MAXIMUMS OF ALMOST CONTINUOUS FUNCTIONS

Abstract

It is shown that each function which can be written as the maximum of two Darboux functions can be written as the maximum of two almost continuous functions as well.

The letter \mathbb{R} denotes the real line. If $P \subset \mathbb{R}^{2}$, then the symbol dom P denotes the x-projection of P. For each $A \subset \mathbb{R}$ the symbol card A stands for the cardinality of A. We write $\mathfrak{c}=\operatorname{card} \mathbb{R}$. We consider cardinals as ordinals not in one-to-one correspondence with the smaller ordinals.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$. For each nondegenerate interval $I \subset \mathbb{R}$ we define

$$
\mathfrak{c}-\sup (f, I)=\sup \{y \in \mathbb{R}: \operatorname{card}\{x \in I: f(x)>y\}=\mathfrak{c}\}
$$

For each $x \in \mathbb{R}$ we denote

$$
\mathfrak{c -} \varlimsup_{t \rightarrow x^{-}} f(t)=\lim _{\delta \rightarrow 0^{+}} \mathfrak{c -} \sup (f,(x-\delta, x))
$$

and similarly we define the symbol $\mathfrak{c}-\varlimsup_{t \rightarrow x^{+}} f(t)$. We say that f is Darboux if it maps intervals onto connected sets. We say that f is connected, if it is a connected subset of \mathbb{R}^{2}. (We make no distinction between a function and its graph.) We say that f is almost continuous in the sense of Stallings [10] if for every open set $U \subset \mathbb{R}^{2}$ containing f there is a continuous function $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h \subset U$. Recall that almost continuous functions are connected and connected functions possess the Darboux property, and that the converse is not true [10]. Moreover in Baire class one these three notions coincide [1].

[^0]In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson proved that a function f is the maximum of Darboux functions g_{0} and g_{1} if and only if

$$
\begin{equation*}
\min \left\{\mathfrak{c}-\overline{\lim }_{t \rightarrow x^{-}} f(t), \mathfrak{c}-\overline{\lim }_{t \rightarrow x^{+}} f(t)\right\} \geq f(x) \quad \text { for each } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

and we can make sure that g_{0} and g_{1} are Lebesgue measurable (belong to Baire class $\alpha, \alpha \geq 2$) provided that f is so [2, Theorem 3]. It is well-known that the algebraic properties of Darboux functions and almost continuous functions are very similar. (See, e.g., [8].) In 1992 T. Natkaniec proved that if $\mathfrak{c}-\sup (f,[a, b])=\infty$ for all $a<b$ (in particular, if f is a Darboux function whose graph is dense in \mathbb{R}^{2}), then f is the maximum of two almost continuous functions [8, Theorem 6.10 and Corollary 6.9]. Clearly this sufficient condition is much stronger than (1). So, it is natural to ask whether every function fulfilling condition (1) is the maximum of two almost continuous functions. (See [8, Problem 6.4] or [3, Question 9.33].) We will show that the answer to this question is affirmative.

Theorem 1. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfills condition (1). Then f is the maximum of two almost continuous functions g_{0} and g_{1}. If moreover f is Lebesgue measurable (has the Baire property), then we can make sure that both g_{0} and g_{1} are Lebesgue measurable (have the Baire property) as well.

Proof. Let \mathcal{P} be the family of all sets P of the form $P=\left(p_{0}, p_{1}\right) \times\left(p_{2}, \infty\right)$ for some rationals p_{0}, p_{1}, and p_{2}, such that $P \cap f \neq \emptyset$. For each $P \in \mathcal{P}$, notice that by (1), card $\operatorname{dom}(P \cap f)=\mathfrak{c}$, and choose a subset $A_{P} \subset \operatorname{dom}(P \cap f)$ with $\operatorname{card} A_{P}=\mathfrak{c}$. (We do this to prove the measurability of g_{0} and g_{1}. In the general case we can define $A_{P}=\operatorname{dom}(P \cap f)$.) Set

$$
A=\bigcup_{P \in \mathcal{P}} A_{P}, \quad Q=\bigcup_{x \in A}(\{x\} \times(-\infty, f(x)))
$$

