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Abstract

We define two interval functions Uδ and Vδ using Riemann sums
of Henstock integrable functions, as major and minor functions. Then
we formulate two dominated convergence theorems for the Henstock
integral in the n-dimensional space.

1 Introduction.

The Henstock integral is well-known. Convergence theorems for the integral
have been proved using conditions involving small Riemann sums. See, for
example, [1, 2, 4, 6]. In this paper, we define two interval functions Uδ and
Vδ using Riemann sums of Henstock integrable functions as major and minor
functions. Then we formulate two dominated convergence theorems for the
Henstock integral in the n-dimensional space.

In this paper, we consider real-valued functions defined on a cell of Rn. In
what follows, E stands for a cell (a non-degenerate closed interval) in Rn, and is
fixed. The volume of a cell E will be represented by |E|. Here, Rn is a normed
space with respect to the norm ‖ ‖∞; i.e., for x = (x1, x2, . . . , xn) ∈ Rn,

‖x‖∞ = max{|xk| : 1 ≤ k ≤ n}.
If E is a cell and δ is a positive function on E, for x ∈ E, then

B(x, δ(x)) = {y : ‖x− y‖∞ < δ(x)}
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is called an open ball with center at x and radius δ(x).
A collection of cells, {Ii : i = 1, 2, . . .}, is called non-overlapping if Io

i ∩ Io
j

= ∅ for i 6= j, where Io
i and Io

j denote the interiors of Ii and Ij , respectively.
Further, a collection of finite non-overlapping cells D = {I}, with ∪I∈D I =
E, is called a partition of E. A collection

D = {(I,x)} = {(I1,x1), (I2,x2), ..., (Ip,xp)}

is called δ-fine partition of a cell E if E = ∪p
i=1 Ii, xi ∈ Ii ⊆ B(xi, δ(xi)),

and Io
i ∩ Io

j = ∅, i 6= j, i = 1, 2, . . . , p. Furthermore, (I,x) ∈ D is called δ-fine
interval with associated point x. If ∪p

i=1 Ii ⊆ E, then the partition is called
δ-fine partial partition of E.

A function f defined on a cell E is said to be Henstock integrable on a cell
E, written f ∈ H(E), if there is a number A such that for any ε > 0 there is
a positive function δ on E such that for any δ-fine partition D = {(I, x)} =
{(I1,x1), (I2,x2), ..., (Ip,xp)} of E, we have

|(D)
∑

f(x)|I| −A| < ε.

Here (D)
∑

f(x)|I| =
∑p

i=1 f(xi)|Ii|. If a function f is Henstock integrable
on a cell E, then the integral value of f on E is unique. Furthermore, the
number A is called the integral value of f on E and will be written by

A = (H)
∫

E

f.

If we only want to know whether a function f is Henstock integrable on a
cell E without using its integral value, we may use Cauchy’s Criterion. More
precisely, a function f is Henstock integrable on a cell E if and only if for any
ε > 0 there is a positive function δ on E such that for any two δ-fine partitions
D1 and D2 of E, we have∣∣(D1)

∑
f(x)|I| − (D2)

∑
f(x)|I|

∣∣ < ε.

Standard properties of the Henstock integral in the n-dimensional space
can be found in [2, 3].

If f is Henstock integrable on E and I is a subcell of E, then f is Henstock
integrable on I. Let F (I) denote the integral of f on I ⊆ E. Then F is
called the primitive of f on E and Henstock’s Lemma holds. More precisely,
a function f defined on E is Henstock integrable with primitive F if and only
if for every ε > 0 there is a positive function δ on E such that for any δ-fine
partial partition D of E, we have

|(D)
∑

(f(x)|I| − F (I))| < ε.
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2 A Dominated Convergence Theorem.

A measurable function f defined on E has Locally Small Riemann Sums, or
the LSRS property, if for every ε > 0 there is a positive function δ such that
for any t ∈ E we have ∣∣(D)

∑
f(x)|I|

∣∣ < ε

for every δ-fine partition D = {(I,x)} of a cell C ⊆ B(t, δ(t)) and t ∈ C.
The following two theorems are known [2].

Theorem 2.1. If f has the LSRS property on E, then there is a positive
function δ on E such that {(D)

∑
f(x)|I| : D is a δ-fine partition of E} is

bounded.

We define the following interval functions, if they exist,

Uδ(I) = sup{fk(x)|I| : k = 1, 2, . . . , (I,x) is δ − fine} (1)

and

Vδ(I) = inf{fk(x)|I| : k = 1, 2, . . . , (I,x) is δ − fine}. (2)

Given a sequence {fk}, we define the sequence of measurable functions on
a cell E has uniformly locally small Riemann sums, or the ULSRS property,
if the conditions for LSRS hold with f replaced by fk and δ independent of k.
We remark that if {fk} has the ULSRS property, then in views of Theorem
2.1, there exists a positive function δ such that both Uδ and Vδ exist for I ⊆ E.

