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ON FIRST RETURN PATH SYSTEMS

Abstract

It is known that for a first return system of paths {Rx : x ∈ [0, 1]}
the right path systems R+ ( the left path system R−) is right ( is left
) continuous and R satisfies I.I.C. property. In this paper we consider
path systems that are continuous and satisfy I.I.C. and investigate the
possibility of containing first return path systems. We also study the
effect of turbulence on trajectories by treating them as sequences

1 Introduction.

Motivated by the Poincaré first return map of differentiable dynamics, R. J.
O’Malley introduced a new type of path systems which he calls first return sys-
tems[12]. He shows that, though these are extremely thin paths, the systems
possess an interesting intersection property that makes their differentiation
theory as rich as those of much thicker path systems. For example, every
first return path differentiable function is in DB∗

1 and every first return path
derivative is in DB1. First return systems have been extensively investigated
in a series of papers (for example see [7,8,9,10] and some of their references).

In this paper we consider two types of problems. The first problem relates
to a question raised by professor O’Malley at the 26th Summer Symposium
in Real Analysis, when the author was presenting his talk. The concept of
continuous systems of paths was introduced in [1] and was generalized by Milan
Matejdes [11]. We showed that for a first return system of paths R = {Rx :
x ∈ [0, 1]}, the system R+ = {R+

x : x ∈ [0, 1]} and R− = {R−
x : x ∈ [0, 1]} are
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right and left continuous respectively (see [2]), thus in the presence of path
differentiability of f , f ′R enjoys the nice properties shared by path derivatives
where the path system has the internal intersection property as well as being
continuous. Professor O’Malley asked if there is a continuous system of paths
which is not a first return system of paths. In fact in [2] we show that such
system of paths do exist. However, our example does not have any intersection
condition property, thus it would be interesting to know if a path system with
some nice properties (in particular, a path system with intersection condition
or preferably a continuous path system with internal intersection condition)
contains a first return system of paths. The second problem involves the effect
of turbulence on trajectories by considering them as sequences.

2 Preliminaries.

By R we mean the set of real numbers, A denotes the closure of A, and A′ is
the set of accumulation points of A. By an interval (a, b) we mean an interval
with a and b as an end points, not necessarily a < b.

Definition 2.1. (see [12]) A trajectory is a sequence Pn, n = 0, 1, . . . , with
the following properties:

(i) P0 = 0, P1 = 1,

(ii) Pn 6= Pm, n 6= m,

(iii) 0 ≤ Pn ≤ 1 for all n,

(iv) {Pn : n = 0, 1, . . . } is dense in [0,1].

Our notation for a trajectory will be {Pn}. For a given k ≥ 1,Πk will
represent the partition of the interval [0,1] generated by the initial segment
{P0, P1, . . . , Pk}. The ith interval of that partition will be denoted as Πk,i.
For each partition Πk =;P0 = 0 < Pα1 < Pα2 < · · · < Pαk−1 < P1 = 1 we
assign the code (0, α1, α2, . . . , αk−1, 1).

Definition 2.2. (see [4]) Let x belong to [0, 1]. A path at x is a set Rx ⊆ [0, 1]
such that x ∈ Rx and x is a point of accumulation of Rx. A system of paths
R is a collection {Rx : x ∈ [0, 1]}, where each Rx is a path at x. For two path
systems R = {Rx : x ∈ [0, 1]} and E = {Ex : x ∈ [0, 1]} we say R contains E
and denote it by E ⊂ R if Ex ⊂ Rx for each x ∈ [0, 1].
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Definition 2.3. (see [1]) Let R = {Rx : x ∈ [0, 1]} be a system of paths,
with each Rx compact. We endow R with the Hausdorff metric dH to form
a metric space. If the function P : x → Rx is a continuous function, we say
R is a continuous system of paths. The left continuous and right continuous
systems of paths are defined similarly.

Definition 2.4. (see [3]) A system of paths E = {Ex : x ∈ R} is said to be
(1) of congruent type if each Ex = T + x = {t + x : t ∈ T} for each x where
T is a set having 0 as a member and as a point of accumulation.
(ii) of sequential type if Ex = T + x for each x where T = {0, h1, h2, h3, . . . }
and {hn} is a fixed sequence converging to 0.
Note that sequential system of paths and congruent system of paths when T
is a closed subset of the real line, are special cases of continuous system of
paths.

