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ON POINTWISE HÖLDER FUNCTIONS∗

Abstract

Let f : X → R, where X is a subset of Rk. We observe that in order
for f be almost everywhere pointwise Hölder it is enough that f satisfy
the Hölder condition inside angles of a fixed width. In this analysis,
density points of X play a primary role. This has some interesting
consequences concerning summability of a naturally defined coefficient.

1 Introduction

The classical theorems due to Rademacher and Stepanoff clearly show the
link between locally Lipschitz functions and differentiable functions. Lately,
there have been numerous investigations in this direction ([1], [2], [4], [8], [13],
[17], [18]). On the other hand, the important role played by directions has
appeared to be fundamental, and it was already noticed in the classical papers
by Blumberg and Haslam Jones ([3], [11]), and successively in the papers by
de Lucia, Guariglia and Mukhopadhyay ([6], [14], [10]).

We think it useful to investigate pointwise Hölder functions, and in this
context rather than working to examine a spanning set of directions, we focus
our attention on intervals of Rk with an opportune parameter of regularity.
In Section 2 we provide a characterization of almost everywhere pointwise
Hölder functions. In Section 4 we prove a condition that assures the summa-
bility of the Hölder coefficient of an almost everywhere pointwise Hölder func-
tion. Finally, in Section 3, using properties analogous to the classical notions
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of absolute continuity and bounded variation, we establish further conditions
that a function be almost everywhere pointwise Hölder.

In what follows λ and λ? are the Lebesgue measure and the Lebesgue outer
measure of Rk (k ≥ 2), respectively.

If x = (x1, . . . , xk), y = (y1, . . . , yk) are two points of Rk, by |x − y| we
denote the Euclidean distance between x and y.

We write x < y if xi < yi, for all i ∈ {1, . . . , k}.
If x < y, by r([x, y]) we mean the parameter of regularity of the interval

[x, y] defined as r([x, y]) = λ([x,y])
Lk , where L = max{|x1− y1|, . . . , |xk − yk|}. If

r([x, y]) = 1, we call [x, y] a cube.
If X is a subset of Rk and x ∈ Rk, d(x,X) is the distance of x from X and

δ(X) is the diameter of X.

2 Almost Everywhere Pointwise Hölder Functions

Definition 2.1. A function f : X ⊆ Rk → R is said to be locally Hölder with
exponent γ ∈]0, 1] in a set Y ⊆ X if there is a positive number L with the
property that for every x ∈ Y there exists a positive number δ such that

|f(x)− f(y)| ≤ L|x− y|γ

whenever y ∈ X and |x− y| < δ.
A function f : X ⊆ Rk → R is said to be pointwise Hölder with exponent
γ ∈]0, 1] in a set Y ⊆ X if for every x ∈ Y there exist a positive number L
and a positive number δ such that

|f(x)− f(y)| ≤ L|x− y|γ

whenever y ∈ X and |x− y| < δ.
We recall that in the case when γ equals 1 the function f is said to be locally
Lipschitz ([7]: page 64) and pointwise Lipschitz, respectively.

In order to obtain a characterization of almost everywhere pointwise Hölder
functions we intend to investigate the ratio |f(x)−f(y)|

|x−y|γ requiring the interval
[x, y] be non-empty and have an opportune parameter of regularity. To this
aim, given X ⊆ Rk, f : X → R, α ∈]0, 1[, γ ∈]0, 1] and n ∈ N, by Xn,α,γ we
denote the subset of all points x in X such that

(y ∈ X, x < y, |x− y| < 1
n

, r([x, y]) > α)

implies |f(x)− f(y)| ≤ n|x− y|γ .
In order to prove Theorem 2.8 we need to recall two classical results.



On Pointwise Hölder Functions 715

Lemma 2.2. ([15]: Theorem 35.2) If X is any set (measurable or not) in
Rk, then x is a point of density for X for almost all x ∈ X. A necessary and
sufficient condition that X be measurable is that x be a point of dispersion for
X for almost all x ∈ Rk \X.

Lemma 2.3. ([20]: Lemma, page 233) Let X be a subset of Rk and let x0

be a density point of X. Then there exists θ > 0 such that for every cube Q
satisfying δ(Q) ≤ d(x0, Q) ≤ θ it is λ?(X ∩Q) > 0.