Let \mathcal{K} be the family of all closed sets $K \subset \mathbb{R}^{2}$ such that $\operatorname{card} \operatorname{dom}(K \cap Q)=\mathbf{c}$. Arrange the elements of \mathcal{K} in a transfinite sequence, $\left\langle K_{\xi}: \xi<\mathfrak{c}\right\rangle$. Using transfinite induction pick for each $\xi<\mathfrak{c}$ points $\left\langle x_{\xi, 0}, y_{\xi, 0}\right\rangle,\left\langle x_{\xi, 1}, y_{\xi, 1}\right\rangle \in K_{\xi} \cap Q$ such that $x_{\xi, 0}, x_{\xi, 1} \notin\left\{x_{\zeta, i}: \zeta<\xi, i<2\right\}$ and $x_{\xi, 0} \neq x_{\xi, 1}$. For $i<2$ define

$$
g_{i}(x)= \begin{cases}y_{\xi, i} & \text { if } x=x_{\xi, i}, \xi<\mathfrak{c} \\ f(x) & \text { otherwise }\end{cases}
$$

One can easily verify that $f=\max \left\{g_{0}, g_{1}\right\}$ on \mathbb{R}. We will prove that g_{0} and g_{1} are almost continuous.

Let $i<2$. By [4] or [8, Corollary 2.2], it suffices to show that $g_{i} \upharpoonright[\alpha, \beta]$ is almost continuous whenever $\alpha<\beta$. Fix $\alpha<\beta$ and let $U \subset \mathbb{R}^{2}$ be an open
set such that $g_{i} \upharpoonright[\alpha, \beta] \subset U$. Denote by S the set of all $x \in[\alpha, \beta]$ for which there exists a continuous function $h:[x, \beta] \rightarrow \mathbb{R}$ with $h \subset U$ such that $h=g_{i}$ on $\{x, \beta\}$, and notice that $\beta \in S$. Define $\bar{\alpha}=\inf S$ and

$$
B=\{x \in A:\{x\} \times(-\infty, f(x)) \not \subset U\}=\operatorname{dom}(Q \backslash U)
$$

The rest of the proof of the theorem consists of three auxiliary claims. The end of the proof of each claim will be marked with \triangleleft.

Claim 1. card $B<\mathfrak{c}$.
Indeed, otherwise $\mathbb{R}^{2} \backslash U \in \mathcal{K}$. But $g_{i} \cap K \neq \emptyset$ for each $K \in \mathcal{K}$, whence $g_{i} \not \subset U$, an impossibility.

Claim 2. $\bar{\alpha} \in S$.
Suppose this is not the case. Then $\bar{\alpha}<\beta$. Let $\delta \in(0, \beta-\bar{\alpha})$ be such that

$$
\begin{equation*}
(\bar{\alpha}-\delta, \bar{\alpha}+\delta) \times\left(g_{i}(\bar{\alpha})-2 \delta, g_{i}(\bar{\alpha})+\delta\right) \subset U \tag{2}
\end{equation*}
$$

(Recall that U is open and $g_{i} \subset U$.) Put $R=(\bar{\alpha}, \bar{\alpha}+\delta) \times\left(g_{i}(\bar{\alpha})-\delta, \infty\right)$. Then by (1), $R \cap f \neq \emptyset$, and consequently, there is a $P \in \mathcal{P}$ with $P \subset R$. Pick an $x_{0} \in A_{P} \backslash B\left(\right.$ cf. Claim 1) and an $x_{1} \in S \cap\left(\bar{\alpha}, x_{0}\right)$. Then $\left\langle x_{0}, f\left(x_{0}\right)\right\rangle \in P \subset R$, whence $f\left(x_{0}\right)>g_{i}(\bar{\alpha})-\delta$. Let h_{0} correspond to $x_{1} \in S$. We consider three cases.

