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DIMENSION OF FAT SERPIŃSKI GASKETS

Abstract

In this paper we continue the work started by Broomhead, Montaldi
and Sidorov investigating the Hausdorff dimension of fat Sierpiński gas-
kets. We obtain generic results where the contraction rate λ is in a
certain region.

1 Introduction.

Let F = {S1, . . . , Sk} be a family of contractions on Rd. It was shown in [6]
that there exists a unique non-empty compact set Λ(F ), called the attractor
of F , such that,

Λ(F ) = ∪k
i=1Si(Λ(F )).

In the case where the contractions are similarities and a technical condition
called the open set condition (OSC) is satisfied it is a straightforward to cal-
culate the Hausdorff dimension of Λ(F ) (see [4]). Not satisfying the OSC
essentially means that the images si(Λ(F )) overlap in a non trivial manner.
In this case calculating the Hausdorff dimension of the attractor of the IFS
becomes a much more difficult question. Two approaches have been used to
deal with this problem. One is to consider exceptional cases where the over-
lap is regular ([2], [3], [8] and [10]) and the other is to try and obtain results
for generic parameter values ([11], [12], [14] and [15]). We adopt the second
approach and study a specific case in R2.
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The fat Sierpiński gasket was introduced by Simon and Solomyak in [13].
It is defined to be the attractor, Λ(λ) ⊂ R2 of the IFS, F = {T0, T1, T2} where,

T0(x) = λx

T1(x) = λx + (1, 0)

T2(x) = λx +

(
1
2
,

√
3

2

)

for λ > 1
2 . In proposition 3.3 of [13] they show that there exists a dense subset,

A ⊂ [ 12 , 1√
3
], such that for all λ ∈ A, dimH Λ(λ) < − log 3

log λ .
A systematic investigation of the Hausdorff dimension of Λ(λ) was started

by Broomhead, Montaldi and Sidorov in [2]. They were able to compute the
exact Hausdorff dimension of Λ(λ) when λ is in a special class of algebraic
numbers they call the multinacci numbers. These are the positive solutions,
ωn, to the equations

∑n
k=1 λk = 1. In particular ω2 is equal to the reciprocal

of the golden ratio. They obtain the following result.

Theorem 1 (Broomhead, Montaldi, Sidorov).

dimH(Λ(ωn)) =
log τn

log ωn
,

where τm is the smallest positive root of the polynomial 3zn+1 − 3z + 1.

It should be noted that log τn

log ωn
< − log 3

log ωn
.

In this paper we continue the investigation into the Hausdorff dimension
of Λ(λ). The following is our main result.

Theorem 2. 1. For almost all λ ∈ [ 12 ,
3√4
3 ≈ 0.529],

dimH Λ(λ) = − log 3
log λ

.

2. For almost all λ ≥ 0.5853,

dimH Λ(λ) = 2.

Our methods only enable us to show that dimH Λ(λ) = 2 for almost all
λ ≤ 0.649. However it is clear that for all λ ≥ 2

3 , dimH Λ(λ) = 2 and in
[2] it is shown that for all λ ≥ 0.648, Λ(λ) has non-empty interior and hence
Hausdorff dimension 2. It should be noted that the results in [13] and [2] mean
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0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure 1: Λ(λ) for λ = 0.59. Theorem 2 states that for almost all λ > 0.5853,
dimH Λ(λ) = 2.
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Figure 2: Λ(λ) for λ = 0.521. Theorem 2 shows that for almost all λ ∈
[0.5, 0.529] dimH Λ(λ) = − log 3

log λ .
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Figure 3: Λ(λ) for λ = ω4 ≈ 0.519. It is shown in [2] that dimH Λ(λ) =
log τ4
log ω4

≈ 1.654 < − log 3
log ω4

. Theorem 2 shows that this is an exceptional value.

that the equality in Theorem 2 certainly does not hold for all λ. It would be
interesting to know whether the region of λ for which Theorem 2 is true can
be extended to a larger region. However the method used in this paper only
provides almost sure lower bounds for λ ∈ (0.529, 0.5853] which are strictly
less than − log 3

log λ . Theorem 2 has the following topological analogue.

