NEW TESTS FOR POSITIVE ITERATION SERIES

Abstract

We give new tests for series whose terms are defined by iteration of a positive map. Several known results are generalized and unified.

1 Introduction.

Let $f:] 0, \infty[\rightarrow] 0, \infty[$ be a map, such that $f(x)<x$ for every $x>0$. For each $n \in \mathbb{N}$, let $f^{[n]}$ denote the nth iterate of f, that is,

$$
f^{[0]}=\operatorname{id}_{00, \infty[}, \quad f^{[n+1]}=f \circ f^{[n]} \text { for every } n \in \mathbb{N} .
$$

A standard question is: when the functions series $\sum_{n \geq 0} f^{[n]}$ converges pointwise? The ratio test decides on the matter whenever $\lim \sup _{x \backslash 0} \frac{f(x)}{x}<1$, but the study is much more delicate if this upper limit equals the unit. Obviously, for every $x_{0}>0$ the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(f^{[n]}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ is strictly decreasing. A necessary condition for pointwise convergence of $\sum_{n \geq 0} f^{[n]}$ is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{[n]}(x)=0 \text { for every } x>0 \tag{1}
\end{equation*}
$$

Note that (1) holds whenever f is continuous to the right on $] 0, \infty]$. Let us briefly recall several known related results, all involving the auxiliary map

$$
\left.\omega_{f}:\right] 0, \infty[\rightarrow] 0, \infty\left[, \quad \omega_{f}(x)=\frac{x}{x-f(x)}\right.
$$

Assume one of the following conditions holds for some $a>0$:

[^0]1. ω_{f} is decreasing on $\left.] 0, a\right]($ Altman $[1])$,
2. $\left.] 0, a] \ni x \mapsto \frac{f(x)}{x} \in\right] 0,1[$ is decreasing (equivalent to Altman's condition) and $\left.f\right|_{[0, a]}$ is differentiable, with $\inf _{x \in] 0, a]} f^{\prime}(x)>0$ (Fort and Schuster [6]),
3. $\left.f\right|_{\mathrm{j} 0, a]}$ is Lipschitzian and increasing, with $\lim _{x \backslash 0} \frac{f(x)}{x}=1$ (Švarcman $\left.[7]\right)$,
4. $\left.f\right|_{[0, a]}$ is Lipschitzian (Brauer $[2,3]$).

If in addition

$$
\begin{equation*}
\int_{0}^{a} \omega_{f}(t) \mathrm{d} t<\infty \tag{2}
\end{equation*}
$$

then $\sum_{n \geq 0} f^{[n]}$ converges pointwise on $\left.] 0, a\right]$. Convergence and (2) are equivalent under the more restrictive assumptions of the Fort-Schuster and Švarcman tests. Nevertheless, none of these applies to the pointwise convergent series defined by

$$
\begin{equation*}
f(x)=x-\frac{x \sqrt{x}}{2+x+\sin (\pi / x)} \tag{3}
\end{equation*}
$$

(see Example 10), since for every $a>0$ we have $\inf _{x \in] 0, a]} f^{\prime}(x)=-\infty$ and ω_{f} is not monotone on $] 0, a]$. For such problems, local conditions on f (near 0) seem to be more natural than monotony or Lipschitz restrictions if (1) holds.

Our main result (Theorem 1) provides a test without monotony or Lipschitz conditions. Its corollaries from Section 3.1 generalize the above cited results. Section 3.2 presents a sequence of tests with local conditions (upper/lower limits) and of strictly increasing strength. Examples are discussed in the last section.

2 A General Principle.

Let $f:] 0, \infty[\rightarrow] 0, \infty[$ be a map, such that $f(x)<x$ for every $x>0$. Let us also consider a map $\varphi \in L_{\mathrm{loc}}^{1}(] 0, \infty[)$ (locally Lebesgue integrable), with $\varphi>0$.
Theorem 1 (φ-test). (i) $\sum_{n \geq 0} f^{[n]}$ converges pointwise if (1) holds and

$$
\int_{0}^{1} t \varphi(t) \mathrm{d} t<\infty \text { and } \liminf _{x \backslash 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t>0 .
$$

(ii) $\sum_{n \geq 0} f^{[n]}$ diverges everywhere if

$$
\int_{0}^{1} t \varphi(t) \mathrm{d} t=\infty \text { and } \limsup _{x \searrow 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t<\infty
$$

Proof. Since $\varphi \in L_{\mathrm{loc}}^{1}(] 0, \infty[)$, we can define the map

$$
\Phi:] 0, \infty\left[\rightarrow \mathbb{R}, \quad \Phi(t)=-\int_{1}^{x} \varphi(t) \mathrm{d} t\right.
$$

