András Máthé, Department of Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. email: amathe@cs.elte.hu

A NOWHERE CONVERGENT SERIES OF FUNCTIONS CONVERGING SOMEWHERE AFTER EVERY NON-TRIVIAL CHANGE OF SIGNS

Abstract

We construct a sequence of continuous functions (h_n) on any given uncountable Polish space, such that $\sum h_n$ is divergent everywhere, but for any sign sequence $(\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}}$ which contains infinitely many -1 and +1 the series $\sum \varepsilon_n h_n$ is convergent at at least one point. We can even have $h_n \to 0$, and if we take our given Polish space to be any uncountable closed subset of \mathbb{R} , we can require that every h_n be a polynomial. This strengthens a construction of Tamás Keleti and Tamás Mátrai.

1 Introduction.

Let X be a topological space, $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}$ be a sequence of continuous functions. One can ask about a condition on this sequence which guarantees that for a "typical" choice of signs $\varepsilon_n = \pm 1$ the series $\sum \varepsilon_n f_n$ diverges everywhere on X.

By "typical" choice of signs we mean that the set of the proper sign sequences is a residual (or dense G_{δ}) subset of $S = \{-1, +1\}^{\mathbb{N}}$. Here we consider S as a product of discrete topological spaces, which is clearly a Baire space. By \mathbb{N} we denote the set of the positive integers. By Polish space we mean complete separable metric space.

In [1, Theorem 4.1] for σ -compact X spaces a condition was given on the divergence of the partial sums of $\sum f_n$ implying that $\sum \varepsilon_n f_n$ diverges everywhere for a typical sign sequence $(\varepsilon_n) \in S$. Motivated by this result, S.

Key Words: everywhere divergent series of functions, change of signs, continuous function, Cantor set, Polish space.

Mathematical Reviews subject classification: 40A30.

Received by the editors August 25, 2004

Communicated by: Udayan B. Darji

⁸⁵⁵

Konyagin asked whether in case of compact metric spaces X, the pure fact that $\sum f_n$ diverges everywhere could imply that $\sum \varepsilon_n f_n$ diverges everywhere for a typical sign sequence. Tamás Keleti and Tamás Mátrai (see [2]) gave a negative answer to this question by showing an example of a sequence of continuous functions (f_n) on any uncountable Polish space, such that $\sum f_n$ is divergent everywhere, but for a typical sign sequence $(\varepsilon_n) \in S$, the series $\sum \varepsilon_n f_n$ is convergent at at least one point.

This paper strengthens this construction by showing a sequence of continuous functions f_n such that $\sum f_n$ is divergent everywhere but for every sign sequence $(\varepsilon_n) \in S_0 = \{(\varepsilon'_n) \in S \mid (\varepsilon'_n) \text{ contains infinitely many } -1 \text{ and } +1\}$, the series $\sum \varepsilon_n f_n$ is convergent at at least one point. Clearly S_0 is the largest subset of S for which this could be true.

We will also construct an other series of continuous functions with the same properties which satisfies even that $f_n \to 0$. Providing that the uncountable Polish space is \mathbb{R} (or a closed subset of \mathbb{R}) we can require every f_n to be a polynomial, see Remark 1.

2 The Example.

Theorem 1. ¹ Let P be an uncountable Polish space. There exists a sequence of continuous functions $h_n : P \to \mathbb{R}$ such that $\sum h_n$ diverges everywhere on P, but for any $(\varepsilon_n) \in \{-1, +1\}^{\mathbb{N}}$ sign sequence containing infinitely many -1and +1 digits $\sum \varepsilon_n h_n$ converges at at least one point of P.

PROOF. At first we define continuous functions $f_n : S = \{-1, +1\}^{\mathbb{N}} \rightarrow [-1, +1]$ such that $\sum f_n$ is divergent everywhere, but for any $(\varepsilon_n) \in S_0 = \{(\varepsilon'_n) \in S \mid (\varepsilon'_n) \text{ contains infinitely many } -1 \text{ and } +1\}$ the series $\sum \varepsilon_n f_n$ is convergent at at least one point, in fact, at (ε_n) .