Corollary 1. 1. There exists a residual set A ⊂ [ 12 ,
3√4
2 ] such that for any

λ ∈ A,

dimH Λ(λ) = − log 3
log λ

.

2. There exists a residual set B ⊂ [0.5853, 1] such that for any λ ∈ B

dimH Λ(λ) = 2.

Hence the results found in [2] and [13] in the above region were exceptional
cases both in a topological and measure theoretic sense.

It is notationally more convenient to look at a slightly different IFS. This
is defined by the similarities,

T0(x) = λx

T1(x) = λx + (1, 0)
T2(x) = λx + (0, 1).
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However the attractor of this IFS can be obtained by an affine transformation
applied to the set Λ(λ) and hence has the same Hausdorff dimension. There
has been a lot of study of overlapping IFS’s in one dimension ([15], [12], [11],
[14]). Most of this work has used the idea of transversality introduced in
[12] to obtain generic results. Typically these results compute the Hausdorff
dimension of the attractor for a set of full measure. Various work has been
done on lower semi-continuity of the dimension overlapping IFS. This includes
unpublished work by Pollicott and Simon-Solomyak as well as the published
work by Jonker and Veerman [7]. Using this work it is often possible to
compute the Hausdorff dimension for a residual set (a subset which contains
a dense countable intersection of open sets). We examine cross sections to
enable us to use the method of transversality which has been so effective in
the one-dimensional setting.

2 Definitions and Technical Lemmas.

For a set F ⊆ Rn the s-dimensional Hausdorff dimension is defined by

Hs(F ) = lim
ε→0

inf
{∑

|ui|s | {ui}i is a finite or countable ε-cover of F
}

.

The Hausdorff dimension of F is then defined as,

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) = ∞}.

For a probability measure µ on Rn the Hausdorff dimension is defined by,

dimH µ = inf{dimH F : µ(F ) = 1 and F is a Borel set}.

The mass distribution principle can be used to show the following equality
concenting the dimension of a measure.

dimH µ = ess-sup
{

log µ(B(x, r))
log r

: x ∈ Rn

}
. (1)

Here ess-sup means the essential supremum.
We now prove a slight variation of the potential theoretic method for cal-

culating lower bounds of Hausdorff dimension, [4]. For more details and links
to generalized dimension see [5].

Lemma 1. Let A ⊆ R be a Borel set and α, s ∈ (0, 1] . If there exists a
measure µ on A such that,∫ (∫

dµ(x)
|x− y|s

)α

dµ(y) < ∞, (2)

then dimHA ≥ s and dimH µ ≥ s.
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Proof. Let φµ(y) =
(∫

dµ(x)
|x− y|s

)
. If the inequality (2) holds for a measure

µ on a set A, then it follows that (φµ(y))α is integrable with respect to µ.
This means that there exists M such that,

AM = {y : (φµ(y))α ≤ M}

satisfies µ(AM ) > 0. Thus we can define a measure ν simply by the restriction
of µ to AM . Hence for any x ∈ A,

M
1
α ≥

∫
A

dν(x)
|x− y|s

≥
∫

B(x,r)

dν(y)
|x− y|s

≥ 1
rs

ν(B(x, r)).

Thus for any x ∈ A, ν(B(x, r)) ≤ M
1
α rs and by the mass distribution principle

dimHA ≥ s and dimH µ ≥ s.

We also need a lemma which relies on the idea of transversality of a power
series. This idea was first used in [12] and has since been the main tool in
investigating IFS with overlaps. A power series g is said to satisfy the ε-
transversality condition if g crosses any line within ε of the origin with slope
at most −ε. Consequences of transversality include the absolute continuity of
Bernoulli convolutions ([15], [11]) and almost sure results for the dimension of
several fractal families ([12], [14]). Consider a power series of the form,

g(x) = 1 +
∞∑

k=1

gkxk, with gk ∈ {−1, 0, 1}. (3)

Let

b(1) = inf{λ > 0 : ∃g(x) of the form (3) such that g(λ) = g′(λ) = 0}.

