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A NOWHERE CONVERGENT SERIES OF
FUNCTIONS CONVERGING SOMEWHERE
AFTER EVERY NON-TRIVIAL CHANGE

OF SIGNS

Abstract

We construct a sequence of continuous functions (hn) on any given
uncountable Polish space, such that

P
hn is divergent everywhere, but

for any sign sequence (εn) ∈ {−1, +1}N which contains infinitely many
− 1 and + 1 the series

P
εnhn is convergent at at least one point.

We can even have hn → 0, and if we take our given Polish space to
be any uncountable closed subset of R, we can require that every hn

be a polynomial. This strengthens a construction of Tamás Keleti and
Tamás Mátrai.

1 Introduction.

Let X be a topological space, fn : X → R, n ∈ N be a sequence of continuous
functions. One can ask about a condition on this sequence which guaran-
tees that for a “typical” choice of signs εn = ±1 the series

∑
εnfn diverges

everywhere on X.
By “typical” choice of signs we mean that the set of the proper sign se-

quences is a residual (or dense Gδ) subset of S = {−1,+1}N. Here we consider
S as a product of discrete topological spaces, which is clearly a Baire space.
By N we denote the set of the positive integers. By Polish space we mean
complete separable metric space.

In [1, Theorem 4.1] for σ-compact X spaces a condition was given on
the divergence of the partial sums of

∑
fn implying that

∑
εnfn diverges

everywhere for a typical sign sequence (εn) ∈ S. Motivated by this result, S.
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Konyagin asked whether in case of compact metric spaces X, the pure fact
that

∑
fn diverges everywhere could imply that

∑
εnfn diverges everywhere

for a typical sign sequence. Tamás Keleti and Tamás Mátrai (see [2]) gave
a negative answer to this question by showing an example of a sequence of
continuous functions (fn) on any uncountable Polish space, such that

∑
fn

is divergent everywhere, but for a typical sign sequence (εn) ∈ S, the series∑
εnfn is convergent at at least one point.
This paper strengthens this construction by showing a sequence of contin-

uous functions fn such that
∑

fn is divergent everywhere but for every sign
sequence (εn) ∈ S0 = {(ε′n) ∈ S | (ε′n) contains infinitely many − 1 and + 1},
the series

∑
εnfn is convergent at at least one point. Clearly S0 is the largest

subset of S for which this could be true.
We will also construct an other series of continuous functions with the same

properties which satisfies even that fn → 0. Providing that the uncountable
Polish space is R (or a closed subset of R) we can require every fn to be a
polynomial, see Remark 1.

2 The Example.

Theorem 1. 1 Let P be an uncountable Polish space. There exists a sequence
of continuous functions hn : P → R such that

∑
hn diverges everywhere on

P , but for any (εn) ∈ {−1,+1}N sign sequence containing infinitely many −1
and + 1 digits

∑
εnhn converges at at least one point of P .

Proof. At first we define continuous functions fn : S = {−1,+1}N →
[−1,+1] such that

∑
fn is divergent everywhere, but for any (εn) ∈ S0 =

{(ε′n) ∈ S | (ε′n) contains infinitely many − 1 and + 1} the series
∑

εnfn is
convergent at at least one point, in fact, at (εn).

Consider a fix x ∈ S as the sequence of the − 1 and + 1 digits. Divide
this sequence into blocks of type AAA . . . AB (where A and B stand for − 1
and + 1 in some order), with the property of containing at least one A and
containing exactly one B at the end. We start the division in the beginning of
the sequence. Occasionally we make one infinite block of type AAA . . .. Thus,
the division is well defined.

For example,

−1 +1 −1−1−1 +1 +1 +1−1 +1−1 −1 +1 +1 +1 +1 . . .

1Independently from the author, Gergely Zábrádi gave almost the same construction on
R at the same time.
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Let n be a positive integer. We are going to define the real number fn(x).
Suppose that the nth digit of x is in the kth block of x and this digit is the ith

number in this block. Denote the size of the kth block by l. (Thus 1 ≤ i ≤ l
and l ≥ 2.)

If l is even, then let fn(x) = (−1)i+1

k if 1 ≤ i ≤ l − 1 and let fn(x) = +1
k if

i = l.
If l is odd, then let fn(x) = (−1)i+1

k if 1 ≤ i ≤ l−2, let fn(x) = 0 if i = l−1
and let fn(x) = +1

k if i = l.

If l = ∞, then let fn(x) = (−1)i+1

k .
For example (writing fn(x) below the nth digit of x),

−1 +1 −1−1−1 +1 +1 +1−1 +1−1 −1 +1 +1 +1 +1 . . .

+1
1

+1
1

+1
2

−1
2

+1
2

+1
2

+1
3 0 +1

3
+1
4

+1
4

+1
5

+1
5

+1
6

−1
6

+1
6 . . .

