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DEFINING FUNCTIONS FOR OPEN SETS
IN Rn

Abstract

In this note we give, for any open subset in Rn, a function describing
the boundary of this set with exact regularity and being, globally, as
regular as possible.

1 Introduction.

Let Ω be an open subset of Rn.
For many purposes it is convenient to describe Ω by means of a function r

whose zero level set is ∂Ω, and is negative exactly in Ω. (See for example [2],
[4]). Let us call such a function a defining function for Ω.

This approach is very useful in the case where Ω is a bounded domain
and ∂Ω is C2 at every point, because then r can be chosen to agree with the
(signed) distance function to ∂Ω in a neighborhood of ∂Ω. Then the geometry
of ∂Ω can be understood in terms of the derivatives up to the order two of
r. (See [2], Appendix). In [3], Krantz and Parks showed that the distance
function has the same regularity as the boundary, whenever it is Ck for k > 1,
and also studied the validity of this assertion in the case k = 1. (See also [5]).

The focus of this note is on the non regular open subsets of Rn, so is, open
subsets whose boundary is not an embedded Ck submanifold of Rn (although
it can have eventually regular pieces). For any given open subset Ω ⊂ Rn, we
construct, for each degree of regularity k, a defining function for Ω that is Ck

in the Ck part of the boundary with non vanishing gradient there, and smooth
away of this part. In some (weak) sense, this function is Ck equivalent to the
distance function to the Ck part of the boundary.
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Let us notice that by means of this function is possible to obtain (applying
Sard’s theorem) a family of smooth domains whose boundaries approximate
∂Ω in a controlled way.

Now we give precise statements of the concepts and assertions in the pre-
vious paragraphs. First we recall the standard notion of regular point of ∂Ω.

Definition. Fix k ∈ N or k = ∞. For a given point P0 ∈ ∂Ω, and k ∈ N, ∂Ω
is said to be Ck at P0 if and only if there exist a neighborhood VP0 ⊂ Rn of P0,
a neighborhood U0 ⊂ Rn of 0 and a Ck diffeomorphism Φ : U0 → VP0 , such
that if t1, . . . , tn are the standard coordinates of Rn in U0, then VP0 ∩ ∂Ω =
Φ(U0 ∩ {tn = 0}) and VP0 ∩ Ω = Φ(U0 ∩ {tn < 0}).

(This is the description of ∂Ω as a locally embedded submanifold of Rn.
See [4] for equivalent definitions and the relationship among these.)

For k ∈ N\{0} or k = ∞ let Rk stand for the set of points in ∂Ω where ∂Ω
is Ck and Sk = ∂Ω \Rk. So ∂Ω is the disjoint union of Rk and Sk. Note that
one of the two sets (or both) can be empty.

This note is devoted to the proof of the following fact.

Theorem 1. Let Ω ⊂ Rn, open, and k ∈ N \ {0} or k = ∞. There exists
a function r ∈ Ck(Rn) such that Ω = {r < 0} and ∂Ω = {r = 0}. Moreover
∇r 6= 0 in Rk and r ∈ C∞(Rn \ R̄k).

In the particular case of Ω bounded domain and ∂Ω ∈ C∞, the result
follows from an elementary application of the implicit function theorem and a
finite partition of the unit.

On the other extreme, if Sk = ∂Ω, the result is a consequence of the
following theorem due to Whitney (See [1], [4].):

Theorem (Whitney). Let F ⊂ Rn closed. There exists a positive function
ϕ ∈ C∞(Rn) such that F = {x ∈ Rn : ϕ(x) = 0}.

Remark. The proof is given by constructing the function ϕ in a completely
general setting. That includes the case of F being the complement of an
open set Ω whose boundary has no regular points, (the bounded part of the
complement of the Von Koch’s snowflake in R2 is an example of such domains,
as can be deduced from its properties of self-similarity and non rectifiability.
Cf. [7]), so ϕ = 0 in F at the infinite order.