Thus for any 0 < a < c < b(1) and any g of the form (3) there exists ε > 0 such
that for any λ where |g(λ)| < ε, |g′(λ)| ≥ ε. Thus any power series of the form
(3) where λ takes values less than c for some c < b(1) satisfies ε-transversality
for some ε. Peres and Solomyak have computed values for b(1) (Lemma 5.2 in
[11]). They obtain b(1) ≈ 0.649. This allows us to prove the following Lemma
which is almost identical to Lemma 2 in [12].

Lemma 2. For any interval I = [a, c] where 0 < a < c < b(1), s < 1 and any
{ak}k∈N where a0 6= 0 and ak ∈ {0,±1} there exists K(s) such that,∫

I

dλ

|a0 +
∑∞

n=1 anλn|s
≤ K(s).
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Proof. From above we know there exists ε > 0 such that if |g(λ)| ≤ ε, then
|g′(λ)| ≥ ε for any λ ∈ [a, c]. This allows exactly the same method of proof as
used to proof Lemma 2 in [12].

The tool which allows us to use these one-dimensional methods to obtain
a result about a subset of R2 is a generalization of the Marstrand slicing
theorem, [9]. It also appears in [4] as Corollary 7.12 and it is stated and
proved as Theorem 4.1 in Chapter 3 of [1].

Lemma 3. Let F be any subset of R2, and let E be a subset of the y-axis.
Let Ly = {(x, z) ∈ R2 : z = y}. If dimH(F ∩ Lx) ≥ t for all y ∈ E, then
dimH F ≥ t + dimHE.

3 Biased Bernoulli Convolutions.

Let λ ∈ [0.5, 0.649 . . .] and p = (p0, p1) be a probability vector. We let

T0(x) = λx

T1(x) = λx + 1.

Let ν = νp0,p1
λ be the self-similar measure such that for all J ⊂

[
0, 1

1−λ

]
,

ν(J) = p0ν(T−1
0 (J)) + p1ν(T−1

1 (J)).

We will also let µ = µp0,p1 be (p0, p1)-Bernoulli measure defined on the se-
quence space, {0, 1}N0 where N0 denotes the non-negative integers. We let
Πλ : {0, 1}N0 → R be defined by Πλ(i) =

∑∞
n=0 inλn. This gives ν

(p0,p1)
λ =

µ(p0,p1) ◦ Π−1
λ . We will also use the notation |i ∧ j| = min{k : ik 6= jk},

Wω,k = {τ ∈ Ω : τj = ωj : j ≤ k − 1}, Wk consists of all kth level cylinders,

[i0, i1, . . . , ik−1] = {j : ir = jr for 0 ≤ r ≤ k − 1}

and kr(i) = card{0 ≤ j ≤ k − 1 : xj = r}.

Proposition 1. Fix (p0, p1). For almost all λ ∈ [0.5, 0.649 . . .],

dimH ν
(p0,p1)
λ = min

(
p0 log p0 + p1 log p1

log λ
, 1
)

.

This result could be deduced as a Corollary to Theorem 7.2 in [14]. How-
ever in the present simpler setting it is possible to construct a more elementary
proof which is based on methods used in [11].
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Proof of Proposition 1.

The proof of the upper bound is standard. Note that by the strong law of
large numbers,

lim
n→∞

1
n

log µ([i0, . . . , in−1]) = p0 log p0 + p1 log p1 for µ-almost all i.

Thus for all ε > 0 there exists N such that for all n ≥ N

νλ(B(Πλi, λn)) ≥ n(p0 log p0 + p1 log p1 − ε)

for µ almost every i. However because νλ = µ ◦Π−1
λ

log(νλ(B(x, λn)))
log λn

≤ p0 log p0 + p1 log p1 − ε

log λ

for νλ almost all x. Hence by (1) the proof of the upper bound is complete.
For the lower bound the following lemma is needed. It involves the use of

an exponent α ∈ (0, 1]. The idea to use this exponent came from [11].

Lemma 4. Fix (p0, p1). For all α ∈ (0, 1] we have that for almost all λ ∈
[0.5, b(1)]

dimH ν
(p0,p1)
λ ≥ min

(
log((pα+1

0 + pα+1
1 )

1
α )

log λ
, 1

)
.