We also recall two results from [6].

Lemma 2.4. ([6]: 1.1) Let X be a subset of Rk, x0 a density point of X and
0 < α < 1. Then there exist two positive numbers δ and η (the second one
does not depend on x0) such that for every x ∈ Rk if 0 < |x − x0| < δ, then
there exists y ∈ X such that

(y < x, y < x0, r([y, x]) > α, r([y, x0]) > α, |y − x0| ≤ η|x− x0|).

Lemma 2.5. ([6]: 1.2) Let X be a subset of Rk, x0 a density point of X and
0 < α < 1. If x is a point of Rk satisfying x0 < x and r([x0, x]) > α, then for
each η > 0 there exists y ∈ X such that

(y < x0, |y − x0| < η, r([y, x]) > α, r([y, x0]) > α).

Proposition 2.6. Let X ⊆ Rk, f : X → R, α ∈]0, 1[, γ ∈]0, 1] and n ∈ N. If
X is measurable, then Xn,α,γ is also measurable.

Proof. By Lemma 2.2 it is enough to show that if x0 is a point of X which
is a density point of Xn,α,γ , then x0 ∈ Xn,α,γ . Let x ∈ X be a density point
of Xn,α,γ satisfying

(x0 < x, |x− x0| <
1
n

, r([x0, x]) > α),

by Lemma 2.5 there exists a sequence {yp}p∈N ⊆ Xn,α,γ such that

yp < x0, |yp − x0| <
1
p
, r([yp, x0]) > α and r([yp, x]) > α,∀p ∈ N.

Therefore, for every p > n
1−n|x0−x|

|f(x)− f(x0)| ≤ |f(x)− f(yp)|+ |f(yp)− f(x0)| ≤ n(|x− yp|γ + |yp − x0|γ),

so, letting p tend to +∞, we have |f(x)− f(x0)| ≤ |x− x0|γ .
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Proposition 2.7. Let X ⊆ Rk, f : X → R, α ∈]0, 1[, γ ∈]0, 1] and n ∈ N.
Then f is locally Hölder with exponent γ at all points of X which are density
points of Xn,α,γ .

Proof. Let x0 ∈ X be a density point of Xn,α,γ . By Lemma 2.4 there exist
two positive numbers δ and η (the second one does not depend on x0) such
that if x is a point of Rk whose distance from x0 is positive and less than δ,
then there exists y ∈ Xn,α,γ satisfying:

1. y < x, y < x0, r([y, x]) > α, r([y, x0]) > α, and

2. |y − x0| ≤ η|x− x0|.

Hence, if x ∈ X is such that |x − x0| < min{ 1
(1+η)n , δ}, then there exists

y ∈ Xn,α,γ satisfying (2) and, therefore, such that

|y − x0| <
1
n

, |y − x| ≤ (1 + η)|x− x0| <
1
n

.

From the last inequality and from (1) and (2) it follows that

|f(x)− f(x0)| ≤n(|x− y|γ + |y − x0|γ)
≤n[(1 + η)γ |x− x0|γ + ηγ |x− x0|γ ]
=n[(1 + η)γ + ηγ ]|x− x0|γ

The number L we are looking for is L = n[(1 + η)γ + ηγ ].

The following theorem is a characterization of almost everywhere point-
wise Hölder functions. This result essentially points out that in order for f
be almost everywhere pointwise Hölder it is enough that f have the Hölder
condition inside certain angles of a fixed width.

Theorem 2.8. Let X be a bounded measurable subset of Rk, let f : X → R
and let γ ∈]0, 1]. Then the following are equivalent:

1. f is almost everywhere pointwise Hölder with exponent γ in X,

2. for every ε > 0 there exist n ∈ N and α ∈]0, 1[ such that λ(X \Xn,α,γ) <
ε.