Corollary (of Whitney’s theorem). For any open set Ω there exits a real
valued function κ ∈ C∞(Rn) such that Ω = {κ < 0} and ∂Ω = {κ = 0}.
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Proof. Applying Whitney’s theorem to F = Ω̄ we obtain a function ϕ+ ∈
C∞(Rn), non negative, such that F = {ϕ+ = 0}. Moreover, ϕ+ vanishes
at F up to the infinite order. By the same procedure one has a function
ϕ− ∈ C∞(Rn), non negative, vanishing at Ωc up to the infinite order. Finally
take κ = ϕ+ − ϕ−.

Remark. As observed above, ϕ = 0 in ∂Ω at the infinite order. The main
property of the function r constructed in Theorem 1 is that r defines globally Ω
and ∇r 6= 0 in Rk, so it defines Ω near Rk as a sub-manifold of Rn with Ck

boundary, and is C∞ in the complement of Rk.

The proof of Theorem 1 is a non trivial combination of these facts, and is
developed in the forthcoming sections.

2 The Regular Part.

The set Rk is a relatively open subset of ∂Ω. If it is nonempty we have, from
the definition of Rk, a defining function in a neighborhood of each point of Rk.
The construction of a global defining function in a neighborhood of Rk makes
use of a suitable covering, supporting a partition of the unit.

The precise results are contained in the next two lemmas.

2.1 The Auxiliary Tools.

The following lemma is a variant of the classical Besicovitch covering lemma
for open balls, after the comments in [6].

Lemma 1 (Covering lemma). Let A ⊂ Rn, and a function r0 : A → R+.
Consider the family of open balls

B = {Br(x) : x ∈ A, r ≤ r0(x)}.

There exists a countable family B′ ⊂ B covering A, such that every point
x ∈

⋃
B∈B′ B has a neighborhood intersecting only a finite number of balls in

the family B′.

Next, we consider a partition of unity adapted to this covering. It is a
well known construction, and we just recall it to stress the properties of the
constructed functions used later.

Lemma 2 (Partition of unity). Let A be a subset of Rn and B′ the covering of
A given by the previous lemma. There is a family of C∞ functions {χl; l ∈ N},
positive in Bl such that sptχl ⊂ Bl and

∑
l χl(x) = 1, for any x ∈ A.
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2.2 The Defining Function for Rk.

Now we can construct a defining function for Ω near Rk.

Lemma 3. There exists an open set V = VRk
⊂ Rn, containing Rk, and

a Ck function r : V → R such that {r < 0} = V ∩ Ω, {r = 0} = Rk,
{r > 0} = V ∩ Ω̄c and 0 < ‖∇r(x)‖ ≤ 1 for all x ∈ V .

Proof. For any P ∈ Rk there exists ρ0(P ) > 0 such that for any ρ ∈
(0, ρ0(P )), we can find r ∈ Ck(Bρ(P )) satisfying that {r < 0} = Bρ(P ) ∩ Ω,
{r = 0} = Bρ(P ) ∩ ∂Ω and dr(x) 6= 0 in Bρ(P ).

Take B0 the family of such balls, for all P ∈ Rk and all ρ ∈ (0, ρ0(P )),
and let B be the countable subfamily of B0 covering Rk given by the Covering
lemma and call Bj = Bρj

(Pj) a typical ball in this family.
Take {χj} the C∞ partition of the unit for Rk relative to B, provided by

Lemma 2.
For any j, pick rj a Ck function defining Ω in Bj , and put

αj = max{1, sup{‖∇rj(x)‖ : x ∈ Bj}}.