Definition 2.5. (see [12]) Let {Pn} be a fixed trajectory. For a given interval
(a, b) ⊂ [0, 1], r(a, b) will be the first element of the trajectory in (a, b). For
0 ≤ y < 1, the right first return path to y, R+

y , is defined recursively via
y+
1 = y, y+

2 = 1 and y+
k+1 = r(y, y+

k ) for k ≥ 2. For 0 < y ≤ 1, the left
first return path to y, R−

y , is defined similarly. For 0 < y < 1, we set Ry =
R−

y ∪R+
y , and R0 = R+

0 , R1 = R−
1 . The path systems R+ = {R+

x : x ∈ [0, 1)},
R− = {R−

x : x ∈ (0, 1]} and R = {Rx : x ∈ (0, 1)} ∪ {R+
0 , R−

1 } are called
the right first return system, the left first return system and the first return
system of paths generated by {Pn}, respectively.

Definition 2.6. (see [4]) A path system R is said to have the external inter-
section condition denoted by E.I.C. (intersection condition denoted by I.C.,
internal intersection condition denoted by I.I.C.) if there is a positive function
δ(x) on [0, 1] such that Rx∩Ry ∩ (y, 2y−x) 6= ∅ and Rx∩Ry ∩ (2x−y, x) 6= ∅
(Rx∩Ry ∩ [x, y] 6= ∅, Rx∩Ry ∩ (x, y) 6= ∅, respectively), whenever 0 < y−x <
min{δ(x), δ(y)}.

Definition 2.7. (see [4,12]) Let F:[0,1]→ R and let R be any path system. If
the

lim
y→x,y∈Rx\{x}

F (y)− F (x)
y − x

= f(x)

exists and is finite, then we say F is R−differentiable at x. If F is R−differentiable
at every point x, then we say that F is path differentiable and f is the path
derivative of F and is denoted by F ′

R = f . If the system of paths is a first
return system, then f is called the first return path derivative of F .
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We consider the following known metrics on the space of sequences.

Definition 2.8. Let S be the set of sequences defined on [0, 1] and let S =
{si}∞i=1 and T = {ti}∞i=1 be two sequences. We define

d1(S, T ) = sup{ |s1−t1|
1+|s1−t1| ,

|s2−t2|
1+|s2−t2| , . . . ,

|sk−tk|
1+|sk−tk| , . . . },

d2(S, T ) =
∑∞

i=1
1
2i | si − ti |. Clearly (S,d1) and (S,d2) are metric spaces.

Definition 2.9. Let P = {pn} and Q = {qn} be two sequences. We say P
and Q differ in a finite number of terms if there exist positive integers m and
n so that pm+i = qn+i for each i ≥ 0. We also call the path systems R = {Rx}
and E = {Ex} eventually the same from right(left), if for each x ∈ [0, 1) the
paths R+

x and E+
x ( x ∈ (0, 1] the paths R−

x and E−
x ) are eventually the same,

that is for each x there exists δx > 0 so that R+
x ∩ [x, x+δx) = E+

x ∩ [x, x+δx)
( R−

x ∩ (x − δx, x] = E−
x ∩ (x − δx, x]). The path systems R and E are said

to be eventually the same, if they are eventually the same from right and left.
We call the path systems R and E eventually the same in a uniform way, if
δ = infx∈[0,1] δx > 0, that is, if there exists δ > 0 so that for each x ∈ [0, 1],
Rx ∩ (x− δ, x + δ) = Ex ∩ (x− δ, x + δ).

Definition 2.10. (see [4]) Let δ be a positive function and let X be a set of
real numbers. By a δ−decomposition of X we shall mean a sequence of sets
{Xn}, which is a relabelling of the countable collection

Ym,j = {x ∈ X : δ(x) > 1
m}∩[ j

m , j+1
m ], m = 1, 2, 3, . . . and j = 0,±1,±2,±3, . . . .

The key features of such a decomposition of a set X are:
(i) ∪∞n=1Xn = X;
(ii) if x and y belong to the same set Xn, then | x− y |< min{δ(x), δ(y)}, and
(iii) if x ∈ Xn, then there are points y ∈ Xn with | x− y |< min{δ(x), δ(y)}.

3 Results.

Theorem 3.1. Let R = {Rx : x ∈ [0, 1]}, Rx = x + T is a path system of
congruent type with any sort of intersection property, then (T + T )− (T + T )
contains an interval of positive length.