Consider a fix $x \in S$ as the sequence of the -1 and +1 digits. Divide this sequence into blocks of type AAA...AB (where A and B stand for -1and +1 in some order), with the property of containing at least one A and containing exactly one B at the end. We start the division in the beginning of the sequence. Occasionally we make one infinite block of type AAA... Thus, the division is well defined.

For example,

[-1+1] $[-1]$	-1 - 1 + 1	+1 + 1 - 1	+1 - 1	-1+1	$+1+1+1\ldots$
---------------	------------	------------	--------	------	----------------

 $^{^1}$ Independently from the author, Gergely Zábrádi gave almost the same construction on $\mathbb R$ at the same time.

Let n be a positive integer. We are going to define the real number $f_n(x)$. Suppose that the n^{th} digit of x is in the k^{th} block of x and this digit is the i^{th} number in this block. Denote the size of the k^{th} block by l. (Thus $1 \le i \le l$ and $l \geq 2$.)

If l is even, then let $f_n(x) = \frac{(-1)^{i+1}}{k}$ if $1 \le i \le l-1$ and let $f_n(x) = \frac{+1}{k}$ if i = l.

If l is odd, then let $f_n(x) = \frac{(-1)^{i+1}}{k}$ if $1 \le i \le l-2$, let $f_n(x) = 0$ if i = l-1 and let $f_n(x) = \frac{\pm 1}{k}$ if i = l.

If $l = \infty$, then let $f_n(x) = \frac{(-1)^{i+1}}{k}$. For example (writing $f_n(x)$ below the n^{th} digit of x),

-1+1 $-1-1-1+1$	+1+1-1 $+1-1$ $-1+1$	$+1 + 1 + 1 \dots$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \pm 1 & 0 & \pm 1 \\ \hline 3 & 0 & 3 \end{array} \begin{array}{c} \pm 1 & \pm 1 \\ \hline 4 & 4 \end{array} \begin{array}{c} \pm 1 & \pm 1 \\ \hline 5 & 5 \end{array} $	$\frac{\pm 1}{6} \frac{-1}{6} \frac{\pm 1}{6} \cdots$

Claim 1. The function f_n is an $S \to [-1, +1]$ continuous function for every $n \in \mathbb{N}$.

PROOF. It is easy to see that $f_n(x)$ depends only on the first n+1 digits of x. This implies continuity. \square

Claim 2. The series $\sum f_n(x)$ is divergent for every $x \in S$.

PROOF. For a fixed x consider those positive integers n for which the n^{th} digits of x are in the fixed k^{th} block. For these n the sum of $f_n(x)$ equals to 2/k if this block is finite. Hence $\sum_{n \in \mathbb{N}} f_n(x) = \infty$ if x has infinitely many blocks. Otherwise x has an infinite block so the terms of the series $\sum_{n \in \mathbb{N}} f_n(x)$ are not converging to 0. \square

Claim 3. For every $(\varepsilon_n) \in S_0$ there exists $x \in S$ for which $\sum \varepsilon_n f_n(x)$ is convergent, namely $x = (\varepsilon_n)$.

PROOF. The sequence $x = (\varepsilon_n) \in S_0$ has only blocks of finite size. Consider those positive integers n for which the n^{th} digits of x are in the same fixed block. For these n the sum of $\varepsilon_n f_n(x)$ is exactly zero. The sequence of partial sums converges to 0, hence the series $\sum \varepsilon_n f_n(x)$ is convergent.

It is well known (see [3, Corollary 6.5]) that P contains a homeomorphic copy of the Cantor set, denote it by C. Clearly S is homeomorphic to the Cantor set, let φ be a $C \to S$ homeomorphism. Let $g_n : P \to [-1, +1]$ be a continuous extension of $f_n \circ \varphi : C \to [-1, +1]$ for every n. On P let $h_n(p) = g_n(p) + n \cdot d(p, C)$, where d(p, C) denotes the distance of p from the closed set C. Clearly for $p \notin C$ the series $\sum h_n(p)$ diverges. On C we have $h_n = f_n \circ \varphi$, hence by Claim 2 and Claim 3 we obtain that (h_n) satisfies all required properties.

Theorem 2. Requiring that $h_n \rightarrow 0$, Theorem 1 remains true.