If V = ∪Bj∈BBj and r =
∑

j α
−1
j rjχj , since every point in V has a neigh-

borhood where the function ρ(x) = ]{B ∈ B′ : x ∈ B} is locally bounded,
the function r is in Ck(V ). Moreover, since for x ∈ Bj we have rj(x) = 0 if
x ∈ Rk, rj(x) < 0 if x ∈ Ω and rj(x) > 0 if x ∈ Ω̄c, and also

∇r(x) =
∑

′ α−1
j (χj(x)∇rj(x) + rj(x)∇χj(x)),

then for x ∈ Rk, ∇r(x) =
∑′

α−1
j χj(x)∇rj(x). Also, as ∇rj(x) = cjη(x) with

cj > 0 and η the exterior normal unit vector, we have ∇r(x) 6= 0. And we
have this for any x ∈ Rk. Then shrink V if necessary.

In order to extend r to a neighborhood of Sk, we need to modify the
function near R̄k \Rk:

Lemma 4. Let V the neighborhood of Rk obtained in Lemma 3. There exists
a function φ ∈ Ck(Rn) such that:

1. φ ≡ 0 in V c.

2. {φ < 0} = V ∩ Ω and {φ > 0} = V ∩
◦
_

Ωc.

3. ∇φ(x) 6= 0, for any x ∈ Rk.
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Proof. Take r and V as in Lemma 3 and choose a family of compact sets

{Kl; l ∈ N} such that K0 = ∅, Kl ⊂
◦
Kl+1, ∪Kl = V . Take ψl ∈ C∞(Rn), such

that ψl ≥ 0, and ψl ≡ 1 in Kl and ψl ≡ 0 in Kc
l+1. Let Al,s = 1 + ‖r‖Cs(Kl),

Cl,s = ‖ψl‖Cs(Rn) and

βl =
1

2lγlCl−1,lc(n, l)

where c(n, l) =
∑

j≤l

∑
|α|=j

∑
β⊂α

α!
β!(α−β)! , and γl ≥ 1. Define ψ =

∑
l βlψl.

The series converges uniformly in Rn (because of the choice of βl) and ψ is
a continuous function supported in V̄ . Also, for l ≥ 1, if x ∈ Kl \ Kl−1, we
have that for any j > l, ψj ≡ 1 in a neighborhood of x, and for any j < l− 1,
ψj ≡ 0 in a neighborhood of x. Then

ψ(x) = βl−1ψl−1(x) + βlψl(x) +
∑

j 6=l,l−1

βjψj(x),

and for |α| > 0

Dαψ(x) = βl−1D
αψl−1(x) + βlD

αψl(x) = βl−1D
αψl−1(x),

if we assume that
◦
Kl = Kl, for then βlD

αψl(x) = 0 on Kl. This implies that
ψ ∈ C∞(Rn) and for x ∈ Kl \Kl−1 and any α,

|Dαψ(x)| ≤ βl−1Cl−1,|α|.

Now, for any fixed k > 0, since for |α| ≤ k and x ∈ Kl \Kl−1,

|Dα(rψ)(x)| ≤
∑
β�α

α!
β!(α− β)!

|Dα−βr(x)||Dβψ(x)|

≤
∑
β�α

α!
β!(α− β)!

|Dα−βr(x)|βl−1Cl−1,|β|

≤
∑
β�α

α!
β!(α− β)!

Al,|α−β|βl−1Cl−1,|β|,

For l ≥ k, we have that

‖rψ‖Ck(Kl\Kl−1)
≤ Al,k

∑
j≤l

∑
|α|=j

∑
β�α

α!
β!(α− β)!

βl−1Cl−1,|β|

≤ Al,kβl−1Cl−1,l

∑
j≤l

∑
|α|=j

∑
β�α

α!
β!(α− β)!

≤ Al,kβl−1Cl−1,lc(n, l) ≤
Al,k

2lγl
.
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Then, the choice of γl = Al,k if r ∈ Ck, k ∈ N, or γl = Al,l if r ∈ C∞ implies
that for l ≥ k and any k ∈ N,

‖rψ‖Ck(Kl\Kl−1)
≤ 1

2l−1

Now define

φ(x) =

{
0 if x ∈ V c

r(x)ψ(x) if x ∈ V .