Proof. Fix (p0, p1) and let ε > 0. For simplicity let d(α, ε) = (pα+1
0 + pα+1

1 +
ε)

1
α . We let Sε(λ) = min

(
log(d(α,ε))

log λ , 1− ε
)
. We use Lemma 1 together with

Fubini’s theorem and Lemma 2.

I=
∫ b(1)

0.5

∫(∫
dνλ(x)

|x− y|Sε(λ)

)α

dνλ(y)dλ=
∫ b(1)

0.5

∫ (∫
dµ(i)

|Πλ(i)−Πλ(j)|Sε(y)

)α

dµ(j)dλ

Apply Fubini’s theorem and Hölder’s inequality (
∫

fα ≤ C(
∫

f)α for α ∈
(0, 1].) to get

I ≤ C

∫ (∫ b(1)

0.5

∫
dµ(i)dλ

|Πλ(i)−Πλ(j)|sε(λ)

)α

dµ(j)

≤ C1

∫ (∫ b(1)

0.5

∫
dµ(i)dλ

|
∑∞

n=0(in − jn)λn|sε(λ)

)α

dµ(j)

≤ C1

∫ ∫ b(1)

0.5

∫
dµ(i)dλ(

λ|i∧j| |a0 +
∑∞

n=1 anλn)
∣∣∣sε(λ)


α

dµ(j)
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where an ∈ {−1, 0, 1} for n ≥ 1 and a0 ∈ {−1, 1}. We now use Lemma 2 to
continue

I ≤ C1

∫ ∫ b(1)

0.5

∫
dµ(i)dλ(

d(α, ε)|i∧j| |a0 +
∑∞

n=1 anλn|
)sε(λ)


α

dµ(j)

≤ C1

∫ (∫ b(1)

0.5

dλ

|a0 +
∑∞

n=1 anλn|sε(λ)

∫
dµ(i)

d(α, ε)|i∧j|

)α

dµ(j)

≤ C2

∫ (∫
dµ(i)

d(α, ε)|i∧j|

)α

dµ(j) ≤ C2

∫ ( ∞∑
k=0

µ(Wω,k)
d(α, ε)k

)α

dµ(ω)

We proceed by using the inequality (
∑

i bi)
α ≤

∑
i bα

i for bi > 0 and α ∈ (0, 1]

I ≤ C2

∞∑
k=0

∑
w∈Wk

µ(W )α+1

d(α, ε)αk
≤ C2

∞∑
k=0

d(α, ε)−αk(pα+1
0 + pα+1

1 )k.

Thus because d(α, ε)α > pα+1
0 + pα+1

1 we have I < ∞. Hence by Lemma 1
dimH νλ ≥ min

(
d(α,ε)
log λ , 1− ε

)
for almost all λ. To complete the proof we let

ε = 1
n for n ∈ N and let n →∞.

To complete the proof of Proposition 1 we let αn = 1
n for n ∈ N and

observe that

lim
n→∞

log(pαn+1
0 + pαn+1

1 )
αn log λ

=
p0 log p0 + p1 log p1

log λ
.

4 Cross Sections of Fat Gaskets.

Consider a sequence {in} ∈ {0, 1, 2}N0 we can then represent each point in
Λ(λ) using the expansion

∑∞
n=0 ain

λn, where a0 = (0, 0), a1 = (1, 0) and
a2 = (0, 1). It should be noted that for λ > 1

2 this expansion is not unique.
Consider a sequence x ∈ {0, 1}N0 . Intuitively we think of the case when
xn = 0 as corresponding to the bottom two triangles in the gasket and xn=1
corresponding to the top triangle. We then define a complementary sequence
j ∈ {0, 1}N0 such that jn = 0 whenever xn = 1. The idea of this sequence is
to determine a horizontal point on the gasket corresponding to the sequence
x. Thus whenever xn = 0 there are two choices either 0 or 1 corresponding
to the bottom two triangles in the gasket. However when xn = 1 there is just
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the one choice and jn must equal 0. This means if we define i ∈ {0, 1, 2}N0

such that

in =

 0 if xn = 0, jn = 0
1 if xn = 0, jn = 1
2 if xn = 1, jn = 0

,

then ( ∞∑
n=0

jnλn,
∞∑

n=0

xnλn

)
=

( ∞∑
n=0

ain
λn

)
∈ Λ(λ).