Case 1. If $h_{0}\left(x_{0}\right) \leq g_{i}(\bar{\alpha})-\delta$, then let $I=\left[h_{0}\left(x_{0}\right), g_{i}(\bar{\alpha})-\delta\right]$. Recall that $x_{0} \notin B$, and use the compactness of the set $\left\{x_{0}\right\} \times I \subset U$ to find an $\eta \in$ $\left(0, x_{0}-\bar{\alpha}\right)$ such that $\left(x_{0}-\eta, x_{0}+\eta\right) \times I \subset U$. Extend $h_{0} \upharpoonright\left[x_{0}, \beta\right]$ to $h:[\bar{\alpha}, \beta] \rightarrow \mathbb{R}$ by connecting the following pairs of points by straight line segments: $\left\langle\bar{\alpha}, g_{i}(\bar{\alpha})\right\rangle$ with $\left\langle x_{0}-\eta, g_{i}(\bar{\alpha})-\delta\right\rangle$ and $\left\langle x_{0}-\eta, g_{i}(\bar{\alpha})-\delta\right\rangle$ with $\left\langle x_{0}, h_{0}\left(x_{0}\right)\right\rangle$. Clearly this function proves $\bar{\alpha} \in S$. Case 2. If $g_{i}(\bar{\alpha})-\delta<g_{i}\left(x_{1}\right)$, then let $\tau \in\left(0, x_{1}-\bar{\alpha}\right)$ be such that $g_{i}\left(x_{1}\right)-\tau>g_{i}(\bar{\alpha})-\delta$ and $\left(x_{1}-\tau, x_{1}+\tau\right) \times\left(g_{i}\left(x_{1}\right)-2 \tau, g_{i}\left(x_{1}\right)+\tau\right) \subset U$. Put $R^{\prime}=\left(x_{1}-\tau, x_{1}\right) \times\left(g_{i}\left(x_{1}\right)-\tau, \infty\right)$. There is a $P^{\prime} \in \mathcal{P}$ with $P^{\prime} \subset R^{\prime}$. Pick an $x_{2} \in A_{P^{\prime}} \backslash B$. Let $I^{\prime}=\left[g_{i}(\bar{\alpha})-\delta, g_{i}\left(x_{1}\right)-\tau\right]$. Use the compactness of the set $\left\{x_{2}\right\} \times I^{\prime} \subset U$ to find an $\eta \in\left(0, x_{2}-\bar{\alpha}\right)$ such that $\left(x_{2}-\eta, x_{2}+\eta\right) \times I^{\prime} \subset U$. Extend h_{0} to $h:[\bar{\alpha}, \beta] \rightarrow \mathbb{R}$ by connecting the following pairs of points by straight line segments: $\left\langle\bar{\alpha}, g_{i}(\bar{\alpha})\right\rangle$ with $\left\langle x_{2}-\eta, g_{i}(\bar{\alpha})-\delta\right\rangle,\left\langle x_{2}-\eta, g_{i}(\bar{\alpha})-\delta\right\rangle$ with $\left\langle x_{2}, g_{i}\left(x_{1}\right)-\tau\right\rangle$, and $\left\langle x_{2}, g_{i}\left(x_{1}\right)-\tau\right\rangle$ with $\left\langle x_{1}, g_{i}\left(x_{1}\right)\right\rangle$. Clearly this function proves $\bar{\alpha} \in S$.

Case 3. Finally assume that $h_{0}\left(x_{0}\right)>g_{i}(\bar{\alpha})-\delta \geq g_{i}\left(x_{1}\right)=h_{0}\left(x_{1}\right)$. Then there is an $x_{2} \in\left[x_{1}, x_{0}\right)$ such that $h_{0}\left(x_{2}\right)=g_{i}(\bar{\alpha})-\delta$. Extend $h_{0} \upharpoonright\left[x_{2}, \beta\right]$ to $h:[\bar{\alpha}, \beta] \rightarrow \mathbb{R}$ by connecting the following pair of points by a straight line segment: $\left\langle\bar{\alpha}, g_{i}(\bar{\alpha})\right\rangle$ with $\left\langle x_{2}, h_{0}\left(x_{2}\right)\right\rangle$. Clearly this function proves $\bar{\alpha} \in S . \quad \triangleleft$