The estimates above imply that φ ∈ Ck(Rn). Also, since ψ > 0 in V , we have
that {φ < 0} ∩ V = {r < 0} and {φ = 0} ∩ V = {r = 0}. And since r = 0 and
∇r 6= 0 on Rk, we have that

∇φ(x) = ∇(rψ)(x) = ∇r(x)ψ(x) + r(x)∇ψ(x) = ∇r(x)ψ(x) 6= 0,

for any x ∈ Rk.

3 The Defining Function for Ω.

Now the proof of the Theorem 1 amounts to modifying φ to a function in Rn

defining Ω. To do so, we will distinguish the C∞ case from the others.

3.1 The C∞ Case.

This case is a direct consequence of the constructions in the previous sections.
Once we have a function φ as in Lemma 4, we take a defining function κ for
Ω as in Whitney’s theorem above. The function r = κ+ φ is strictly positive
outside Ω, because κ is, and φ is non negative there, and strictly negative
inside, for analogous reasons. Moreover, if x ∈ R∞ then ∇φ(x) 6= 0 and
∇κ(x) = 0, and if x ∈ S∞ then both terms are 0.

3.2 The Case k <∞.

The construction made in section 3.1 provides a function satisfying the re-
quirements of Theorem 1, except for the fact that the resulting function is at
least Ck in a neighborhood of Rk and we want it to be in C∞(Rn \ R̄k).

Since the function r̃ = κ + φ ∈ Ck(Rn), the k-jet (fα(x))|α|≤k, where
fα(x) = Dαr̃(x), is a Whitney jet in F = Ωc. This means that for any x0 ∈ F
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and any ε > 0, there exists δ > 0 such that for any x, y ∈ Bδ(x0) ∩ F , and
|α| ≤ k, ∣∣∣fα(y)−

∑
0≤|β|≤k−|α|

fα+β(x)
β!

(y − x)β
∣∣∣ ≤ ε‖y − x‖k−|α|.

Whitney’s extension of this jet to Ω provides a function ρ which is C∞ in Ω,
but the property ρ < 0 is not guaranteed now. So we need a modification of
the method.

Let us recall the main features of the Whitney’s method, as given in [8],
Chap VI. Let F ⊂ Rn be a closed set. F c can be covered by a countable family
F∗ = {Q∗l : l ∈ Z} of open cubes with their sides parallel to the axes, such
that

9
64

diam(Q∗l ) ≤ d(F,Q∗l ) ≤
4
3

diam(Q∗l )

and every x0 ∈ F c belongs to, at most, (12)n of these cubes. There is a C∞
partition of unity for F c, namely Φ = {ϕ∗l }, such that ϕ∗l ≥ 0, spt(ϕ∗l ) ⊂ Q∗l ,
and for any x ∈ Rn, l ∈ Z and α n-index

|Dαϕ∗l (x)| ≤ Aα diam(Q∗l )
−|α|,

where Aα is a constant depending only on α and n. Finally, one chooses, for
any l ∈ Z, a point pl ∈ F such that d(pl, Q

∗
l ) = d(F,Q∗l ).

Also, in general, if h ∈ Ck, for any x0 there is a ball Bλ(x0) such that for
x, a ∈ Bλ(x0),

h(x) =
∑
|α|≤k

Dαh(a)
α!

(x− a)α +Rh
k(x, a)

where Rh
k(x, a) is the k’th Taylor remainder term and satisfies

|Rh
k(x, a)| ≤ ωh

k (a, ‖x− a‖)‖x− a‖k

and ωh
k (a, δ) = sup{|Dαh(ζ)−Dαh(a)| : ‖ζ − a‖ ≤ δ, |α| = k}, for x ∈ F c.

Back to our case, if F is Ωc and fα(x) = Dαr̃(x), define, as usual,

gk(x) =

{∑
l(

∑
|α|≤k

fα(pl)
α! (x− pl)α)ϕ∗l (x) if x ∈ F c

f(x) if x ∈ F .