Thus if we let

LΠλ(x)(Λ(λ)) = {z ∈ R : (z,Πλ(x)) ∈ Λ(λ)},

then for any sequence i ∈ {0, 1}N0 such that in = 0 if xn = 1 we have that
Πλ(i) ∈ LΠλ(x)(Λ(λ)).

We look at the dimension of the set LΠλ(x)(Λ(λ)). We will fix (p0, p1). Let
µ = µp0,p1 be (p0, p1)-Bernoulli measure on {0, 1}N. We can define another
measure µ̃x on {0, 1}N0 such that

µ̃x({i : in = 0}) =
{

1 if xn = 1
1
2 if xn = 0 .

This means for kth level cylinders,

µ̃x([i0, . . . , ik−1]) =
{

0 if ∃j such that ij = xj = 1
2−k0(x) if for all xj = 1 we have ij = 0 .

Intuitively this means whenever xk = 0 this corresponds to the bottom two
triangles in the gasket and we have a choice of the two triangles but whenever
xk = 1 we are in the top triangle in the gasket so there is only one choice.

Let ν̃λ,x = µ̃x◦Π−1
λ and note that it is supported on a subset of LΠλ(x)(Λ(λ)).

Lemma 5. For almost all λ ∈ [0.5, 0.649 . . .], and for νλ almost all y ∈ R

dimH Ly(Λ(λ)) ≥ min
(
−p0 log 2

log λ
, 1
)

.

Proof. We shall show that for all α ∈ (0, 1],

dimH LΠλ(x)(Λ(λ)) ≥ − log(1− p0(1− 2−α))
α log λ

,
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for almost all λ and µ almost all x ∈ {0, 1}N0 . The result then follows because
if we let αn = 1

n for n ∈ N, then

lim
n→∞

log(1− p0(1− 2−αn))
αn log λ

= −p0 log 2
log λ

and if dimH LΠλx(Λ(λ)) ≥ s for µ-almost all x ∈ {0, 1}N0 , then dimH Ly(Λ(λ)) ≥
s for νλ almost all y ∈ R. Let ε > 0 and for simplicity let d(α, ε) =
(1−p0(1−2−α)+ε)

1
α and sε(λ) = min

(
− log d(α,ε)

log λ , 1− ε
)
. We use the measure

ν̃λ,x. Using the potential theoretic method for calculating Hausdorff dimension
it suffices to show that

I =
∫ b(1)

0.5

∫ (∫ ∫
dν̃λ,x(y)dν̃λ,x(z)
|z − y|sε(λ)

)α

dµ(x)dλ < ∞.

We start by lifting to the sequence space, using Fubini’s theorem and
Hölder’s inequality,

∫
fα ≤ C

(∫
f
)α for α ∈ (0, 1].

I =
∫ b(1)

0.5

∫ (∫ ∫ dµ̃x(i)dµ̃x(j)
|Πλ(i)−Πλ(j)|sε(λ,α)

)α

dµ(x)dλ

≤ C

∫ (∫ b(1)

0.5

∫ ∫ dµ̃x(i)dµ̃x(j)dλ

|
∑∞

n=0(in − jn)λn|sε(λ,α)

)α

dµ(x)

≤ C1

∫ (∫ b(1)

0.5

∫ ∫ dµ̃x(i)dµ̃x(j)dλ

|a0 +
∑∞

n=1 anλn|sε(λ,α)
λ|i∧j|sε(λ,α)

)α

dµ(x)

≤ C1

∫ ((∫ b(1)

0.5

dλ

|a0 +
∑∞

n=1 anλn|sε(λ,α)

)(∫ ∫ dµ̃x(i)dµ̃x(j)

d(α, ε)|i∧j|

))α

dµ(x),

where a0 ∈ {−1, 1} and an ∈ {−1, 0, 1} for n ≥ 1. This means we can apply
Lemma 2. Hence

I ≤ C2

∫ (∫ ∫ dµ̃x(i)dµ̃x(j)

d(α, ε)|i∧j|

)α

dµ(x) ≤ C2

∫ ( ∞∑
k=0

2−k0(x)

d(α, ε)k

)α

dµ(x).