Proof. Suppose R satisfies some sort of intersection condition property, and
δ is the positive function associated with such property. Let {An} be the
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δ−decomposition of [0, 1], thus [0, 1] = ∪∞n=1An. By Baire Category Theorem,
there exists n0 so that An0 contains an interval (c, d) of positive length. Take
xn0 ∈ An0 and let x ∈ (c, d) be arbitrary, then we have yx ∈ An0 so that
| x − yx |< min{δ(x), δ(yx)}, thus Rx ∩ Ryx

6= ∅. For z ∈ Rx ∩ Ryx
=

x+T ∩yx +T , we have z = x+ t1 = yx + t2. Thus x = (t2− t1)+yx with t1, t2
in T . Since yx and xn0 are in An0 we have | xn0 − yx |< min{δ(xn0), δ(yx)},
thus Rxn0

∩ Ryx 6= ∅. For z ∈ Rxn0
∩ Ryx = xn0 + T ∩ yx + T , we have

z = xn0 + t3 = yx + t4, thus yx = (t3 − t4) + xn0 with t3, t4 in T . Therefore
x = (t2 − t1) + yx = (t2 − t1) + (t3 − t4) + xn0 = (t2 + t3) − (t1 + t4) + xn0 ,
implying x ∈ [(T +T )− (T +T )]+xn0 , thus (c, d)−xn0 ⊆ (T +T )− (T +T ).
Hence (T + T )− (T + T ) contains an interval of positive length.

Corollary 3.2. A path system of congruent type R = {Rx : x ∈ [0, 1]}, Rx =
x+T does not contain any first return system of path when (T +T )− (T +T )
does not contain an interval of positive length.

The following theorem is a straight forward application of Theorem 3.1.

Theorem 3.3. Any path system of congruent type R = {Rx} = {x + T : x ∈
R} with T countable (in particular any path system of sequential type) cannot
have any intersection property, thus it cannot contain any first return system
of paths.

Proof. Let Rx = T + x for each x where T = {hi}∞i=1 with 0 ∈ (T )′. Let
Bi = {hj + hi}∞j=1, then for each i, Bi is a countable set and Bi = T + hi.
Thus T + T = ∪∞i=1Bi is a countable set. Similarly we can show that for a
countable set T the set T − T is also countable. Hence (T + T ) − (T + T ) is
a countable set, so it does not contain an interval of positive length. Hence R
does not have any intersection property, in particular it does not contain any
path with internal intersection property. Thus it cannot contain a first return
system of paths.

Let R = {Rx} be a first return path system. It is known that R has the
internal intersection property (see [12]), R+ and R− are right and left contin-
uous, respectively( see[2]). Thus in the presence of path differentiability of f ,
f ′R enjoys the nice properties shared by path derivatives, where the path sys-
tem has the intersection property as well as being continuous. Now we want
to look at the reverse problem, that is for a continuous path system R = {Rx}
which satisfies I.I.C. and f ′R exists with f ′R ∈ B1, is it possible to find a first
return path system E = {Ex} so that Ex ⊆ Rx for each x and f ′E = f ′R.
In [6] Darji and Evans gave an example of a function f and a path system
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E satisfying E.I.C. so that f ′E exists, but f is not first return differentiable
to f ′E . The path system given there does not satisfy I.I.C.. The following
example is given by Cordy in[5].

Example 3.4. There exists a continuous function F and a path system E
which satisfies I.C., yet F ′

E 6∈ B1.

Due to the existence of a continuous function with F ′
E 6∈ B1, the path

system E given in Example 3.4, neither contains a first return nor contains a
continuous system of paths. It is also easy to see that E satisfies I.C., but it
does not satisfy I.I.C.. In the following example, which is a modification of an
example of Darji and Evans, we show that even in the presence of F ′

E ∈ B1, the
I.I.C. alone is not sufficient to guarantee that E contains a first return path
system. Theorem 3.3 also indicates that there are continuous path systems
not containing any first return path system.

Example 3.5. There exists a function F and a bilateral system of paths E
having the internal intersection condition so that F ′

E ∈ B1, yet E does not
contain any first return system of paths.