Since any given x ∈ F c has a neighborhood contained in, at most, (12)n fixed
cubes, the sum converges at every point and gk ∈ C∞(F c), and as the classical
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proof of Whitney shows, gk is a Ck extension of r̃|F c . Since for x ∈ F c,

gk(x) =
∑

l

(
∑
|α|≤k

Dαφ(pl)
α!

(x− pl)α)ϕ∗l (x)

= φ(x)−
∑

l:pl∈Rk

Rφ
α(x, pl)ϕ∗l (x),

the function gk is C∞ in Ω because every ϕ∗l is, and the sum refers only
to finitely many functions at every point. Moreover, since |Rφ

α(x, pl)| ≤
ωφ

k (pl,
7
3 diam(Q∗l ))(

7
3 diam(Q∗l ))

k whenever x ∈ Q∗l , if we define

ϕ(x) =

{∑
l ω

φ
k (pl, 3 diam(Q∗l ))(3 diam(Q∗l ))

kϕ∗l (x) if x ∈ F c

0 if x ∈ F ,

the function ϕ is clearly C∞ in Ω.
Moreover, since for x ∈ Ω we have

Dαϕ(x) =
∑

l

ωφ
k (pl, 3 diam(Q∗l ))(3 diam(Q∗l ))

kDαϕ∗l (x)

and the estimates above imply that

|Dαϕ(x)| ≤
∑

l

ωφ
k (pl, 3 diam(Q∗l ))(3 diam(Q∗l ))

kAα diam(Q∗l )
−|α|

≤ 3kAα(8 d(x, F ))k−|α|
∑

l

ωφ
k (pl, 8d(x, pl)),

and since for any x0 ∈ F and δ > 0 we have, for x ∈ Bδ(x0) ∩ Ω, that
‖x− pl‖ ≤ 9‖x− x0‖, and ωφ

k (pl, 8d(x, pl)) ≤ 2ωφ
k (x0, 72d(x, x0)), then

|Dαϕ(x)| ≤ (12)n3kAα(8‖x− x0‖))k−|α|2ωφ
k (x0, 72‖x− x0‖).

This implies that Dαϕ(x) →x→x0∈F 0. So ϕ is a Ck function in Rn and
Dαϕ(x0) = 0 for any |α| ≤ k and x0 ∈ F . In fact, if x0 ∈ Sk \ R̄k, then there
is λ > 0 such that Bλ(x0) ∩ R̄k = ∅. Since for x ∈ Bλ

9
(x0) ∩ Ω, any Whitney

cube Q∗ containing x is in Bλ(x0) ∩ Ω, then ϕ(x) = 0. So ϕ ≡ 0 in Bλ
9
(x0)

and ϕ ∈ C∞(Rn \ R̄k).
Also, by construction, for any x ∈ Ω,∣∣∣∣ ∑

l:pl∈Rk

Rφ
α(x, pl)ϕ∗l (x)

∣∣∣∣ ≤ ϕ(x).
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Then the function G = gk − ϕ is in Ck(Rn) ∩ C∞(Rn \ R̄k) and for any x ∈ Ω

G(x) = gk(x)− ϕ(x) = φ(x)−
∑

l:pl∈Rk

Rφ
α(x, pl)ϕ∗l (x)− ϕ(x)

≤ φ(x) +
∣∣∣∣ ∑

l:pl∈Rk

Rφ
α(x, pl)ϕ∗l (x)

∣∣∣∣− ϕ(x) < 0.

Moreover G(x) = 0 in ∂Ω and

∇G(x) = ∇gk(x)−∇ϕ(x) = ∇gk(x) = ∇φ(x) 6= 0

in Rk. Finally we can play an identical game for G in Ω̄ and obtain another
function r extending G to Ω̄c, in such a way that r is C∞ and strictly positive
in Ω̄c. This finishes the construction and provides the proof of Theorem 1.
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