Let us note that Φ is strictly decreasing and locally absolutely continuous, with $\Phi^{\prime}=-\varphi$ almost everywhere. Its range $J:=\Phi(] 0, \infty[)$ is an open interval containing 0 , and its inverse $\left.\Phi^{-1}: J \rightarrow\right] 0, \infty[$ is a decreasing homeomorphism. Fix $x_{0}>0$ and $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(f^{[n]}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$. If $\lim _{n \rightarrow \infty} x_{n}=0$, then applying the Stolz-Cesàro theorem to the sequences $\left(\Phi\left(x_{n}\right)\right)_{n \geq 1}$ and $(n)_{n \geq 1}$ yields

$$
\begin{array}{r}
\liminf _{n \rightarrow \infty} \frac{\Phi\left(x_{n}\right)}{n} \geq \liminf _{n \rightarrow \infty} \int_{f\left(x_{n}\right)}^{x_{n}} \varphi(t) \mathrm{d} t \geq \liminf _{x \searrow 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t \\
\limsup _{n \rightarrow \infty} \frac{\Phi\left(x_{n}\right)}{n} \leq \limsup _{n \rightarrow \infty} \int_{f\left(x_{n}\right)}^{x_{n}} \varphi(t) \mathrm{d} t \leq \limsup _{x \searrow 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t . \tag{5}
\end{array}
$$

(i). Assume that (1) holds, and that $\liminf _{x \backslash 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t>0$. By (4), there exists $\lambda \in] 0, \infty\left[\right.$, such that $\frac{\Phi\left(x_{n}\right)}{n}>\lambda$ for sufficiently large n (that is, for $n \geq$ $n_{0} \in \mathbb{N}^{*}$). For such n we have $\Phi\left(x_{n}\right)>\lambda n>0=\Phi(1)$ (hence $\lim _{x \backslash 0} \Phi(x)=$ $\infty)$, and consequently $\lambda n \in J$ and $x_{n}<\Phi^{-1}(\lambda n)$. The assertion follows if we prove that the series $\sum_{n \geq n_{0}} \Phi^{-1}(\lambda n)$ converges. According to the integral criterion, this is equivalent to $\int_{0}^{\infty} \Phi^{-1}(\lambda s) \mathrm{d} s<\infty$. An easy computation gives for this integral

$$
\begin{equation*}
\int_{0}^{\infty} \Phi^{-1}(\lambda s) \mathrm{d} s=\lim _{x \searrow 0} \int_{0}^{\frac{\Phi(x)}{\lambda}} \Phi^{-1}(\lambda s) \mathrm{d} s=\frac{1}{\lambda} \lim _{x \searrow 0} \int_{x}^{1} t \varphi(t) \mathrm{d} t=\frac{1}{\lambda} \int_{0}^{1} t \varphi(t) \mathrm{d} t . \tag{6}
\end{equation*}
$$

The conclusion is now evident.
(ii). Assume that $\lim \sup _{x \backslash 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t<\infty=\int_{0}^{1} t \varphi(t) \mathrm{d} t$. We also can assume that $\lim _{n \rightarrow \infty} x_{n}=0$, since otherwise $\sum_{n \geq 0} x_{n}$ diverges. We have $\left[0, \infty\left[\subset J\right.\right.$, since $\lim _{x \backslash 0} \Phi(x)=\int_{0}^{1} \varphi(t) \mathrm{d} t \geq \int_{0}^{1} t \varphi(t) \mathrm{d} t=\infty$. By (5), there exists $\lambda \in] 0, \infty\left[\right.$, such that $\frac{\Phi\left(x_{n}\right)}{n}<\lambda$ for sufficiently large n. For such n we have $\Phi\left(x_{n}\right)<\lambda n$, and consequently $x_{n}>\Phi^{-1}(\lambda n)$. Now using again the integral test together with (6) shows that the series $\sum_{n \geq 0} x_{n}$ diverges.

Remark 2. (a) In Theorem 1 we can replace $\int_{0}^{1} t \varphi(t) \mathrm{d} t$ by $\int_{0}^{a} t \varphi(t) \mathrm{d} t$, for any $a>0$. All our results also work for maps $f:] 0, a] \rightarrow] 0, a]$ and $\left.\left.\varphi \in L_{\mathrm{loc}}^{1}(] 0, a\right]\right)$ with similar properties.
(b) The above proof is based on a comparison of the series $\sum_{n \geq 0} f^{[n]}\left(x_{0}\right)$ with the integral $\int_{0}^{1} t \varphi(t) \mathrm{d} t=\int_{1}^{\infty} \frac{\varphi(1 / t)}{t^{3}} \mathrm{~d} t$. The same integral characterizes the nature of the series $\sum_{n>1} \frac{\varphi(1 / n)}{n^{3}}$, if the latter integrand is monotone for large $t \geq 1$. In Section 3.2 this will allow for an interpretation of the p-test.

3 Consequences.

3.1 Integral Tests.

In Theorem 1, the connection between the given map f and the integrand $\varphi \in L_{\mathrm{loc}}^{1}(] 0, \infty[)$ is ensured by the limits (upper and lower) of $\int_{f(x)}^{x} \varphi(t) \mathrm{d} t$. The results of this section are based on the choice $\varphi(x)=\frac{1}{x-f(x)}$, which gives good chances for suitable limits. Other possible choices will be explored in Section 3.2. Our first corollary generalizes both Altman and Fort-Schuster tests.

