, we have

$$\frac{f(x+t_nv_n)-f(x)}{t_n} \le \frac{f(x+t_n(v+e))-f(x)}{t_n}.$$

Taking limsup gives  $f^+(x; v + e) = +\infty$ . This contradicts (a).

These two lemmas show that Theorem 1 can be deduced from the results for Lipschitz functions [4, 5] when X is finite dimensional. Nevertheless, when X is infinite dimensional, it is not clear whether Lemma 4 holds.

Following [5] we say that a function  $f:X\to\mathbb{R}$  is said to be uniformly intermediately differentiable at x if there exists a continuous linear functional  $x^*$  on X and a sequence  $t_n\downarrow 0$  such that

$$\lim_{n\to\infty}\frac{f(x+t_nv)-f(x)}{t_n}=\langle x^*,v\rangle, \text{ for all } v\in X,\ \|v\|=1.$$

Here 'uniformly' means that the same sequence is used for all  $v \in X$ , ||v|| = 1. Using Lemma 3 and Preiss' Differentiability Theorem, we can follow Giles and Sciffer's arguments in the proof of Theorem 1.4 to obtain the final result.

**Theorem 2.** A pointwise Lipschitz function f on an open subset A of an As-plund space X is uniformly intermediately differentiable on a dense  $G_{\delta}$  subset of A.

This refines Theorem 1.4 of Giles and Sciffer [5].

**Acknowledgments.** I wish to thank Prof. M. Fabian for his helpful conversations.

### References

- [1] J. M. Borwein, X. Wang, Cone monotone functions: differentiability and continuity, Canadian Journal of Mathematics, submitted, available as Preprint 2003:209 at http://www.cecm.sfu.ca/Preprints03/preprints03.html.
- [2] J. M. Borwein, J. V. Burke, and A. S. Lewis, *Differentiability of cone-monotone functions on separable spaces*, Proc. Amer. Math. Soc., to appear.
- [3] A. M. Bruckner, J. B. Bruckner, and B. S. Thomson, *Real Analysis*, Prentice-Hall, 1997.
- [4] M. Fabian and D. Preiss, On intermediate differentiability of Lipschitz functions on certain Banach spaces, Proc. Amer. Math. Soc., 113 (1991), 733–740.
- [5] J. R. Giles and S. Sciffer, Generalizing generic differentiability properties from convex to locally Lipschitz functions, J. Math. Anal. Appl., 188 (1994), 833–854.
- [6] L. Zajicek, A note on intermediate differentiability of Lipschitz functions, Comment. Math. Univ. Caroline, 40 (1999), 795–799.