As in the proof of Lemma 4 we use the inequality (
∑

i bi)
α ≤

∑
i bα

i for bi > 0.
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We get

I ≤ C2

∞∑
k=0

d(α, ε)−αk

∫
2−k0(x)αdµ(x)

≤ C2

∞∑
k=0

d(α, ε)−αk
∑

[i0,...,ik−1]∈Wk

2−k0([i0,...,ik−1])αµ(Wk)

≤ C1

∞∑
k=0

(p02−α + p1)k

(dα,ε)αk
.

We can now see that I < ∞ because p02−α + p1 = 1− p0(1− 2−α) < d(α, ε).
To finish the proof let ε = 1

n for n ∈ N and let n →∞.

5 Proof of Theorem 2.

It is a standard result that dimH Λ(λ) ≤ − log 3
log λ for all λ, (see, for example, [4]).

Let p = (2
3 , 1

3 ), let µp be the standard p-Bernoulli measure on {0, 1}N0 and let

νλ = µp ◦Π−1
λ . We know from Proposition 1 that for almost all λ ∈ [ 12 ,

3√4
3 ],

dimH νλ =
1
3 log

(
1
3

)
+ 2

3 log
(

2
3

)
log λ

and by Lemma 5 that for almost all λ ∈ [ 12 ,
3√4
3 ] and νλ almost all y ∈ R

dimH Ly(Λ(λ)) ≥ −
2
3 log 2
log λ

.

Thus using Lemma 3 we have that

dimH Λ(λ) ≥
1
3 log

(
1
3

)
+ 2

3 log
(

2
3

)
log λ

−
2
3 log 2
log λ

= − log 3
log λ

for almost all λ ∈ [ 12 ,
3√4
3 ].

To prove part 2 of Theorem 2 we need to take an alternative choice of
probability vector. For example if we choose p = (0.7729, 0.2271), then

0.7729 log 0.7729 + 0.2271 log 0.2271
log 0.5853

≥ 1 and − 0.7729 log 2
log 0.5853

≥ 1.

Thus by letting νλ = µp ◦ Π−1
λ and applying Proposition 1, Lemma 5 and

Lemma 3 we have that dimH Λ(λ) = 2 for almost all λ ∈ [0.5853, b(1)]. It
is shown in [2] that Λ(λ) has non-empty interior for all λ ≥ 0.648 . . . < b(1).
Thus dimH Λ(λ) = 2 for almost all λ ≥ 0.5853.
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6 Proof of Corollary 1.

We shall only prove part 1. of Corollary 1 because the proof of part 2 can
be done using exactly the same method. The method is similar to the proof
of Theorem 2.3 in [13]. From Theorem 2 we know there exists a dense set
of λ ∈ [ 12 ,

3√4
3 ] such that dimH Λ(λ) = − log 3

log λ . Let F be the set of all IFS’s,
{Si}2i=0 in R2 such that Si(x) = λx + bi for bi ∈ R2. We define a topology on
F by the natural bijection from F to [ 12 ,

3√4
3 ]× R6.

From Theorem B in [7] we know that the function α(F ) = dimH(Λ(F )) is
lower semi-continuous. However since for a fixed λ, dimH(Λ(F )) is constant.
The function, α(λ) = dimH(Λ(λ)) is also lower semi-continuous. If we let
β(λ) = − log 3

log λ , then we have that β is continuous and α(λ) ≤ β(λ). We now
show that{

λ∈

[
1
2
,

3
√

4
3

]
:α(λ)=β(λ)

}
=

{
λ∈

[
1
2
,

3
√

4
3

]
:α is continuous at λ

}
. (4)

Firstly consider λ ∈
[

1
2 ,

3√4
3

]
such that α(λ) = β(λ). We know that β

is continuous and α ≤ β is lower semi continuous: thus α is continuous at
λ. On the other hand α cannot be continuous at λ if α(λ) 6= β(λ) because
α(λ) = β(λ) for a.e. λ ∈

[
1
2 ,

3√4
3

]
. This completes the proof of (4).

The set of continuity points for any function is a Gδ set. Hence the set of
points where α(λ) = β(λ) contains a dense Gδ set and since a residual set is
a dense Gδ the proof is complete.
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