Proof. Let P ⊂ [0, 1] be a cantor like set of positive measure containing
a countable dense subset {si}∞i=1 such that P has density 1 at each si. Let
{(ai, bi)}∞i=1 be the intervals contiguous to P . Define

F (x) =
{

0 if x ∈ P,
sin[ 1

(x−an)(bn−x) ] if x ∈ (an, bn) for n = 1, 2, · · · ,

and

f(x) =

{ F ′(x) if x ∈ ∪∞n=1(an, bn),
1
2i if x = si for i = 1, 2, · · · ,
0 if x ∈ P \ {si}∞i=1,

It is clear that f ∈ B1.
For sk ∈ {si}∞i=1, let εk = min{ 1

20 , | si − sk |: 1 ≤ i < k}. For εk > 0, there
exists 0 < δ(sk) < εk so that | P∩(sk−h,sk+h)

2h |> 19
20 , when | h |< δ(sk). Let

Ex =


[0, 1] if x ∈ [0, 1] \ P,

{x} ∪ {t : F (t)−F (x)
t−x = 1

2i } if x = si, i = 1, 2, · · ·
∪∞i=1Tsi(x) ∪ P if x ∈ P \ ({si}∞i=1 ∪ {ai, bi}∞i=1),
∪∞i=1Tsi

(x) ∪ P ∪ ({F−1(0) ∩ (ai, bi)}) if x = ai or x = bi for i = 1, 2, · · · .

Where Tsi
(x) =

{
Esi ∩ (x+si

2 , si) if | x− si |< δ(si),
∅ if | x− si |≥ δ(si).
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Let 1 ≤ i < ∞, to see that Esi is a path at si, let I = (si, si + h) be
an interval with | h |< δ(si), then P has infinitely many points in I, thus for
infinitely many n, we have (an, bn) ⊂ I, implying Esi

∩I 6= ∅, hence si ∈ (Esi
)′

and Esi
is a bilateral path at si. It is also clear that for each x ∈ [0, 1]\{si}∞i=1,

Ex is a bilateral path at x.
Define δ : [0.1] → R+ as

δ(x) =


dist(x, P ) if x 6∈ P,
δ(si) if x = si for i = 1, 2, · · · ,
1 if x ∈ P \ ({si}∞i=1 ∪ {ai, bi}∞i=1),
min{1, bn−an

3 } if x = an or x = bn for some n.

Now we show that E satisfies I.I.C. Let x, y ∈ [0, 1] be such that | x−y |<
min{δ(x), δ(y)}, then either x and y are both in [0, 1] \ P or both belong to
P . In the case that both belong to P , if for some i, x = ai, then y 6= bi and if
x = bi, then y 6= ai, for the same i.
If x, y ∈ [0, 1] \ P , then Ex ∩ Ey ∩ (x, y) = (x, y) 6= ∅. If x, y ∈ P , with
x ∈ {si}∞i=1, then y 6∈ {si}∞i=1, and vise versa. Thus we consider the following
cases;
(i) x = sm for some m and y ∈ P \ ({si}∞i=1 ∪ {ai, bi}∞i=1).
(ii) x = sm for some m and y = ai or y = bi for some i .
(iii) x, y ∈ P \ ({si}∞i=1 ∪ {ai, bi}∞i=1).
(iv) x ∈ P \ ({si}∞i=1 ∪ {ai, bi}∞i=1), but y = ai > x or y = bi < x for some i.
(v) x = ai and y = aj < x or y = bj < x.
(vi) x = bi and y = aj > x or y = bj > x.
In case (i), if | sm − y |< min{δ(sm), δ(y)}, we have
Esm ∩ Ey ∩ (sm, y) ⊃ {sm} ∪ {t : F (t)−F (sm)

t−sm
= 1

2m } ∩ (∪∞i=1Tsi
(y) ∪ P )

∩ (sm, y) ⊃ Tsm(y) 6= ∅.
In case (ii), we have Esm ∩ Ey ∩ (sm, y) ⊃ {sm} ∪ {t : F (t)−F (sm)

t−sm
= 1

2m } ∩
(∪∞i=1Tsi

(x) ∪ P ∪ ({F−1(0) ∩ (ai, bi)}) ∩ (sm, y) ⊃ Tsm
(y) 6= ∅.

In case (iii), we have Ex ∩Ey ∩ (x, y) ⊃ (∪∞i=1Tsi(y)∪P )∩ (∪∞i=1Tsi(x)∪P )∩
(x, y) ⊃ P ∩ (x, y) 6= ∅.
In case (iv), we have Ex ∩ Ey ∩ (x, y) = (∪∞i=1Tsi

(x) ∪ P ) ∩ (P ∪ {F−1(0) ∩
(ai, bi)}) ∩ (x, y) ⊃ P ∩ (x, y) 6= ∅.
In both cases (v) and (vi), we have Ex ∩ Ey ∩ (x, y) ⊃ P ∩ (x, y) 6= ∅.
Thus E satisfies I.I.C. property. To see F ′