Proof. (1) ⇐ (2) It is enough to observe that, by Proposition 2.6 and by
Lemma 2.2, almost every point of Xn,α,γ is a density point of Xn,α,γ . It follows
from Proposition 2.7 that f is almost everywhere locally Hölder with exponent
γ in Xn,α,γ .
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(2) ⇒ (1) If f is almost everywhere pointwise Hölder with exponent γ,
then, denoting by Xn,γ the set of all x ∈ X such that

(y ∈ X, |y − x| < 1
n

) ⇒ (|f(x)− f(y)| ≤ n|y − x|γ),

we have λ(X \ ∪n∈NXn,γ) = 0 and, as for any α ∈]0, 1[,

Xn,γ ⊆ Xn,α,γ ,∀n ∈ N,

it follows that λ(X \ ∪n∈NXn,α,γ) = 0. Since {Xn,α,γ}n∈N is an increasing
sequence of measurable sets, the assertion follows.

3 Absolute Continuity-Type and Bounded Variation-Type
Conditions

We observe that in the literature there exist characterizations of almost ev-
erywhere differentiability, among others ([6], [10], [16]), involving properties
analogous to the classical notions of absolute continuity and bounded vari-
ation. In order to show that opportune characterizations of the same type
also hold for almost everywhere pointwise Hölder functions we introduce the
following definitions.

Let f : X ⊆ Rk → R, α ∈]0, 1[ and γ ∈]0, 1]. We say that f has property
P1,α,γ in Y ⊆ X if for every σ > 0 there exists δ > 0 such that

p∑
i=1

|f(bi)− f(ai)|
k
γ < σ

for each finite sequence of pairwise non-overlapping intervals {[a1, b1], . . . , [at, bt]}
satisfying

(ai, bi ∈ X, r([ai, bi]) > α, [ai, bi] ∩ Y 6= ∅,∀i ∈ {1, . . . , t},
t∑

i=1

λ([ai, bi]) < δ).

We say that f satisfies P2,α,γ in Y ⊆ X if there exist two positive numbers K

and δ such that
∑t

i=1 |f(bi)−f(ai)|
k
γ < K for every finite sequence of pairwise

non-overlapping intervals {[a1, b1], . . . , [at, bt]} satisfying

(ai, bi ∈ X, r([ai, bi]) > α, [ai, bi] ∩ Y 6= ∅, |ai − bi| < δ,∀i ∈ {1, . . . , t}).

Theorem 3.1. Let X be a bounded measurable subset of Rk, f : X → R and
γ ∈]0, 1]. The following are equivalent:
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(a) The function f is almost everywhere pointwise Hölder with exponent γ
in X.

(b) For every ε > 0 there exist a measurable subset Y of X and α ∈]0, 1[
such that f has property P1,α,γ in Y and λ(X \ Y ) < ε.

(c) For every ε > 0 there exist a measurable subset Y of X and α ∈]0, 1[
such that f has property P2,α,γ in Y and λ(X \ Y ) < ε.

Proof. (a) ⇒ (b) As (a) holds, by Theorem 2.8, for every ε > 0 there exist
n ∈ N and α ∈]0, 1[ such that λ(X \Xn,α,γ) < ε. Denoted by X ′

n,α,γ the set
of all points of Xn,α,γ which are density points of Xn,α,γ , for every p ∈ N we
call Yp the set of all x ∈ X

′

n,α,γ with the property that

(a, b ∈ X, x ∈ [a, b], r([a, b]) > α, |b− a| < 1
p
)

implies
(|f(b)− f(a)| ≤ 4n[(1 + η)γ + ηγ ]|b− a|γ),

where η is the same as in Lemma 2.4. The sequence {Yp}p∈N is an increasing
sequence of measurable sets. In fact if x ∈ X

′

n,α,γ \ Yp, then there exists an
interval [a, b] such that

(a, b ∈ X, x ∈ [a, b], r([a, b]) > α, |b− a| < 1
p
)

and
(|f(b)− f(a)| > 4n[(1 + η)γ + ηγ ]|b− a|γ).

Since [a, b] has empty intersection with Yp, there exists a set Y disjoint from
Yp and containing X

′

n,α,γ \ Yp. (The set Y is measurable since it is union of
non-degenerate intervals ([21]: Lemma 4.1, page 112.) Because X

′

n,α,γ \ Yp =
X

′

n,α,γ ∩Y the measurability of Yp follows. Moreover X
′

n,α,γ = ∪p∈NYp. In fact
if x0 ∈ X

′

n,α,γ , by Lemma 2.4, there exists δ > 0 such that for every x ∈ Rk

with 0 < |x− x0| < δ there exists y ∈ X satisfying

(y < x, y < x0, r([y, x]) > α, r([y, x0]) > α, |y − x0| ≤ η|x− x0|).