Corollary 3 (monotone test). Let $u:] 0, \infty[\rightarrow] 0, \infty[$ be a monotone map, with $\liminf _{x \backslash 0} \frac{u(x)}{u(2 x)}>0$. Assume the auxiliary map

$$
\left.\Omega_{f, u}:\right] 0, \infty[\rightarrow] 0, \infty\left[, \quad \Omega_{f, u}(x)=u(x)(x-f(x))\right.
$$

to be increasing. Then

$$
\begin{equation*}
\int_{0}^{1} \frac{t}{t-f(t)} \mathrm{d} t<\infty \Longrightarrow \sum_{n \geq 0} f^{[n]} \text { converges pointwise. } \tag{7}
\end{equation*}
$$

If $\left.f\right|_{[0, a]}$ is differentiable for some $a>0$ and if $\inf _{x \in] 0, a]} f^{\prime}(x)>0$, then

$$
\begin{equation*}
\int_{0}^{1} \frac{t}{t-f(t)} \mathrm{d} t=\infty \Longrightarrow \sum_{n \geq 0} f^{[n]} \text { diverges everywhere. } \tag{8}
\end{equation*}
$$

Proof. If u is decreasing, then the map $] 0, \infty\left[\ni x \mapsto \frac{\Omega_{f, u}(x)}{u(x)}=x-f(x) \in\right.$ $] 0, \infty[$ is increasing, and the problem reduces to the case when u is constant. Thus we can assume u to be increasing. For abbreviation, we write Ω instead of $\Omega_{f, u}$. We first show that (1) holds. Let $x_{0}>0$ and the strictly decreasing sequence $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(f^{[n]}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$. If $\xi:=\lim _{n \rightarrow \infty} x_{n}>0$, we get

$$
\begin{equation*}
0<\Omega(\xi) \leq \lim _{n \rightarrow \infty} \Omega\left(x_{n}\right)=\lim _{n \rightarrow \infty} u\left(x_{n}\right)\left(x_{n}-x_{n+1}\right) \leq u\left(x_{0}\right) \cdot 0=0 \tag{9}
\end{equation*}
$$

a contradiction. We conclude that $\xi=0$, and consequently that (1) holds. Let us define the map $\left.\varphi=\frac{u}{\Omega}:\right] 0, \infty[\rightarrow] 0, \infty[$. As Ω and u are increasing, we deduce that $\varphi \in L_{\mathrm{loc}}^{1}(] 0, \infty[)$. Let us note that $\int_{0}^{1} t \varphi(t) \mathrm{d} t=\int_{0}^{1} \frac{t}{t-f(t)} \mathrm{d} t$. For $x>0$ and $\bar{x}:=\max \left\{f(x), \frac{x}{2}\right\}$ we have $x-f(x)<2(x-\bar{x})$, and so

$$
\int_{f(x)}^{x} \varphi(t) \mathrm{d} t \geq \int_{\bar{x}}^{x} \frac{u(t)}{\Omega(t)} \mathrm{d} t \geq \frac{u(\bar{x})(x-\bar{x})}{\Omega(x)} \geq \frac{u(x / 2)}{u(x)} \cdot \frac{x-\bar{x}}{x-f(x)} \geq \frac{u(x / 2)}{2 u(x)}
$$

Hence $\lim \inf _{x \backslash 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t>0$. Thus (7) follows by applying Theorem 1(i). Now assume $\left.f\right|_{[0, a]}$ to be differentiable, with $\inf _{x \in] 0, a]} f^{\prime}(x)>\frac{1}{2^{p}}$ for some $a>0$ and some $p \in \mathbb{N}$. For $x \in] 0, a]$ we have $f(x) \geq \frac{x}{2^{p}}$, and so

$$
\int_{f(x)}^{x} \varphi(t) \mathrm{d} t \leq \frac{u(x)}{\Omega(f(x))}(x-f(x)) \leq \frac{u(x)}{u\left(x / 2^{p}\right)} \cdot \frac{x-f(x)}{f(x)-f(f(x))} \leq \frac{2^{p} u(x)}{u\left(x / 2^{p}\right)}
$$

Hence $\lim \sup _{x \backslash 0} \int_{f(x)}^{x} \varphi(t) \mathrm{d} t \leq 2^{p}\left(\liminf _{x \backslash 0} \frac{u(x)}{u(2 x)}\right)^{-p}<\infty$. Thus (8) follows by applying Theorem 1(ii).

Altman's result follows from the above corollary by taking $u(x)=\frac{1}{x}$. Stronger tests are obtained for increasing u, since $\Omega_{f, u}$ is increasing whenever ω_{f} is decreasing (Altman's hypothesis). Our next corollary generalizes Brauer's test.

Corollary 4 (Lipschitz test). Let $u, v:] 0, \infty[\rightarrow] 0, \infty[$ be continuous maps, such that u and the auxiliary map

$$
\left.\Omega_{f, u, v}:\right] 0, \infty\left[\rightarrow \mathbb{R}, \quad \Omega_{f, u, v}(x)=u(x)(v(x)-f(x))\right.
$$

are both increasing. Assume that on some $] 0, a]$ the following two conditions hold:
(u) u is convex or concave, with $\liminf _{x \backslash 0} \frac{u(x)}{u(2 x)}>0$, or alternatively, u is Lipschitzian, with $\liminf _{x \backslash 0} \frac{u(x)}{x}>0$,
(v) v is Lipschitzian, with $\lim _{x \backslash 0} v(x)=0$.