PROOF. Just like in the proof of Theorem 1, at first we define functions f_n on S. Let $x \in S$ be fixed. Consider the same blocks. Suppose that the k^{th} block is finite and contains the a^{th} , $(a+1)^{th}$, ..., b^{th} digits of x $(a, b \in \mathbb{N}, b-a \ge 2)$. Define $f_a(x), f_{a+1}(x), \ldots, f_b(x)$ to be respectively

$$\frac{+1}{k} \frac{-1}{2k} \frac{-1}{2k} \frac{+1}{3k} \frac{+1}{3k} \frac{+1}{3k} \cdots \underbrace{\frac{+1}{(2m+1)k} \cdots \frac{+1}{(2m+1)k}}_{2m+1} \underbrace{\underbrace{0 \ 0 \ \cdots \ 0}_{<4m+5}}_{<4m+5} \frac{+1}{k}$$

where the number of zeros is less than 4m + 5 and maybe there are no zeros at all. This properly defines the value of $m \ (m \in \{0, 1, 2, ...\})$. Note that $\sum_{n=a}^{b} f_n(x) = \frac{2}{k} \text{ and if } x = (\varepsilon_n) \in S_0 \text{ then } \sum_{n=a}^{b} \varepsilon_n f_n(x) = 0.$ If the k^{th} block is infinite and contains the a^{th} , $(a+1)^{th}, \ldots$ digits of x

then define $f_a(x), f_{a+1}(x), \ldots$ to be respectively

$$\frac{+1}{k} \frac{-1}{2k} \frac{-1}{2k} \frac{+1}{3k} \frac{+1}{3k} \frac{+1}{3k} \frac{-1}{3k} \frac{-1}{4k} \frac{-1}{4k} \frac{-1}{4k} \frac{-1}{4k} \frac{-1}{4k} \dots$$

Note that $\sum_{n=a}^{\infty} f_n(x)$ diverges.

One can easily check that $f_n(x)$ depends only on the first 2n + 2 digits of x, so these functions are continuous. It is clear that Claim 2 and Claim 3 also hold for this sequence of functions f_n , and $-1 \leq f_n \leq +1$ for every $n \in \mathbb{N}$. Define φ and g_n the same way as in the proof of Theorem 1. We modify the definition of function h_n , put

$$h_n(p) = (\max(1 - d(p, C), 0))^n g_n(p) + \frac{d(p, C)}{n}.$$

If $p \notin C$ then $h_n(p) \sim \frac{1}{n}$, hence $\sum h_n(p)$ diverges and $h_n(p) \to 0$. For $p \in C$ we have $h_n(p) = f_n \circ \varphi(p)$. Hence by Claim 2 and Claim 3 we obtain that (h_n) satisfies all required properties.

Remark 1. Let P be an uncountable closed subset of \mathbb{R} (hence P is a Polish space). There exists a sequence of polynomials $p_n: P \to \mathbb{R}$ such that $p_n \to$ 0 and $\sum p_n$ diverges everywhere on P, but for any sign sequence $(\varepsilon_n) \in$ $\{-1,+1\}^{\mathbb{N}}$ containing infinitely many -1 and +1, the series $\sum \varepsilon_n p_n$ converges at at least one point of P.

PROOF. Consider the continuous functions h_n given by Theorem 2 for P. Let p_n be a polynomial on \mathbb{R} for which $|p_n(x) - h_n(x)| \leq \frac{1}{n^2}$ for every $x \in P \cap [-n, n]$. Clearly $p_n(x) \to 0$ for every $x \in P$. Since the series $\sum \frac{1}{n^2}$ converges, for every $(\varepsilon_n) \in S$ the series $\sum \varepsilon_n p_n$ converges if and only if $\sum \varepsilon_n h_n$ converges. This completes the proof.

References

- F. Bayart, S. V. Konyagin and H. Queffélec, Convergence almost everywhere and divergence everywhere of Taylor and Dirichlet series, Real Anal. Exchange, 29(2) (2003/04), 557–586.
- T. Keleti and T. Mátrai, A nowhere convergent series of functions which is somewhere convergent after a typical change of signs, Real Anal. Exchange, 29(2) (2003/04), 891–894.
- [3] A. S. Kechris, *Classical Descriptive Set Theory*, Springer-Verlag, New York, 1995.