Let p > max{ 1
δ , n(η + 1)} and let [a, b] be an interval such that

(a, b ∈ X, x0 ∈ [a, b], |b− a| < 1
p
, r([a, b]) > α).
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By Lemma 2.5 there exist two points y1, y2 ∈ X
′

n,α,γ such that

y1 < a, y1 < x0, y2 < b, y2 < x0

|y1 − x0| ≤ η|a− x0| <
1
n

, |y2 − x0| ≤ η|b− x0| <
1
n

and
r([y1, a]) > α, r([y1, x0]) > α, r([y2, b]) > α, r([y2, x0]) > α.

Therefore

|f(b)−f(a)| ≤ |f(b)−f(y2)|+ |f(y2)−f(x0)|+ |f(x0)−f(y1)|+ |f(y1)−f(a)|

and, as

|a− y1| ≤ |a− x0|(1 + η) <
1
n

and |b− y2| ≤ |b− x0|(1 + η) <
1
n

,

it follows that

|f(b)− f(a)| ≤n(|b− y2|γ + |y2 − x0|γ + |x0 − y1|γ + |y1 − a|γ)
≤n[(1 + η)γ |b− x0|γ + ηγ |b− x0|γ

+ ηγ |a− x0|γ + (1 + η)γ |a− x0|γ ]
≤n[(1 + η)γ + ηγ ](|b− x0|γ + |b− x0|γ + |a− x0|γ + |a− x0|γ)
≤4n[(1 + η)γ + ηγ ]|b− a|γ .

In order to prove that (b) holds it is enough to show that f has property P1,α,γ

in Yp. To this aim let us observe that if I is an interval with parameter of
regularity greater than α then there exists Kα such that (δ(I))k ≤ Kαλ(I).
Hence, if [a, b] is an interval such that

(a, b ∈ X, [a, b] ∩ Yp 6= ∅, r([a, b]) > α, |b− a| < 1
p
),

this yields

|f(b)− f(a)|
k
γ ≤ {4n[(1 + η)γ + ηγ ]}

k
γ |b− a|k ≤ Hα,γλ([a, b]),

where
Hα,γ = Kα{4n[(1 + η)γ + ηγ ]}

k
γ .
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Let σ > 0. If {[a1, b1], . . . , [at, bt]} is a finite sequence of non-overlapping
intervals such that

([ai, bi] ∩ Yp,γ 6= ∅, r([ai, bi]) > α,∀i ∈ {1, . . . , t},
t∑

i=1

λ([ai, bi]) <
σ

Hα,γ
),

then
t∑

i=1

|f(bi)− f(ai)|
k
γ < Hα,γ

t∑
i=1

λ([ai, bi]) < σ.

(b) ⇒ (c). It is enough to show that there exists α ∈]0, 1[ such that

(f has property P1,α,γ in the measurable subset Y of X)
⇒ (f has property P2,α,γ in Y ).

Let f have property P1,α,γ in Y . Then there exists δ > 0 such that for every
finite sequence of pairwise non-overlapping intervals {[a1, b1], . . . , [at, bt]} with

(ai, bi ∈ X, r([ai, bi]) > α, [ai, bi] ∩ Y 6= ∅,∀i ∈ {1, . . . , t},
t∑

i=1

λ([ai, bi]) < δ)

we have
∑t

i=1 |f(bi) − f(ai)|
k
γ < 1. On the other hand, we can find a finite

cover of Y , {C1, . . . , Cs}, with Ci (1 ≤ i ≤ s) open sphere having volume less
than δ, with the following property.

There exists τ > 0 such that every interval having measure less
than τ , with parameter of regularity greater than α and having
empty intersection with Y , is contained in at least one sphere from
the cover.