If $\int_{0}^{a} \frac{t}{t-f(t)} \mathrm{d} t<\infty$, then $\sum_{n \geq 0} f^{[n]}$ converges pointwise.
Proof. For abbreviation, we write Ω instead of $\Omega_{f, u, v}$. Since Ω is increasing and $\lim _{x \searrow 0} \Omega(x)=0$, we have $\Omega \geq 0$. As in the proof of Corollary 3 , with the argument from (9) replaced by

$$
\Omega(\xi) \leq \lim _{n \rightarrow \infty} \Omega\left(x_{n}\right)=\lim _{n \rightarrow \infty} u\left(x_{n}\right)\left(v\left(x_{n}\right)-x_{n+1}\right)=u(\xi)(v(\xi)-\xi)<\Omega(\xi)
$$

we deduce that (1) holds. Let us define the map

$$
\varphi:] 0, \infty[\rightarrow] 0, \infty\left[, \quad \varphi(x)= \begin{cases}\frac{1}{x-f(x)}, & \text { if } x \leq a \\ \frac{1}{a-f(a)}, & \text { if } x \geq a\end{cases}\right.
$$

On $] 0, a]$ we have $\varphi(x)=\frac{u(x)}{\Omega(x)-u(x) w(x)}$, where $w(x):=v(x)-x$. As Ω is increasing, we deduce that φ is measurable. That $\varphi \in L_{\text {loc }}^{1}(] 0, \infty[)$ follows from $\int_{0}^{a} t \varphi(t) \mathrm{d} t<\infty$. Fix $\left.\left.x \in\right] 0, a\right]$ and $\bar{x}:=\max \left\{f(x), \frac{x}{2}\right\}$. For every $t \in[\bar{x}, x[$, we have

$$
\frac{1}{\varphi(t)}=\frac{\Omega(t)}{u(t)}-w(t) \leq \frac{\Omega(x)}{u(\bar{x})}-w(t)=\frac{u(x)(x-f(x))+u(x) w(x)-u(\bar{x}) w(t)}{u(\bar{x})}
$$

Let $\lambda>0$ be a Lipschitz constant for $\left.w\right|_{j 0, a]}$. Thus

$$
\begin{gathered}
u(x) w(x)-u(\bar{x}) w(t)=u(x)(w(x)-w(t))+w(t)(u(x)-u(\bar{x})) \\
\leq \lambda(x-t) u(x)+\lambda t(u(x)-u(\bar{x})) \leq \lambda(x-\bar{x})\left(u(x)+x \delta_{u}(x, \bar{x})\right),
\end{gathered}
$$

where $\delta_{u}(y, z):=\frac{u(y)-u(z)}{y-z}$ for $y \neq z$. Since $x-f(x)<2(x-\bar{x})$, it follows that

$$
\begin{gathered}
\frac{1}{\varphi(t)} \leq \frac{(x-\bar{x})\left[(2+\lambda) u(x)+\lambda x \delta_{u}(x, \bar{x})\right]}{u(x / 2)} \text { for every } t \in[\bar{x}, x[\\
\int_{f(x)}^{x} \varphi(t) \mathrm{d} t \geq \int_{\bar{x}}^{x} \varphi(t) \mathrm{d} t \geq \frac{u(x / 2)}{u(x)} \cdot \frac{1}{2+\lambda+\lambda \frac{x \delta_{u}(x, \bar{x})}{u(x)}}=: E(x) .
\end{gathered}
$$

As $\int_{0}^{a} t \varphi(t) \mathrm{d} t<\infty$, the conclusion will follow by Theorem 1(i) if we prove that $\lim \inf _{x \backslash 0} E(x)>0$. Set $\widetilde{u}(0):=\lim _{x \backslash 0} u(x) \geq 0$. According to the properties of $\left.u\right|_{j 0, a]}$, we shall analyze three cases.
Case 1. Assume $\left.u\right|_{j 0, a]}$ to be μ-Lipschitzian $(\mu>0)$, with $\liminf _{x \searrow 0} \frac{u(x)}{x}>0$. Then

$$
\limsup _{x \searrow 0} \frac{x \delta_{u}(x, \bar{x})}{u(x)} \leq \limsup _{x \searrow 0} \frac{\mu x}{u(x)}=\frac{\mu}{\liminf _{x \searrow 0} \frac{u(x)}{x}}<\infty
$$

We also have $\liminf _{x \backslash 0} \frac{u(x)}{u(2 x)}>0$. Indeed, if $\widetilde{u}(0)=0$ (otherwise the claimed property is obvious), then

$$
\liminf _{x \searrow 0} \frac{u(x)}{u(2 x)}=\liminf _{x \searrow 0} \frac{u(x)}{u(2 x)-\widetilde{u}(0)} \geq \liminf _{x \searrow 0} \frac{u(x)}{\mu \cdot 2 x}=\frac{1}{2 \mu} \liminf _{x \searrow 0} \frac{u(x)}{x}>0 .
$$