E(x) = f(x). This is clear when
x ∈ [0, 1] \ P or x ∈ {si}∞i=1. Suppose x ∈ P \ {si}∞i=1, then for y ∈ P

or y ∈ {F−1(0) ∩ (ai, bi) we have limy→x
F (y)−F (x)

y−x = limy→x 0 = f(x). If
y ∈ Ex \ P , then y ∈ Esi

∩ (x+si

2 , si) for some i, thus
| F (y)−F (x)

y−x |=| F (y)−F (si)
y−si

· y−si

y−x |=| F (y)−F (si)
y−si

| · | y−si

y−x |≤ 1
2i · 1 = 1

2i . Hence

limy→x,y∈Ex\P | F (y)−F (x)
y−x |≤ limi→∞

1
2i = 0 hence F ′

E(x) = f(x) = 0.
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We claim there is no first return path system R = {Rx : x ∈ [0, 1]} so that
for each x, Rx ⊂ Ex. On the contrary suppose Q = {qi} is a trajectory and
R is the first return path system generated by Q so that R ⊂ E, then we
have F ′

R(x) = F ′
E(x) = f(x). Let An = {t ∈ P : ∀xi ∈ Rt with i > n & |

F (xi)−F (t)
xi−t − f(t) |< 1}. From F ′

E(t) = f(t), we have P = ∪∞n=1An, by Baire
Category Theorem, there exists an open interval V such that Am ⊂ V ∩P 6= ∅,
for some m. Choose sj ∈ V, j > m, since P has density 1 at sj and f(sj) = 1

2j ,
we have xk ∈ (V ∩Rsj ), k > m, | sj −xk |< 1

m , with | F (sj)−F (xk)
sj−xk

|> 1
2·2j , and

| I∩P
I |> 1− 1

4·2j , where I = (xk, sj). Since Am ⊂ V ∩P , pick p ∈ Am \{si}∞i=1

such that xk < p < sj and | sj−xk

p−xk
|> 2 · 2j . Then we have

| F (xk)−F (p)
xk−p |=| F (xk)−F (sj)

xk−p |=| F (xk)−F (sj)
xk−sj

| · | xk−sj

xk−p |> 1
2·2j · (2 · 2j) > 1.

Since xk ∈ Rsj
and xk < p < sj , we have xk ∈ Rp, contradicting p ∈ Am.

Thus E does not contain any first return path system.

In the rest of the paper, by considering trajectories as sequences, we study
the effect of turbulence on trajectories and the first return path systems gen-
erated by them.

Theorem 3.6. Let S be the set of sequences defined on [0, 1] endowed with
metrics d1 or d2, and let A be the set of trajectories on [0, 1], then A is a
closed nowhere dense subset of S.

Proof. Let Tn ∈ A and limn→∞ Tn = T . We show that T is a trajectory
on [0, 1]. To this end let Tn = {tni }∞i=1, T = {ti}∞i=1, ε > 0 be an arbitrary
real number, and let x ∈ [0, 1]. It is easy to see that t0 = 0 and t1 = 1 and
limn→∞ tni = ti for each i ≥ 2. Choose n0 large enough so that d(Tn0 , T ) < ε

4 ,
then pick tn0

i(n0)
∈ Tn0 such that | x− tn0

in0
|< ε

4 . Then we have | ti(n0) − x |≤|
ti(n0) − tn0

i(n0)
| + | tn0

i(n0)
− x |≤ ε

4 + ε
2 < ε. Hence T is a trajectory and thus A

is closed. To show A is nowhere dense let S = {si}∞i=1 ∈ A. Pick z ∈ (0, 1),
0 < η < ε

4 and a sequence {zi}∞i=1 ⊆ (z−η, z+η) = Ip so that it is not dense in
Ip. Then take the sequence T = {tn} as tn = sn for all n with sn ∈ [0, 1] \ Ip

and tn = zn for all n with sn ∈ Ip. It is easy to see that d1(S, T ) < ε,
d2(S, T ) < ε, however T ∩ Ip ⊆ {zi}∞i=1, implying T ∩ Ip ⊆ {zi}∞i=1 6= Ip, so T
can not be a trajectory on [0, 1].

Lemma 3.7. Let {Sm}∞m=1 be a sequence of trajectories, S be a trajectory,
Πk and Πm

k be the partitions of [0, 1] obtained from the first k terms of S and
Sm, respectively. If limm→∞ d1(Sm, S) = 0, then for each k ≥ 2 there exist
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a natural number nk so that for all m ≥ nk, the partitions Πm
k and Πk have

the same code.