If {[a1, b1], . . . , [at, bt]} is a finite sequence of pairwise non-overlapping intervals
such that

([ai, bi] ∩ Y 6= ∅, r([ai, bi]) > α, |ai − bi| < τ
1

kγ ,∀i ∈ {1, . . . , t})

and, for every j ∈ {1, . . . , s}, we denote by Nj the set of i ∈ {1, . . . , t} such
that [ai, bi] ⊆ Cj then

t∑
i=1

|f(bi)− f(ai)|
k
γ ≤

s∑
j=1

∑
i∈Nj

|f(bi)− f(ai)|
k
γ
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and, because
∑

i∈Nj
λ([ai, bi]) ≤ λ(Cj) < δ, it follows that

t∑
i=1

|f(bi)− f(ai)|
k
γ < r.

(c) ⇒ (a) By Theorem 2.8, it is enough to show that, if Y denotes a measurable
subset of X where f satisfies property P2,α,γ , then the set

Y0 = Y \ ∪n∈NXn,α,γ

has measure zero. To this aim let us observe that if x is a point of Y0, then
for every n ∈ N, there exists y ∈ X such that

x < y, |x− y| < 1
n

, r([x, y]) > α and |f(x)− f(y)| > n|x− y|γ .

Hence, for any p ∈ N, we have that for every q ≥ p there exists y ∈ X such
that

x < y, |x− y| < 1
q
, r([x, y]) > α and p|y − x|γ ≤ q|y − x|γ < |f(x)− f(y)|.

Denoted by Fp the set of the intervals [x, y] such that

(x ∈ Y0, y ∈ X, x < y, r([x, y]) > α, p|y − x|γ < |f(x)− f(y)|),

Fp is a Vitali-covering of Y0. Hence there exists an at most countable subset
of pairwise non-overlapping intervals, {[xi, yi]}i∈N′(N′ ⊆ N), of Fp such that

λ(Y0 \ ∪i∈N′ [xi − yi]) = 0.

Since f has property P2,α,γ in Y , there exist two positive numbers K and δ such
that

∑t
i=1 |f(bi)− f(ai)|

k
γ < K for every finite sequence {[a1, b1], . . . , [at, bt]}

of pairwise non-overlapping intervals such that

ai, bi ∈ X, r([ai, bi]) > α, [ai, bi] ∩ Y 6= ∅, |ai − bi| < δ,∀i ∈ {1, . . . , t}.

Therefore, fixed p > 1
δ , we have

∑
i∈N′ |f(yi)− f(xi)| ≤ K. Because

p|yi − xi|γ < |f(yi)− f(xi)| ∀i ∈ N′,
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we have

pλ(Y0) ≤pλ(Y0 \ ∪i∈N′ [xi, yi]) +
∑
i∈N′

pλ([xi, yi])

≤
∑
i∈N′

p|xi − yi|k

≤ 1

p
k
γ−1

∑
i∈N′

|f(xi)− f(yi)|
k
γ ≤ K

p
k
γ−1

,

for every p > 1
δ . And so λ(Y0) ≤ K

p
k
γ

,∀p > 1
δ , implies λ(Y0) = 0.

4 Summable Functions Generated by Almost Everywhere
Pointwise Hölder Functions

Let X be a bounded measurable subset of Rk. The aim of this section is to
characterize functions f : X → R satisfying the property

“M(f,γ) is summable”,

where γ ∈]0, 1] and M(f,γ) is defined as

M(f,γ)(x) = lim sup
y→x

|f(x)− f(y)|
|x− y|γ

.

Clearly, if X is a bounded measurable subset of Rk and f : X → R, then

M(f,γ) summable ⇒ M(f,γ) finite almost everywhere ⇒ f almost
everywhere pointwise Hölder with exponent γ.

Proposition 4.1. Let f : X → R, where X is a bounded measurable subset
of Rk. The following are equivalent:

1. The function M(f,γ) is summable in X.

2. There exist an increasing sequence {Xn}n∈N of closed subsets of X and
an increasing sequence {Ln}n∈N of positive numbers such that, for every
n ∈ N,

lim sup
y → x

|f(y)− f(x)|
|y − x|γ

≤ Ln for every x in Xn,
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λ(X \ ∪n∈NXn) = 0 and
∑
n∈N

Lnλ(Xn \Xn−1) < +∞

(set X0 = ∅).