We conclude that $\liminf _{x \backslash 0} E(x)>0$.
Case 2. Assume $\left.u\right|_{j 0, a]}$ to be convex, with $\liminf _{x \searrow 0} \frac{u(x)}{u(2 x)}>0$. Convexity yields $\delta_{u}(x, \bar{x}) \leq \delta_{u}(2 x, x)=\frac{u(2 x)-u(x)}{x}$ for $\left.\left.x \in\right] 0, \frac{a}{2}\right]$, which leads to

$$
\limsup _{x \searrow 0} \frac{x \delta_{u}(x, \bar{x})}{u(x)} \leq \limsup _{x \searrow 0} \frac{x \delta_{u}(2 x, x)}{u(x)}=\frac{1}{\liminf _{x \searrow 0} \frac{u(x)}{u(2 x)}}-1<\infty
$$

We conclude that $\liminf _{x \searrow 0} E(x)>0$.
Case 3. Assume $\left.u\right|_{j 0, a]}$ to be concave. Then $2 u(x) \geq u(2 x)+\widetilde{u}(0) \geq u(2 x)$ for $\left.x \in] 0, \frac{a}{2}\right]$, and consequently $\liminf _{x \backslash 0} \frac{u(x)}{u(2 x)} \geq \frac{1}{2}>0$. Also by concavity we have

$$
\delta_{u}(x, \bar{x}) \leq \frac{u(x)-\widetilde{u}(0)}{x} \leq \frac{u(x)}{x}, \quad \limsup _{x \searrow 0} \frac{x \delta_{u}(x, \bar{x})}{u(x)} \leq 1<\infty
$$

We conclude that $\liminf _{x \operatorname{inc}_{0}} E(x)>0$. The proof is complete.
Brauer's result follows from the above corollary by taking $u \equiv 1$ and $v=f$.

3.2 Sequence of Tests with Limits. Iterative Condensation.

The results of this section are based on other possible choices for the integrand φ. For all $p \in \mathbb{N}$ and $\alpha \in \mathbb{R}$, let us consider the $\left.\left.\left.\operatorname{map} \varphi_{p, \alpha}:\right] 0, \frac{1}{\exp ^{[p]}(1)}\right] \rightarrow\right] 0, \infty[$, defined by ${ }^{1}$

$$
\begin{aligned}
\varphi_{p, \alpha}(x) & =\frac{1}{x^{2}\left(\prod_{k=1}^{p} \ln ^{[k]} \frac{1}{x}\right)\left(\ln ^{[p]} \frac{1}{x}\right)^{\alpha}} \\
& =\frac{1}{x^{2}\left(\ln \frac{1}{x}\right)\left(\ln ^{[2]} \frac{1}{x}\right) \cdots\left(\ln ^{[p]} \frac{1}{x}\right)\left(\ln ^{[p]} \frac{1}{x}\right)^{\alpha}}
\end{aligned}
$$

(where $\exp (x)=\mathrm{e}^{x}$). Here $\ln ^{[k]}$ denotes the k th iteration, defined on the interval $] \exp ^{[k-1]}(0), \infty[$, of the logarithm map. We have

$$
\begin{gathered}
\varphi_{0, \alpha}(x)=\frac{1}{x^{2-\alpha}}, \quad \varphi_{1, \alpha}(x)=\frac{1}{x^{2}(-\ln x)^{1+\alpha}} \\
\varphi_{2, \alpha}(x)=\frac{1}{x^{2}(-\ln x)[\ln (-\ln x)]^{1+\alpha}}, \cdots
\end{gathered}
$$

Our next result provides a test for each $p \in \mathbb{N}$. The proof will show that its strength is increasing with p.

[^1]Corollary 5 (p-test). Let $p \in \mathbb{N}$. Then
(i) $\sum_{n \geq 0} f^{[n]}$ converges pointwise if (1) holds and

$$
\begin{equation*}
\liminf _{x \backslash 0}\left[\varphi_{p, \alpha}(x)(x-f(x))\right]>0 \text { for some } \alpha>0 . \tag{10}
\end{equation*}
$$

(ii) $\sum_{n \geq 0} f^{[n]}$ diverges everywhere if

$$
\begin{equation*}
\underset{x \searrow 0}{\limsup }\left[\varphi_{p, \alpha}(x)(x-f(x))\right]<\infty \text { for some } \alpha \leq 0 \text {. } \tag{11}
\end{equation*}
$$

Proof. Let us first observe that

$$
\lim _{x>0} \frac{\varphi_{p+1, \alpha}(x)}{\varphi_{p, \alpha}(x)}=\lim _{y \rightarrow \infty} \frac{y^{\alpha}}{(\ln y)^{\alpha+1}}= \begin{cases}\infty & \text { if } \alpha>0, \\ 0 & \text { if } \alpha \leq 0\end{cases}
$$

Therefore, if one of (10) and (11) holds for $\varphi_{p, \alpha}$, then it holds for $\varphi_{p+1, \alpha}$ too. An easy computation shows that

$$
\int_{0}^{\frac{1}{\exp [p](1)}} t \varphi_{p, \alpha}(t) \mathrm{d} t= \begin{cases}\frac{1}{\alpha} & \text { if } \alpha>0 \\ \infty & \text { if } \alpha \leq 0\end{cases}
$$

