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ARE CONE-MONOTONE FUNCTIONS
GENERICALLY INTERMEDIATELY
DIFFERENTIABLE?

Abstract

On a separable Banach space, we show that a cone-monotone func-
tion is generically intermediate differentiable provided its Dini-derivatives
are finite along every direction and the cone has nonempty interior.

1 Introduction

Let X be a Banach space with dual space X*, let A C X be a non-empty open
set, and let K C X be a closed convex cone with int(K) # @). The open ball
with center x and radius r is denoted by B, (x). We say that f : A — RU{+o0}
is K-increasing on a set A if f(x + k) > f(x) whenever x € A,z + k € A for
k € K. The upper Dini derivative of f at x € A in the direction v is defined
by

fT(x;v) := limsup flz+tv) - f(z)
10 t

)
and the lower Dini derivative of f at £ € A in the direction v by

fr(x;v) = lirﬁ%nf fla+ tvt) — f(a:)
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We observe that both fy(z;-) and fT(z;-) are K-monotone whenever f is.
Following [4] we say that f is intermediately differentiable at x if there exists
a continuous linear functional z* on X such that

fa(z;v) < (z*,v) < fH(x;0) for every v € X.
This is the same as, there exists z* € X* such that for every v € X there

exists t,, | 0 with
lim f(:C + tnv) - f(.’E)

n— oo tn

= (z*,v).

Fabian and Preiss [4] showed that for a large class of Banach spaces which
includes the Asplund spaces, a locally Lipschitz function on an open subset of
such a space is intermediately differentiable on a residual subset of its domain.
It is our goal in this note to show that under mild assumptions, when X is
separable, this also holds for cone-monotone functions.

2 Main Results

We begin with an observation on upper and lower Dini derivatives.
Lemma 1. Let f : X — R be K-increasing. Fix v € X and e € int(K).

(i) If ft(x;e) < +oo, then fT(x;v) < +oo for every v € X. Therefore,
if fT(z;v) = +oo for some v € X, then f*(z;k) = +oo for every

k € int(K).

(ii) If fy(x;—e) > —o0, then fi(xz;v) > —oo for every v € X. Therefore,
if fr(z;v) = —o0 for some v € X, then fi(x;—k) = —oo for every
k € int(K).

PROOF. (i) Assume f*(z;v) = +oo for some v. Because e € int(K), there
exists € > 0 such that e + B.(0) C K. We have

fHlaser) < f (o)
[[o]]
so f*(z;e) = +00. This contradicts the assumption.
(ii) Assume fy(x;v) = —oo for some v. Since e € int(K), there exists € > 0

such that "
fo (a5 *EW) > fy(x;—e),

s0 f1(x; —e) = —oo. This contradicts the assumption. O

Now we can formulate our result.
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Theorem 1. Let X be a separable Banach space and K C X be a closed convex
cone with non-empty interior. Suppose that f : X — R is continuous and K-
increasing. If there exists e € int(K) such that f¥(x;e) < oo and fy (x;—e€) >
—oo for every x € X, then f is generically intermediately differentiable on X.

ProOOF. Choose a countable dense set {k;}5°, from int(K). For latter conve-
nience, we let ky = e. Write

P
Y, =span{ky,...,ky}, and By, := {Zl,kl Sl <2for1 <4 gp}.
i=1

(a): Finding intermediate derivatives on a finite dimensional space.
Define O,, :=

f($ + tmv) — f(l')
(2%

{x€X| sup — (z*,v)

1
< — for some ¢, >0
’UGBYP n

and z* € X*}.

Because f is continuous and By, is compact, O,, is open. Indeed, let x € O,.
There exists € > 0 such that B.(z) C O,. Suppose not. Then there exists
Tm — @ such that for every m there exists v, € By, such that

ly

S|

- <$*, Um) ’ Z
Because By, is compact, there exists a subsequence of (v, )men, without re-

labeling, say v, — v € By, . Taking the limit, we have

f(.T +t$t1;) - f(l’) _ <.T*,U>

>

1
n

This contradicts the choice of x.