Proof. (1) ⇒ (2). Let X ′ be a subset of X of measure zero such that, for
every x ∈ X \X ′, M(f,γ)(x) < +∞. For every n ∈ N, we denote by Yn the set

{x ∈ X \X ′ : M(f,γ)(x) < n}.

Set Ln = n. The sequence {Yn}n∈N is an increasing sequence of measurable
sets such that λ(X \ ∪n∈NYn) = 0, and

n− 1 ≤ M(f,γ)(x) < n,∀x ∈ Yn \ Yn−1

(set Y0 = ∅).
Then ∑

n∈N
nλ(Yn \ Yn−1) =

∑
n∈N

(1 + n− 1)λ(Yn \ Yn−1)

=
∑
n∈N

λ(Yn \ Yn−1) +
∑
n∈N

(n− 1)λ(Yn \ Yn−1)

≤λ(X) +
∑
n∈N

(n− 1)λ(Yn \ Yn−1)

≤λ(X) +
∑
n∈N

∫
Yn\Yn−1

M(f,γ)(x)dx

≤λ(X) +
∫

X

M(f,γ)(x)dx < +∞.

Set X0 = ∅ and let {Xn}n∈N be an increasing sequence of closed sets such that

Xn ⊆ Yn and λ(Yn \Xn) <
1

(n + 1)2n
,∀n ∈ N.

Clearly, λ(X \ ∪n∈NXn) = 0 and for every n ∈ N,

M(f,γ)(x) ≤ Ln ∀x ∈ Xn.

Moreover, because

Xn \Xn−1 ⊆ (Yn \ Yn−1) ∪ (Yn−1 \Xn−1),
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we have∑
n∈N

Lnλ(Xn \Xn−1) =
∑
n∈N

nλ(Xn \Xn−1)

≤
∑
n∈N

nλ(Yn \ Yn−1) +
∑
n∈N

1
2n−1

< +∞.

(2) ⇒ (1). Clearly f is almost everywhere pointwise Hölder, so it is continuous
almost everywhere and hence it is measurable.

Let us now show that M(f,γ) is measurable. We proceed in a way similar
to the one in Theorem 4.3, page 113 of [21]. Let h ∈ N and let

Dh(f, x) = lim sup
|x−y|< 1

h

|f(y)− f(x)|
|y − x|γ .

Clearly,

M(f,γ)(x) = lim
h→+∞

Dh(f, x). (?)

Now let a be any finite number and let E be a subset of X. Consider the set

Ex = {x ∈ E : Dh(f, x) > a}.

We see at once that if f is constant on E, the set of the points x ∈ E at which
Dh(f, x) > a is open in E. Thus the set Xx and consequently the expression
Dh(f, x) as a function of x is measurable whenever the function f is finite,
measurable and assumes at most countably many distinct values.

This being so, let f be any finite measurable function. We can repre-
sent it as the limit of a uniformly convergent sequence {fn}n∈N of measur-
able functions each of which assumes at most a countable number of distinct
values. For instance we may write fn(x) = i

n , when i
n ≤ f(x) < i+1

n for
i = . . . ,−2,−1, 0, 1, 2, . . .. We then have Dh(f, x) = limn→+∞ Dh(fn, x), and
since by the above the functions Dh(fn, x) are measurable in x, so is Dh(f, x).
It follows at once from (?) that M(f,γ) is also measurable. Since for every
n ∈ N and for every x ∈ Xn we have M(f,γ)(x) ≤ Ln, it follows that

0 ≤
∫

X

M(f,γ)(x) dx =
∑
n∈N

∫
Xn\Xn−1

M(f,γ)(x) dx ≤
∑
n∈N

Lnλ(Xn \Xn−1) < +∞.

Next follows a theorem in the same spirit as Theorem 2.8.
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Theorem 4.2. Let f : X → R, where X is a bounded measurable subset of
Rk. The following are equivalent:

1. The function M(f,γ) is summable in X.

2. There exist α ∈]0, 1[, an increasing sequence {Xn}n∈N of closed subsets
of X and an increasing sequence {Ln}n∈N of positive numbers such that,
for every n ∈ N,

lim sup
y → x
y > x

r([x, y]) > α

|f(y)− f(x)|
|y − x|γ

≤ Ln, for every x in Xn,

λ(X \ ∪n∈NXn) = 0 and
∑
n∈N

Lnλ(Xn \Xn+1) < +∞

(set X0 = ∅).