Claim 3. $\bar{\alpha}=\alpha$.
Indeed, suppose $\bar{\alpha}>\alpha$. Let $\delta \in(0, \bar{\alpha}-\alpha)$ be such that condition (2) holds. Put $R=(\bar{\alpha}-\delta, \bar{\alpha}) \times\left(g_{i}(\bar{\alpha})-\delta, \infty\right)$. There is a $P \in \mathcal{P}$ with $P \subset R$. Pick an $x_{0} \in A_{P} \backslash B$. Let I be the closed interval (maybe a singleton) with endpoints $g_{i}(\bar{\alpha})-\delta$ and $g_{i}\left(x_{0}\right)$. Use the compactness of the set $\left\{x_{0}\right\} \times I \subset U$ to find an $\eta \in\left(0, \bar{\alpha}-x_{0}\right)$ such that $\left(x_{0}-\eta, x_{0}+\eta\right) \times I \subset U$. Let h_{0} correspond to $\bar{\alpha} \in S$. (See Claim 2.) Extend h_{0} to $h:\left[x_{0}, \beta\right] \rightarrow \mathbb{R}$ by connecting the following pairs of points by straight line segments: $\left\langle x_{0}, g_{i}\left(x_{0}\right)\right\rangle$ with $\left\langle x_{0}+\eta, g_{i}(\bar{\alpha})-\delta\right\rangle$ and $\left\langle x_{0}+\eta, g_{i}(\bar{\alpha})-\delta\right\rangle$ with $\left\langle\bar{\alpha}, g_{i}(\bar{\alpha})\right\rangle$. Clearly this function proves $x_{0} \in S$. But $x_{0}<\bar{\alpha}=\inf S$, an impossibility.

By Claim 3, there is a continuous function $h:[\alpha, \beta] \rightarrow \mathbb{R}$ with $h \subset U$. Since U was an arbitrary open neighborhood of $g_{i} \upharpoonright[\alpha, \beta]$, we conclude that $g_{i} \upharpoonright[\alpha, \beta]$ is almost continuous. Since $\alpha<\beta$ were arbitrary, g_{i} is almost continuous as well.

Finally observe that $f=g_{0}=g_{1}$ outside of A. So, if f is Lebesgue measurable (has the Baire property) and we require that each A_{P} be a nullset (a meager set), then both g_{0} and g_{1} are Lebesgue measurable (have the Baire property) as well. The proof is complete.

Corollary 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. The following are equivalent:
(i) the function f is the maximum of two almost continuous functions,
(ii) the function f is the maximum of two connected functions,
(iii) the function f is the maximum of two Darboux functions,
(iv) the function f fulfills condition (1).

Proof. The implications '(i) \Rightarrow (ii)' and '(ii) \Rightarrow (iii)' follow by [10], the implication '(iii) \Rightarrow (iv)' follows by [2, Theorem 3], and the implication '(iv) \Rightarrow (i)' follows by Theorem 1.

In connection with [2, Theorem 3], we can ask the following question (see also [6, p. 552] or [7]):

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ belongs to Baire class $\alpha, \alpha \geq 2$, and condition (1) holds. Can we find almost continuous functions g_{0}, g_{1} in Baire class α such that $f=\max \left\{g_{0}, g_{1}\right\}$ on \mathbb{R} ?

The affirmative answer to this question was given by D. Preiss [9]. Recall also that in Baire class one almost continuity and Darboux property coincide, and that each Baire one function $f: \mathbb{R} \rightarrow \mathbb{R}$ which fulfills condition (1) is the maximum of two Darboux Baire one functions [5].

References

[1] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86 (1974), 1-7.
[2] A. M. Bruckner, J. G. Ceder, and T. L. Pearson, On Darboux functions, Rev. Roumaine Math. Pures Appl. 19(3) (1974), 977-988.
[3] R. G. Gibson and T. Natkaniec, Darboux-like functions, Real Anal. Exchange, 22(2) (1996-97), 492-533.
[4] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125-128.
[5] A. Maliszewski, Maximums of Darboux Baire one functions, Math. Slovaca. 56 (2006).
[6] T. Natkaniec, On lattices generated by Darboux functions, Bull. Polish Acad. Sci. Math. 35(9-10) (1987), 549-552.
[7] T. Natkaniec, Two remarks on almost continuous functions, Problemy Mat. 10 (1988), 71-78.
[8] T. Natkaniec, Almost continuity, Real Anal. Exchange 17(2) (1991-92), 462-520.
[9] D. Preiss, private communication.
[10] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263.

[^0]: Key Words: almost continuity, Darboux property, maximum of functions
 Mathematical Reviews subject classification: Primary 26A21, 54C30; Secondary 26A15, 54 C 08

 Received by the editors June 24, 2004
 Communicated by: Udayan B. Darj