Borwein, Burke, and Lewis [2] show that when f is K-monotone, f is
Gateaux differentiable almost everywhere on X. This shows that O,, is dense
in X. It follows that G, := ({On|n € N}, is a dense G5 in X. Let x € G,,.
We will show that f is intermediately differentiable at z. As z € Gy, for every
n, there exists t,, > 0 such that

f(l‘ +tnv) — f(x)
n

no

1
— (x,,v)| < — whenever v € By, . (1)
n

For fixed v, we have

_l_|_ f(z+tov) — f(z)
n tn
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So by Lemma 1

—00 < fy(w;v) < liminf(z},v) < limsup(z:,v) < fT(z;v) < o0.  (2)

n—oo N—00

Let Q@ denote rational numbers. Let
p
D, = {Zﬁki| r; €Q,lry < 1}.
i=1

Since D, is countable, we write D, := {di,ds,...}. For di, by (2) we may
take a subsequence of ({x,d;1))nen such that (z¥,,d;) converges as nl — oo;
For ds, by (2) we may take a subsequence of ({x};, d2))nen such that (z¥,,ds)
converges as n2 — oo. Continuing in this way, we obtain (z},,)nen such that
for every dj we have

(@}, di) converges as nn — oo. (3)

Associated with (2%, )nen are t,, | 0 which verifies

f(x 4+ thnv) — f(x)

tnn

1
—(zp,,v)| < — for all v € By, .
nn

nn’

For every v € X we let

g(v) := limsup f(.’L‘ + tnnv) — f(.’L‘) )

Clearly, fi(z;v) < g(v) < fT(a;v) for all v € X. We proceed to show that g
is linear on Y,,.
Now for every dy € D, by (3)

g(dy) = limsup f@+ tande) = f() = lim (), dg).

nn—oo ton nn— oo

From (1), when r; € Q and |r;| <1 we have

@+ ton S0 miks) — f(z) R 1

’ trnlz - <xnn’ ;'I"Jﬂ» < %7
flx+ tnn(_ki)) - f(a:) * 1
‘ o = (T ("“"”‘ <
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and

tnn

nn{— T']— riki)) — * -
‘f(@”rt (=200 rik) = f(2) (e 3ok <L

As nn — oo, we obtain

g(imki) = irig(ki)v (4)

whenever r; € Q and |r;| < 1. Because g is K-increasing and K is a convex
cone, for each l1,1la,...,l, we can find rationals l; > [y,...,l, > [, such that

g(iliki) < g(iiz‘ki) = iiig(ki)a

where the equality follows from (4). Letting [y — Iy, ... ,l;, — 1, we obtain

g(ilil@) < izig(ki).
i=1 i=1

Similarly, we have g(Zle liki) >3 lg(k;). Hence

P P
9( > liki) = Lig(ks),
i=1 i=1
when |l;] <1 for 1 <i < p. Because g is positive homogeneous, g is linear on
Y.
(b): From finite dimensional spaces to a dense linear span.
Write Y = ()2, Y, Because {k;}{2, is dense in K, and X = K — K, Y is

dense in X. For each Y,, by (a) there exists G, a dense G subset of X, such
that for every x € G, there exists g : X — R satisfying

(1) g is linear on Y,;
(ii) g is K-increasing on X and g(v) < fT(x;e) for v <x e with v € X;;

(iii) fi(z;v) < g(v) < fH(z;v) forve X.
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Let G := (1,2, G, and x € G. By (ii), there exists g : X — R satisfying (i),
(i), and (iii) such that (g,y) < (g,e) < fT(x;¢), when y <g e and y € Y,,.
(Note here that we use (g, y) because g is linear on Y,.) Because e € int(K),
there exists a a > 0 such that B,(0) C {y € X : y <k e}. Therefore,

fH(z;e)

(9,9) < o

llyl| for y € Yy,.