Proof. Let δ be the length of the smallest subinterval of Πk. Then choose
nk so large that for all m ≥ nk, d1(Sm, S) < δ/4. It is clear that for m ≥ nk,
Πm

K has the same code as Πk.

Theorem 3.8. For each m ≥ 1, let Sm be a trajectory and let Rm be the first
return system of path generated by Sm. If S is a trajectory with limm→∞ d1(Sm, S) =
0, then limm→∞ d1(Rm, R) = 0 and limm→∞ dH(Rm, R) = 0 where R is
the first return path system generated by S.

Proof. We first note that for every x ∈ [0, 1], Rx, the path leading to x, is a
sequence as well as a closed subset of [0,1]. Let S = {pn}, 0 ≤ x ≤ 1, and let
ε be an arbitrary positive number. We consider two cases.

(i) x ∈ [0, 1] \ {pn}∞n=1,
(ii) x = pk for some k = 1, 2, . . . .
Suppose δk is the length of the longest subinterval of partition Πk. Ob-

viously, limk→∞ δk = 0. Choose k0 large enough so that δk0 < ε
2 . In

case (i), Let Πk0,i = [c, d] be the subinterval of Πk0 containing x, and set
δ = 1

4 min{| d − x |, | c − x |}. Now if | y − x |< δ, then y and x are both
contained in the interval (c, d). From lemma 3.7, we know that there exist a
positive integer nε so that for all m ≥ nε, Πm

k0
and Πk0 have the same code,

so the corresponding terms of the paths (Rm)x and Rx that do not fall in the
interval (c, d) have a distance less than ε/2. On the other hand the rest of
the terms of all the sequences (Rm)x, Rx lie in the interval (c, d) that also has
length less than ε/2, thus we have d1((R+

m)x, R+
x ) < ε, d1((R−

m)x, R−
x ) < ε,

dH((R+
m)x, R+

x ) < ε, dH((R−
m)x, R−

x ) < ε.

In case (ii), let x = pk1 . Since R−
x = {x−k } and R+

x = {x+
k } are monotone

subsequences of {pn} converging to x, there exists a positive integer N1 such
that | x−k −x |< ε

2 and | x+
k −x |< ε

2 for all k ≥ N1. Let k2 be a positive integer
so that Πk2 contains the points x−1 , x+

1 , . . . , x−N1
, x+

N1
, x as end points and δk2 <

ε
2 . Suppose δ′k2

is the length of the smallest subinterval of Πk2 , and δ =
min{δk2 , δ

′
k2
}. From lemma 3.7 we know that there exist a positive integer nε

so that for all m ≥ nε, Πm
k2

and Πk2 have the same code, so the corresponding
terms of the paths (Rm)x and Rx that do not fall in the intervals adjacent to
pk1 have a distance less than ε/2. On the other hand the rest of the terms
of all the sequences (Rm)x, Rx lie in the two intervals adjacent to pk1 , each
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with length less than ε
2 , thus we have d1((R+

m)x, R+
x ) < ε, d1((R−

m)x, R−
x ) < ε,

dH((R+
m)x, R+

x ) < ε, dH((R−
m)x, R−

x ) < ε. Thus the result follows in both
cases.

As an application of the turbulence on trajectories one may consider two
trajectories that differ in a finite number of terms, expecting the corresponding
first return systems to be eventually the same. As the following theorem shows
the result is as expected and follows immediately from the hypothesis and the
definition of first return.

Theorem 3.9. Let P = {pn} and Q = {qn} be two trajectories that differ in
a finite number of terms, and let R+ and E+ be the right (R− and E− be the
left) first return systems generated by P and Q, respectively. Then R+ and
E+ (R− and E−) are eventually the same.

Proof. Since P and Q differ in a finite number of terms, there exist positive
integers m and n so that pm+i = qn+i for i ≥ 1. Let Πk =; 0 = r0 < r1 <
r2, < · · · < rl = 1 be a partition of [0, 1] containing the first m terms of P and
the first n terms of Q. Let x ∈ [0, 1) be an arbitrary point, then x ∈ [ri, ri+1)
for some i. Let η be the first element of P that lies in (x, ri+1), we show
η ∈ R+

x ∩E+
x . To see this let t0 = x, t1 = 1 and t2 = r(x, t1). If t2 ≥ ri+1, then

t2 is a point of the partition to the right of x and t2 − x < t1 − x. Since there
are finitely many members of the partition to the right of x. By performing in
this way there is i0 so that ti0 ≥ ri+1, but ti0+1 = r(x, ti0) < ri+1. Since ti0+1