Proof. (1) ⇒ (2). Let α ∈]0, 1[. By Proposition 4.1 there exist an increasing
sequence {Xn}n∈N of closed subsets of X and an increasing sequence {Ln}n∈N
of positive numbers such that, for every n ∈ N,

lim sup
y → x

|f(y)− f(x)|
|y − x|γ

≤ Ln, ∀x ∈ Xn,

λ(X \ ∪n∈NXn) = 0 and
∑
n∈N

Lnλ(Xn \Xn−1) < +∞.

By considering all density points of Xn contained in Xn and by replacing Xn

with a suitable closed subset of the collection of these density points and by
calling it still Xn for notational convenience, we can write, without loss of
generality,

lim sup
y → x
y > x

r([x, y]) > α

|f(y)− f(x)|
|y − x|γ

≤ lim sup
y→x

|f(y)− f(x)|
|y − x|γ

≤ Ln, ∀x ∈ Xn.

Hence (2) follows.
(2) ⇒ (1) For every n ∈ N, let Tn = 2Ln. For every n ∈ N, Xn = ∪k∈NXn,k,
where Xn,k is the set of all points in Xn with the property that

|f(y)− f(x)|
|y − x|γ

≤ Tn
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whenever y is an element of X satisfying x < y, |x− y| < 1
k and r([x, y]) > α.

Each Xn,k is measurable. It is enough to show that if x0 ∈ X is a density
point of Xn,k, then x0 ∈ Xn,k. Let y ∈ X such that

x0 < y, |y − x0| <
1
k

and r([y, x0]) > α.

By Lemma 2.5, there exists a sequence {yp}p∈N ⊆ Xn,k such that

yp < x0, |yp − x0| <
1
p
, r([yp, x0]) > α and r([yp, y]) > α,∀p ∈ N.

Then, for all p > k
1−k|x0−y| ,

|f(y)− f(x0)| ≤ |f(y)− f(yp)|+ |f(yp)− f(x0)| ≤ Tn(|y − yp|γ + |yp − x0|γ),

and so, letting p tend to +∞,

|f(y)− f(x0)| ≤ Tn|y − x0|γ .

The function f is locally Hölder at all density points of Xn,k. By Lemma 2.4
there exist two positive numbers δ and η (the second does not depend on x0)
such that if y ∈ Rk has distance from x0 positive and less than δ, then there
exist x ∈ Xn,k such that

1. x < y, x < x0, r([x, y]) > α, r([x, x0]) > α, and

2. |x− x0| ≤ η|y − x0|.

Hence, if y ∈ X satisfies |y−x0| < min{ 1
(1+η)k , δ}, then there exists x satisfying

(2) and hence such that

|x− x0| <
1
k

and |x− y| ≤ (1 + η)|y − x0| <
1
k

.

From the last inequality and from (1) and (2) it follows that

|f(y)− f(x0)| ≤|f(y)− f(x)|+ |f(x)− f(x0)|
≤Tn(|y − x|γ + |x− x0|γ)
≤Tn[(1 + η)γ + ηγ ]|y − x0|γ

Therefore, because f is almost everywhere locally Hölder in Xn,k, f is almost
everywhere pointwise Hölder in X. Moreover, for almost every x ∈ Xn,

0 ≤ M(f,γ)(x) ≤ Tn[(1 + η)γ + ηγ ],
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and so

0 ≤
∫

X

M(f,γ)(x)dx

=
∑
n∈N

∫
Xn\Xn−1

M(f,γ)(x)dx

≤
∑
n∈N

Tn[(1 + η)γ + ηγ ]λ(Xn \Xn−1)

=2[(1 + η)γ + ηγ ]
∑
n∈N

Lnλ(Xn \Xn−1) < +∞.
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[20] S. Saks, Théorie de l’integrale, Monografje Matematyczne, Warszawa,
1933 (available on line: http://matwbn.icm.edu.pl/ksspis.php?wyd=10).

[21] S. Saks, Theory of the integral, Monografje Matematyczne, Warszawa-
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