Claim 1. The function fn is an S → [−1,+1] continuous function for every
n ∈ N.

Proof. It is easy to see that fn(x) depends only on the first n + 1 digits of
x. This implies continuity.

Claim 2. The series
∑

fn(x) is divergent for every x ∈ S.

Proof. For a fixed x consider those positive integers n for which the nth digits
of x are in the fixed kth block. For these n the sum of fn(x) equals to 2/k if
this block is finite. Hence

∑
n∈N fn(x) = ∞ if x has infinitely many blocks.

Otherwise x has an infinite block so the terms of the series
∑

n∈N fn(x) are
not converging to 0.

Claim 3. For every (εn) ∈ S0 there exists x ∈ S for which
∑

εnfn(x) is
convergent, namely x = (εn).

Proof. The sequence x = (εn) ∈ S0 has only blocks of finite size. Consider
those positive integers n for which the nth digits of x are in the same fixed
block. For these n the sum of εnfn(x) is exactly zero. The sequence of partial
sums converges to 0, hence the series

∑
εnfn(x) is convergent.

It is well known (see [3, Corollary 6.5]) that P contains a homeomorphic
copy of the Cantor set, denote it by C. Clearly S is homeomorphic to the
Cantor set, let ϕ be a C → S homeomorphism. Let gn : P → [−1,+1]
be a continuous extension of fn ◦ ϕ : C → [−1,+1] for every n. On P let
hn(p) = gn(p) + n · d(p, C), where d(p, C) denotes the distance of p from the
closed set C. Clearly for p /∈ C the series

∑
hn(p) diverges. On C we have
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hn = fn ◦ ϕ, hence by Claim 2 and Claim 3 we obtain that (hn) satisfies all
required properties.

Theorem 2. Requiring that hn → 0, Theorem 1 remains true.

Proof. Just like in the proof of Theorem 1, at first we define functions fn on
S. Let x ∈ S be fixed. Consider the same blocks. Suppose that the kth block
is finite and contains the ath, (a+1)th, . . ., bth digits of x (a, b ∈ N, b−a ≥ 2).
Define fa(x), fa+1(x), . . ., fb(x) to be respectively

+1
k

−1
2k

−1
2k

+1
3k

+1
3k

+1
3k

. . .
+1

(2m + 1)k
. . .

+1
(2m + 1)k︸ ︷︷ ︸

2m+1

0 0 . . . 0︸ ︷︷ ︸
<4m+5

+1
k

where the number of zeros is less than 4m + 5 and maybe there are no zeros
at all. This properly defines the value of m (m ∈ {0, 1, 2, . . .}). Note that∑b

n=a fn(x) = 2
k and if x = (εn) ∈ S0 then

∑b
n=a εnfn(x) = 0.

If the kth block is infinite and contains the ath, (a + 1)th, . . . digits of x
then define fa(x), fa+1(x), . . . to be respectively

+1
k

−1
2k

−1
2k

+1
3k

+1
3k

+1
3k

−1
4k

−1
4k

−1
4k

−1
4k

. . .

Note that
∑∞

n=a fn(x) diverges.
One can easily check that fn(x) depends only on the first 2n + 2 digits of

x, so these functions are continuous. It is clear that Claim 2 and Claim 3 also
hold for this sequence of functions fn, and − 1 ≤ fn ≤ +1 for every n ∈ N.
Define ϕ and gn the same way as in the proof of Theorem 1. We modify the
definition of function hn, put

hn(p) = (max(1− d(p, C), 0))n
gn(p) +

d(p, C)
n

.

If p /∈ C then hn(p) ∼ 1
n , hence

∑
hn(p) diverges and hn(p) → 0. For p ∈ C

we have hn(p) = fn ◦ ϕ(p). Hence by Claim 2 and Claim 3 we obtain that
(hn) satisfies all required properties.

Remark 1. Let P be an uncountable closed subset of R (hence P is a Polish
space). There exists a sequence of polynomials pn : P → R such that pn →
0 and

∑
pn diverges everywhere on P , but for any sign sequence (εn) ∈

{−1,+1}N containing infinitely many −1 and +1, the series
∑

εnpn converges
at at least one point of P .
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Proof. Consider the continuous functions hn given by Theorem 2 for P .
Let pn be a polynomial on R for which |pn(x) − hn(x)| ≤ 1

n2 for every
x ∈ P

⋂
[−n, n]. Clearly pn(x) → 0 for every x ∈ P . Since the series

∑
1

n2 con-
verges, for every (εn) ∈ S the series

∑
εnpn converges if and only if

∑
εnhn

converges. This completes the proof.
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[2] T. Keleti and T. Mátrai, A nowhere convergent series of functions which is
somewhere convergent after a typical change of signs, Real Anal. Exchange,
29(2) (2003/04), 891–894.

[3] A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New
York, 1995.



860