is the first element of P in the interval (x, ti0), and there is no prior element of
P in the interval [ri+1, ti0), we have ti0+1 = η. In a similar way we can show
that η ∈ E+

x . From this point on, the paths leading to x from right, R+
x , and

E+
x will have exact same element, since P ∩ (x, η) = Q∩ (x, η). Thus the right

hand first systems are eventually the same. Similarly we can show that the
first return left path systems generated by P and Q are eventually the same.
Thus the first return path systems generated by the trajectories P and Q are
eventually the same.

The converse to Theorem 3.9 is not true in general, however with some
extra condition on the generated first return path systems, the converse is
true.

Theorem 3.10. Suppose P and Q are two trajectories and R = {Rx : x ∈
[0, 1} and E = {Ex : x ∈ [0, 1]} are the first return path systems generated by
P and Q, respectively. If R and E are eventually the same in a uniform way,
then the trajectories P and Q differ in a finite number of terms.
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Proof. First we show that for the trajectory P we have P = ∪x∈[0,1]R
+
x \

{x} = ∪x∈[0,1]R
−
x \{x}. To show this, it is enough to show that for each pi ∈ P

we have pi ∈ R+
x \ {x} for some x. Similarly one can show pi ∈ R−

x \ {x}. We
note that if r is an element of the trajectory and r ∈ R+

x0
for some x0 < r,

then for each x < y < r we have r ∈ R+
y . Let x0 < pi be a point in the

trajectory so that pi 6∈ R+
x0

, then there exist rm and rm+1 in R+
x0

so that
x0 < rm+1 < pi < rm. This means that in the ordering of P , rm+1 appears
after rm and before pi. Choose x1 ∈ (rm+1, pi) so that pi − x1 < 1

2 (pi − x0).
Obviously rm ∈ R+

x1
. If pi 6∈ R+

x1
, then there exist some rl1 ∈ P such that

rm+1 < rl1 < pi and rl1 appears after rm+1 and before pi in the trajectory P.
Now we choose x2 ∈ (rl1 , pi) so that pi−x2 < 1

2 (pi−x1). Again rm ∈ R+
x2

and
if pi 6∈ R+

x2
there exists rl2 ∈ P such that x2 < rl2 < pi and rl2 appears after

rm+1 and before pi. Pick x3 ∈ (rl2 , pi) and continue the same process. Due
to the fact that there are only finitely many members of P that appear before
pi, in the process of choosing the sequence xi, i = 0, 1, 2, . . . that increases to
pi, we reach a point xk with pi ∈ R+

xk
. Thus we have P = ∪x∈[0,1]R

+
x \ {x}.

Similarly we have Q = ∪x∈[0,1]E
+
x \ {x}.

Let δ be the positive number resulting from the path systems R and E being
eventually the same, in a uniform way, and let Πk be a partition of [0,1] by the
first k terms of P with largest subinterval less than δ. Then for each subinterval
[ci, di) = Πk,i, we have R+

x ∩[di, 1] = R+
y ∩[di, 1] and R−

x ∩[0, ci] = R−
y ∩[0, ci] for

each x, y ∈ (ci, di). On the other hand, for each i, di−ci < δ, thus, for each x ∈
(ci, di) we have Rx∩(ci, di) = Ex∩(ci, di), hence (∪x∈[ci,di)R

+
x \{x})\[ci, di) is

a finite set and therefore (∪x∈[0,1]R
+
x \{x}\∪i(ci, di)) = ∪i(∪x∈[ci,di)R

+
x \{x})\

[ci, di) that is a finite union of finite sets and thus a finite set. This implies that
P \Q ⊆ (∪x∈[0,1]R

+
x \{x})\(∪x∈[0,1]E

+
x \{x}) ⊆ (∪i∪x∈[ci,di)R

+
x \{x})\[ci, di).

Implying that P \Q is a finite set. Similarly we may show that Q\P is a finite
set. Thus the trajectories P and Q differ in a finite number of terms.

Example 3.11. There exist a trajectory P with two rearrangements P1 and
P2 so that the first return path systems generated by P1 and P2 are not
eventually the same in a uniform way.

Proof. Let P = {0, 1} ∪ { k
2m : m = 0, 1, 2, 3, . . . &k = 0, 1, 3, 5, . . . , 2m − 1}.