By the Hahn-Banach theorem, there exists z* € X* such that z*|y, = gly,
and (z*,y) < L@y for y € X. Set

* * * + * f+(l';€)
Cpi={a" € X7| fy(w;v) < (2%,0) < f(w;0) for v € V), [|27]| < ———}.

Then C, is weak* closed and bounded, so weak™ compact. By (a) we have
{C), : p € N} has finite intersection property. Indeed, for any finite number of
finite dimensional subspaces Y}, ..., Y}, , there exists p large such that

Y, UY,, U...UY,, C Y,

Since z € Gy, we know C, C (\I_, C,,.. Tt follows that C := Nyey Cp # 0. For
z* € C, we have

Fe(miy) < (@",y) < [T (zy) for every y € V.

(c): From dense linear space to the separable space.
From (b), for z € G, there exists z* € X* such that

f(zy) < (@*,y) < fH(x;y) for every y €Y, (5)

where V" is dense in X. For every v € X, v+ int(K) and v — int(K) are open.
Because Y is dense in X, there exist y,, 2, € Y arbitrary nearby v such that
Yn € v — int(K) and z, € v+ int(K). That is, we can find y,, z, € Y such
that y, <k v <k 2, while y,, — v and z,, — v in norm. Now by (5),

(@, yn) < [T (@3yn) < [T (230),
(" 2) > Fo(@20) > fo(@30).
N

Letting n — oo, we obtain fi (z;v) < (x*,v) < fT(z;v). Therefore, x* is an
intermediate derivative of f at z € G. O

and

Recall that a function f : X — R is quasiconvezr if the lower level sets
Sx(f) = {z € A| f(z) < A} is convex for every A € R. We need the following
fact from [1].
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Lemma 2. Assume [ is quasiconvex and lower semicontinuous (l.s.c.) on a
Banach space X. Suppose that S\ has non-empty interior. Then for every a
with f(a) > A, there exist an open neighborhood V' of a and a convex cone K
with non-empty interior, such that f is K-monotone on V.

Corollary 1. Let X be a separable Banach space. Suppose that f : X — R
is continuous, quasiconvex, and fi(z;v) > —oo, fT(z;v) < +oo for all z,v €
X. Then f is intermediately differentiable generically on X.

ProOF. Consider X such that whenever y < A < A, the set S,(f) has no
interior and S (f) has interior. Define

A={zecX|f(x) <A}, B:={xecX|f(z)=2\}
C:={reX| f(z) <AL
The set A = (J;, A, with A4,, := {z € X| f(z) < X—1/n}. Since A, has
no interior and closed, A is of first category. bdry (B) is also nowhere dense.
For each x € (X \ C), by Lemma 2, there exists a neighborhood U, of = such
that f is K-monotone on U, for some closed convex cone K with int(K) # 0.

By Theorem 1, f is intermediate differentiable generically on U,. Since X is
separable, f is generically intermediate differentiable on X \ C. O

A function f: X — RU {+oco} is called directionally Lipschitz at = in the
direction u € X if there exists € > 0 such that when ||z — z|| <e, ||h —u|| <,

0 <t < ¢, one has
fz+th) — f(2)
t

In particular, f*(z;h) < M when ||z — z|| < €,||h — u|| < . Borwein, Burke,
Lewis [2] show that if f is directionally Lipschitz at x, then there exists a
neighborhood U, of z, a continuous linear functional ¢ € X*, and a closed
convex cone K with int(K') # 0 such that f + ¢ is K-monotone on U,. There-
fore, we can apply Theorem 1 to f + ¢ on U, provided that fi(z,v) > —o0
and f*(z;v) < +oo for z € U, and v € X. With this in mind, we have the
following consequence.

<M.

Corollary 2. Let X be a separable Banach space, A C X be nonempty open.
If f is continuous, directionally Lipschitz at every point of A, and f(z;v) >
—o0, fH(z;v) < oo forx € A and v € X, then f is generically intermediate
differentiable on A.