We thus can assume that $p \in \mathbb{N}^{*}$, for if not, we replace p by $p+1$. Consequently, $\varphi_{p, \alpha}$ is decreasing on a sufficiently small interval $\left.] 0, \varepsilon\right]$. For $\left.\left.x \in\right] 0, \varepsilon\right]$ we have

$$
\begin{equation*}
\varphi_{p, \alpha}(x)(x-f(x)) \leq \int_{f(x)}^{x} \varphi_{p, \alpha}(t) \mathrm{d} t \leq \varphi_{p, \alpha}(f(x))(x-f(x)) . \tag{12}
\end{equation*}
$$

(i). Assume (10) to hold. The conclusion follows by Theorem 1(i), since (12) yields

$$
\liminf _{x \searrow 0} \int_{f(x)}^{x} \varphi_{p, \alpha}(t) \mathrm{d} t \geq \liminf _{x \searrow 0}\left[\varphi_{p, \alpha}(x)(x-f(x))\right]>0 .
$$

(ii). Assume (11) to hold. As $\lim _{x \backslash 0}\left(x \varphi_{p, \alpha}(x)\right)=\infty$, we have

$$
\limsup _{x \searrow 0}\left|1-\frac{f(x)}{x}\right|=\limsup _{x \searrow 0}\left(\varphi_{p, \alpha}(x)(x-f(x)) \cdot \frac{1}{x \varphi_{p, \alpha}(x)}\right)=0,
$$

and so $\lim _{x \backslash 0} \frac{f(x)}{x}=1$. It follows that $\lim _{x \backslash 0} \frac{\varphi_{p, \alpha}(f(x))}{\varphi_{p, \alpha}(x)}=1$. The conclusion follows by Theorem 1(ii), since (12) yields

$$
\underset{x \searrow 0}{\limsup } \int_{f(x)}^{x} \varphi_{p, \alpha}(t) \mathrm{d} t \leq \limsup _{x \backslash 0}\left(\varphi_{p, \alpha}(x)(x-f(x)) \cdot \frac{\varphi_{p, \alpha}(f(x))}{\varphi_{p, \alpha}(x)}\right)<\infty .
$$

Some comments are needed for a better understanding of p-tests. It is easily seen that the map $\left[\exp ^{[p]}(1), \infty\left[\ni x \mapsto \frac{\varphi_{p, \alpha}(1 / x)}{x^{3}}=: g_{p, \alpha}(x) \in\right] 0, \infty[\right.$ is monotone for large x. If a p-test succeeds, the answer (pointwise convergence or divergence everywhere) is given by the nature of the series

$$
\sigma_{p}:=\sum_{n \geq \exp ^{[p]}(1)} g_{p, \alpha}(n)=\sum_{n \geq \exp ^{[p]}(1)} \frac{1}{n\left(\prod_{k=1}^{p} \ln ^{[k]} n\right)\left(\ln ^{[p]} n\right)^{\alpha}}
$$

according to Remark 2(b). But $g_{p, \alpha}(n)=\mathrm{e}^{n} g_{p+1, \alpha}\left(\mathrm{e}^{n}\right)$ for every $n \geq \exp { }^{[p]}(1)$, and so the series σ_{p} can be obtained from σ_{p+1} by Cauchy condensation ${ }^{2}$. σ_{p} and σ_{p+1} have the same nature, but the latter converges or diverges slower, thus giving more chances for a successful comparison. Our interpretation is that the difference between successive p-tests is near to Cauchy condensation.

The main difficulty in applying the p-test is that of finding a suitable α. This problem is solved by the following equivalent test.

Corollary 6 (equivalent p-test). Let $p \in \mathbb{N}$. Then
(i) $\sum_{n \geq 0} f^{[n]}$ converges pointwise if (1) holds and

$$
\begin{equation*}
\liminf _{x \searrow 0} \frac{\ln (x-f(x))+\ln \left(\varphi_{p, 0}(x)\right)}{\ln ^{[p+1]} \frac{1}{x}}>0 . \tag{13}
\end{equation*}
$$

(ii) $\sum_{n \geq 0} f^{[n]}$ diverges everywhere if

$$
\begin{equation*}
\limsup _{x \searrow 0}\left[\varphi_{p, 0}(x)(x-f(x))\right]<\infty \tag{14}
\end{equation*}
$$

Proof. For all $\alpha \in \mathbb{R}$ and $x \in] 0, \frac{1}{\exp ^{[p]}(1)}[$, set
$u_{\alpha}(x)=\varphi_{p, \alpha}(x)(x-f(x)), \quad v(x)=\frac{\ln \left(u_{0}(x)\right)}{\ln ^{[p+1]} \frac{1}{x}}=\frac{\ln (x-f(x))+\ln \left(\varphi_{p, 0}(x)\right)}{\ln ^{[p+1]} \frac{1}{x}}$.
We have the identities $u_{\alpha}(x)=\left(\ln ^{[p]} \frac{1}{x}\right)^{v(x)-\alpha}$ and $v(x)=\alpha+\frac{\ln \left(u_{\alpha}(x)\right)}{\ln [p+1] \frac{1}{x}}$.
(i). It suffices to prove the equivalence $(10) \Leftrightarrow(13)$.
$(10) \Rightarrow(13)$. Assume (10) to hold. Thus there is $\lambda>0$, such that $u_{\alpha}(x)>\lambda$, and so $v(x)>\alpha+\frac{\ln \lambda}{\ln ^{[p+1]} \frac{1}{x}}$, for sufficiently small $x>0$. Thus $\lim _{\inf }^{x \searrow 0}{ }_{x} v(x) \geq$ $\alpha>0$.
$(10) \Leftarrow(13)$. Assume (13) to hold. Thus there exists $\alpha>0$, such that $v(x)>\alpha$,

[^2]and so $u_{\alpha}(x)>1$, for sufficiently small $x>0$. Therefore $\liminf _{x \backslash 0} u_{\alpha}(x) \geq$ $1>0$.
(ii). For all $\alpha \leq 0$, we have the inequality $\lim \sup _{x \backslash 0} u_{0}(x) \leq \lim \sup _{x \backslash 0} u_{\alpha}(x)$. This proves the equivalence $(11) \Leftrightarrow(14)$.