It is easy to see that P is a trajectory. We rearrange P in two different ways
and call them P1 and P2. Take
P1 = {0, 1} ∪ { k

22m , 1 ≤ k < 22m, k odd integer , k
22m−1 , 1 ≤ k < 22m−1, k odd

integer }m≥1

= {0, 1, 1
4 , 3

4 , 1
2 , 1

16 , 3
16 , . . . , 15

16 , 1
8 , 3

8 , 5
8 , 7

8 , 1
64 , 3

64 , . . . , 63
64 , 1

32 , . . . , 1
256 , . . . , 255

256 , 1
128 , . . . }

and P2 = {0, 1, 1
2} ∪ {

k
22m+1 , 1 ≤ k < 22m+1, k odd integer , k

22m , 1 ≤ k <
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22m, k odd integer }m≥1

= {0, 1, 1
2 , 1

8 , 3
8 , 5

8 , 7
8 , 1

4 , 3
4 , 1

32 , . . . , 31
32 , 1

16 , . . . , 15
16 , 1

128 , . . . , 127
128 , 1

64 , . . . , 63
64 , 1

512 , . . . .}.
Let R and Q be the first return systems generated by P1 and P2, respectively.
We show that at each x ∈ P the right first return paths R+

x and Q+
x are even-

tually different. In fact we have:
R+

1
2

= { 1
2 , 1, 3

4 , 9
16 , 33

64 , . . . } = { 1
2 , 1} ∪ { 2(2k−1)+1

22k }k≥1,

Q+
1
2

= { 1
2 , 1, 5

8 , 17
32 , 65

128 , 257
512 , . . . } = { 1

2 , 1} ∪ { 22k+1
2(2k+1) }k≥1,

R+
1
4

= {1, 1
4 , 3

4 , 1
2 , 5

16 , 1764 , . . . } = { 1
4 , 3

4 , 1} ∪ { 22k+1
22(k+1) }k≥0,

Q+
1
4

= { 1
4 , 1, 1

2 , 3
8 , 9

32 , 33
128 , . . . } = { 1

4 , 1, 1
2} ∪ {

22k−1+1
22(k+1) }k≥1,

R+
3
4

= { 3
4 , 1, 13

16 , 49
64 , 209

256 , . . . }, Q+
3
4

= { 3
4 , 1, 7

8 , 25
32 , 97

128 , 385
512 , . . . },

R+
1
8

= { 1
8 , 1, 1

4 , 3
16 , 9

64 , 33
256 , . . . }, Q+

1
8

= { 1
8 , 1, 1

2 , 3
8 , 1

4 , 5
32 , 17

128 , 65
512 , . . . },

R+
3
8

= { 3
8 , 1, 3

4 , 1
2 , 7

16 , 25
64 , . . . }, Q+

3
8

= { 3
8 , 1, 1

2 , 5
8 , 13

32 , 49
128 , 133

512 , . . . },

R+
5
8

= { 5
8 , 1, 3

4 , 11
16 , 41

64 , 161
256 , . . . }, Q+

5
8

= { 5
8 , 1, 7

8 , 3
4 , 21

32 , 81
128 , 321

512 , . . . },

R+
7
8

= { 7
8 , 1, 15

16 , 57
64 , 225

256 , . . . }, Q+
7
8

= { 7
8 , 1, 29

32 , 113
128 , 449

512 , . . . },

We see that for all x ∈ P , the right first return paths R+
x and Q+

x are
different after a few first terms. This is also true for R−

x and Q−
x . Now let

x ∈ [0, 1] \ P , then for each δ > 0 choose k large enough so that the length of
the largest subinterval in Πk is less than δ, where Πk is the partition obtained
from the first k terms of P . Suppose x ∈ Πk,i so there exist c and d members of
Πk so that c < x < d. Choose r ∈ P ∩ (c, d), then by Lemma 1 of [10], we have
R+

x ∩ [d, 1] = R+
r ∩ [d, 1], R−

x ∩ [0, c] = R−
r ∩ [0, c], Q+

x ∩ [d, 1] = Q+
r ∩ [d, 1] and

Q−
x ∩[0, c] = Q−

r ∩[0, c]. Thus from the fact that P is dense in [0,1], and for each
r ∈ P , Rr and Qr are different except for a few terms, it follows that we can
not have δ > 0 so that for all x ∈ [0, 1], Rx∩ (x−δ, x+δ) = Qx∩ (x−δ, x+δ).
Hence R and Q are not eventually the same in a uniform way.
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