We remark that Theorem 1 concerns finite intermediate derivatives. If we
remove the finiteness of Dini derivates, the result may fail. This is illustrated
by the following modified example from [3, page 288].
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Example 1. Let E be a dense G subset in [0, 1] with Lebesgue measure 0.
There exists a continuous, strictly increasing function f : [0,1] — R such that
f'(x) = 400 for every € E. The points at which f has finite intermediate
derivative must lie in [0, 1] \ E, which is of first category.

3 Appendix

We say that f: X — R is Lipschitz at x if

L) o timsup K@ = @)

)
y—z |y =2

is finite. Prof. D. Preiss informed me of the following.

Lemma 3. Let X be an arbitrary Banach space. Assume that f : X — R is
pointwise Lipschitz on X ; that is, L(x) < +oo for every x € X. Then there
exists a dense open set O of X such that f is locally Lipschitz on O.

PROOF. Define
ey M@ =S@]
0<|ly—z||<1/n ly — |l

Then L(x) = inf,,>1 g, (z) for every x € X. Since g, is lower semicontinuous
on X, there exists a dense G4 set D,, of X such that g, is continuous at every
point of x € D,,. Define D = ﬂ;ozl D,,. Then D is dense G5 in X. At every
x € D, L is upper semicontinuous. To see this, for € > 0, there exists gy
such that gn(z) < L(x) + €. Since gy is continuous at z, there exists an
open neighborhood U,, of x such that gn(y) < L(z) + €. Since L < gy, we
have L(y) < L(x) + € for y € U,. One can take U, to be convex. For every
y1,Y2 € Ug, [y1,y2] C U,. By compactness, we have

|f(y2) = f(y)| < (L(x) + €)lly2 — v ll-
Hence f is Lipschitz on U,. It follows that the set
O :={z € X| 3 an open set U, containing z such that f is Lipschitz on U,}

is open and D C O. Thus, O is the required dense and open subset. O]

Lemma 4. Let X be a finite dimensional Banach space and suppose that
f: X — Ris K-increasing with int(K) # (. Then the following are equivalent:

(a) Atz € X, fi(z;v) > —o0 and fT(z;v) < +oo for every v € X.
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(b) f is Lipschitz at point x.

PrOOF. It suffices to show (a)=-(b). Suppose (b) does not hold. That is,
there exists y,, — x such that

[ (yn) — f(2)]

limsup —————*— =0
y—e  |yn — 2]

Without relabeling, let us assume

lim = 400.
vn=z |y — 2]
The other case is similar. Write y, = = + t,v, with ¢, = ||y, — z|| and

Up = (Yn — x)/tn. As X is finite dimensional, there exists a subsequence of
(vn)nen converging. Without relabeling we assume v, — v. We have

[z +tyv,) — fx)

lim sup = +00.
tn 10,0, —v tn

Take e € int(K). For n sufficiently large, (v — v,) + e € int(K). Since f is
K-increasing, we have

[+ tawn) = F(2) _ f@+ talv+e) = f(z)
tn - 128

Taking limsup gives fT(x;v + e) = +o00. This contradicts (a). O

These two lemmas show that Theorem 1 can be deduced from the results
for Lipschitz functions [4, 5] when X is finite dimensional. Nevertheless, when
X is infinite dimensional, it is not clear whether Lemma 4 holds.

Following [5] we say that a function f : X — R is said to be uniformly
intermediately differentiable at x if there exists a continuous linear functional
z* on X and a sequence t,, | 0 such that

lim f(z + tnv) - f(SC)

n—oo tn

= (z*,v), for all v € X, |jv]| = 1.

Here ‘uniformly’ means that the same sequence is used for all v € X, |jv|| = 1.
Using Lemma 3 and Preiss’ Differentiability Theorem, we can follow Giles and
Sciffer’s arguments in the proof of Theorem 1.4 to obtain the final result.

Theorem 2. A pointwise Lipschitz function f on an open subset A of an As-
plund space X is uniformly intermediately differentiable on a dense G subset

of A.
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This refines Theorem 1.4 of Giles and Sciffer [5].

Acknowledgments. I wish to thank Prof. M. Fabian for his helpful conver-
sations.
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