The beginning of the proof of Corollary 5 and the following example show that each p-test is strictly weaker than the $(p+1)$-test.

Example 7. Let $p \in \mathbb{N}$. Choose $a>0$, such that $x \varphi_{p+1,0}(x)>1$ on $\left.] 0, a\right]$. Thus the map

$$
f:] 0, a] \rightarrow] 0, a], \quad f(x)=x-\frac{1}{\varphi_{p+1,0}(x)}
$$

is well defined, continuous, and $f(x)<x$ on $] 0, a]$. For the series $\sum_{n \geq 0} f^{[n]}$ the p-test fails, but the $(p+1)$-test proves pointwise convergence, since

$$
\lim _{x \searrow 0}\left[\varphi_{p+1,0}(x)(x-f(x))\right]=1, \quad \lim _{x \searrow 0}\left[\varphi_{p, \alpha}(x)(x-f(x))\right]= \begin{cases}0 & \text { if } \alpha>0 \\ \infty & \text { if } \alpha \leq 0\end{cases}
$$

Even the 0-test $(p=0)$ suffices in many "decent" cases (see the examples from Section 4). Therefore we find it useful to write down both of its equivalent forms:

Corollary 8 (0-test). (i) $\sum_{n \geq 0} f^{[n]}$ converges pointwise if (1) holds and

$$
\liminf _{x \searrow 0} \frac{x-f(x)}{x^{\beta}}>0 \text { for some } \beta<2 \text {. }
$$

(ii) $\sum_{n \geq 0} f^{[n]}$ diverges everywhere if

$$
\limsup _{x \searrow 0} \frac{x-f(x)}{x^{\beta}}<\infty \text { for some } \beta \geq 2 \text {. }
$$

In [4] it is shown that if f is concave and $\beta>1$, then the limits from the above corollary are both in $] 0, \infty[$ if and only if

$$
0<\liminf _{n \rightarrow \infty}\left(n^{\frac{1}{\beta-1}} f^{[n]}(x)\right) \leq \limsup _{n \rightarrow \infty}\left(n^{\frac{1}{\beta-1}} f^{[n]}(x)\right)<\infty \text { for every } x>0
$$

In this particular case, the series $\sum_{n \geq 0} f^{[n]}\left(x_{0}\right)$ and $\sum_{n \geq 1} \frac{1}{n^{1 /(\beta-1)}}$ have the same nature.

Corollary 9 (equivalent 0 -test). (i) $\sum_{n \geq 0} f^{[n]}$ converges pointwise if (1) holds and

$$
\limsup _{x \searrow 0} \frac{\ln (x-f(x))}{\ln x}<2 .
$$

(ii) $\sum_{n \geq 0} f^{[n]}$ diverges everywhere if

$$
\limsup _{x \searrow 0} \frac{x-f(x)}{x^{2}}<\infty .
$$

4 Examples.

Example 10. Let f be the map defined in (3). Then $\sum_{n \geq 0} f^{[n]}$ converges pointwise. The tests of Altman, Fort-Schuster, Švarcman, and Brauer cannot be applied.
Proof. f is continuous and $f(x)<x$ for $x>0$. As $\frac{\ln (x-f(x))}{\ln x}=\frac{3}{2}-$ $\frac{\ln (2+x+\sin (\pi / x))}{\ln x}$ yields $\lim _{x \searrow 0} \frac{\ln (x-f(x))}{\ln x}=\frac{3}{2}<2$, the conclusion follows by Corollary 9 (i).

Example 11. Let $p, q>0$. Define the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left.\left.x_{0} \in\right] 0,1\right], \quad x_{n+1}=\left(\sin \left(x_{n}^{p}\right)\right)^{q} \text { for every } n \in \mathbb{N} .
$$

Then $\sum_{n \geq 0} x_{n}$ converges if and only if

$$
p q>1 \text { or } 2<q=\frac{1}{p}
$$

Proof. Define $f:] 0,1] \rightarrow] 0,1], f(x)=\left(\sin \left(x^{p}\right)\right)^{q}$. Thus f is a continuous map and $x_{n}=f^{[n]}\left(x_{0}\right)$ for $n \in \mathbb{N}^{*}$. We have

$$
\lim _{x \searrow 0} \frac{f(x)}{x}=\lim _{x \searrow 0}\left(\frac{\sin \left(x^{p}\right)}{x^{p}}\right)^{q} x^{p q-1}= \begin{cases}0 & \text { if } p q>1 \\ 1 & \text { if } p q=1 \\ \infty & \text { if } p q<1\end{cases}
$$

Therefore $\sum_{n>0} x_{n}$ cannot converge if $p q<1$ (even if $\lim _{n \rightarrow \infty} x_{n}=0$).
Now assume that $p q \geq 1$. Hence $f(x)<x^{p q} \leq x$ for every $\left.\left.x \in\right] 0,1\right]$. By the ratio test, we deduce that $\sum_{n>0} x_{n}$ converges if $p q>1$. Let us finally consider the case $p q=1$. For every $\beta \in \mathbb{R}$, we have

$$
\frac{x-f(x)}{x^{\beta}}=\frac{1-\left(\frac{\sin \left(x^{p}\right)}{x^{p}}\right)^{q}}{1-\frac{\sin \left(x^{p}\right)}{x^{p}}} \cdot \frac{x^{p}-\sin \left(x^{p}\right)}{\left(x^{p}\right)^{3}} \cdot x^{2 p+1-\beta} .
$$

Taking here $\beta=2 p+1$ leads to $\left.\lim _{x \backslash 0} \frac{x-f(x)}{x^{\beta}}=\frac{q}{6} \in\right] 0, \infty[$. The proof is completed by using Corollary 8.

Example 12. Let $p>0$. Define the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left.x_{0} \in\right] 0, \infty\left[, \quad x_{n+1}=\left(\arctan \left(x_{n}^{p}\right)\right)^{1 / p} \text { for every } n \in \mathbb{N} .\right.
$$

Then $\sum_{n \geq 0} x_{n}$ converges if and only if $p<\frac{1}{2}$.
Proof. Define $f:] 0, \infty[\rightarrow] 0, \infty\left[, f(x)=\left(\arctan \left(x^{p}\right)\right)^{1 / p}\right.$. Thus f is continuous, $f(x)<x$ for $x>0$, and $x_{n}=f^{[n]}\left(x_{0}\right)$ for $n \in \mathbb{N}^{*}$. For every $\beta \in \mathbb{R}$, we have

$$
\frac{x-f(x)}{x^{\beta}}=\frac{1-\left(\frac{\arctan \left(x^{p}\right)}{x^{p}}\right)^{1 / p}}{1-\frac{\arctan \left(x^{p}\right)}{x^{p}}} \cdot \frac{x^{p}-\arctan \left(x^{p}\right)}{\left(x^{p}\right)^{3}} \cdot x^{2 p+1-\beta} .
$$

Taking here $\beta=2 p+1$ leads to $\left.\lim _{x \backslash 0} \frac{x-f(x)}{x^{\beta}}=\frac{1}{3 p} \in\right] 0, \infty[$. The proof is completed by using Corollary 8.

Example 13. Let $p>0$. Define the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left.x_{0} \in\right] 0, \infty\left[, \quad x_{n+1}=\left(\ln \left(1+x_{n}^{p}\right)\right)^{1 / p} \text { for every } n \in \mathbb{N} .\right.
$$

Then $\sum_{n \geq 0} x_{n}$ converges if and only if $p<1$.
Proof. The reasoning is similar to that from Example 12, and uses the equality

$$
\frac{x-\left(\ln \left(1+x^{p}\right)\right)^{1 / p}}{x^{\beta}}=\frac{1-\left(\frac{\ln \left(1+x^{p}\right)}{x^{p}}\right)^{1 / p}}{1-\frac{\ln \left(1+x^{p}\right)}{x^{p}}} \cdot \frac{x^{p}-\ln \left(1+x^{p}\right)}{\left(x^{p}\right)^{2}} \cdot x^{p+1-\beta}
$$

for $x>0$ and $\beta \in \mathbb{R}$, as well as the limit $\lim _{y \rightarrow 0} \frac{y-\ln (1+y)}{y^{2}}=\frac{1}{2}$.

References

[1] M. Altman, An integral test for series and generalized contractions, Amer. Math. Monthly, 82 (1975), 827-829.
[2] G. Brauer, Series whose terms are obtained by iteration of a function, Amer. Math. Monthly, 75 (1968), 964-968.
[3] G. Brauer, Sets of convergence for series defined by iteration, Canad. Math. Bull., 9 (1966), 83-87.
[4] J. Drewniak and V. Drobot, On the slow convergence of iterations of a function, Opuscula Math., 6 (1990), 41-58.
[5] G. Fiorito, R. Musmeci, and M. Strano, On series whose general terms are defined recursively (Italian), Matematiche (Catania), 46 (1991), 681-696 (1993).
[6] M. K. Fort Jr. and S. Schuster, Convergence of series whose terms are defined recursively, Amer. Math. Monthly, 71 (1964), 994-998.
[7] P. A. Švarcman, The convergence of an iteration series, Vestnik Jaroslav Univ., 12 (1975), 155-159.

[^0]: Key Words: positive series, iteration, test
 Mathematical Reviews subject classification: Primary 40A05; Secondary 39B12
 Received by the editors June 11, 2004
 Communicated by: Richard J. O'Malley

[^1]: ${ }^{1}$ We adhere to the convention that an empty product of real numbers equals 1 .

[^2]: ${ }^{2}$ This is possible with the exponential e^{n}, since the map $g_{p+1, \alpha}$ is defined on an interval.