The functions Uδ and Vδ serve as major and minor functions for fk, k =
1, 2, 3, . . .. Note that here fk, k = 1, 2, . . ., are point functions, whereas Uδ

and Vδ are interval functions depending on fk. We use them to formulate a
convergence theorem below.

Theorem 2.2. If the following conditions are satisfied:

(i) {fk} is a sequence of Henstock integrable functions on E with fk(x) →
f(x) almost everywhere in E,

(ii) for any ε > 0 there is an η > 0 such that for every open set G with |G| <
η there is a positive function δ such that for every partition D = {I}
with I ⊆ G, Uδ(I) and Vδ(I) exist and we have

(D)
∑

{Uδ(I)− Vδ(I)} < ε,
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then f is Henstock integrable on E and

lim
k→∞

(H)
∫

E

fk = (H)
∫

E

f.

Proof. We may assume that fk(x) converges to f(x) everywhere in E. Let
ε > 0 be given, and Ak =

∫
E

fk for every k. For every k, since fk is Henstock
integrable on E, there exists a positive function δk on E such that for any
δk-fine partition D of E

|(D)
∑

fk(x)|I| −Ak| < ε. (3)

For every δ-fine interval (I,x), we have

Vδ(I) ≤ fk(x)|I| ≤ Uδ(I) (4)

for every k. Further, (4) implies that for every δ-fine interval (I,x),

Vδ(I) ≤ f(x)|I| ≤ Uδ(I). (5)

For every η∗ > 0, there is an open set G∗ ⊂ E with |G∗| < η∗ such that
there exists a positive integer ko such that for every k, m ≥ ko and for every
x ∈ E \G∗, we have

|fk(x)− fm(x)| ≤ ε

|E|
. (6)

By condition (ii) in Theorem 2.2, there is an η > 0 such that for every G with
|G| < η there is a positive function δ such that for every partition D = {I}
with I ⊆ G and for all k and m, we have

∣∣(D)
∑
x∈G

fk(x)|I| − (D)
∑
x∈G

fm(x)|I|
∣∣ ≤ (D)

∑
{Uδ(I)− Vδ(I)} < ε. (7)

Take η∗ = η, then there is a set G∗ ⊂ E with |G∗| < η∗ such that (6) and (7)
are satisfied. For m, k ≥ ko, take δ∗(x) = min{δ(x), δk(x), δm(x)}. Modify
the positive function δ∗ such that for every x ∈ G, we have B(x, δ∗(x)) ⊆ G.
Therefore, for every k,m ≥ ko and for every δ∗-fine partition D of E, it follows
from (3), (4), (6), and (7), we get



Dominated Convergence and Small Riemann Sums 787

|Ak −Am| ≤|Ak − (D)
∑

fk(x)|I|

+ |(D)
∑

x/∈G∗

fk(x)|I| − (D)
∑

x/∈G∗

fm(x)|I|

+ |(D)
∑

x∈G∗

fk(x)|I| − (D)
∑

x∈G∗

fm(x)|I|

+ |(D)
∑

fm(x)|I| −Am| < 4ε.

So, the sequence {Ak} is a Cauchy sequence. A = limk→∞Ak exists. It
remains to prove that f is Henstock integrable on E and A = (H)

∫
E

f . Since
A = limk→∞Ak, there exists a positive number k∗ such that for k ≥ k∗,

|Ak −A| < ε. (8)

Put K = max{ko, k∗}. Then for k ≥ K and following the same argument
above with m →∞, we obtain∣∣A− (D)

∑
f(x)|I|

∣∣ < 4ε.

Example. Let h, g, fk, k = 1, 2, 3, . . ., be Henstock integrable functions on
[a, b] with fk(x) → f(x) almost everywhere in [a, b]. If for every k, h(x) ≤
fk(x) ≤ g(x) almost everywhere in [a, b], then condition (ii) in Theorem 2.2 is
satisfied.

Next, we shall prove a connection of Theorem 2.2 with FSRS in Theorem
2.6 and Theorem 3.4. The proof of Theorem 2.6 needs some concepts below.
A sequence of functions {Fk} is said to satisfy Uniformly Strong Lusin, or the
USL condition, if for every ε > 0 and every set S of measure zero there exists
a positive function δ on E, independent of k, such that for any δ-fine partial
partition D = {(I,x)}, with x ∈ S, and for all k

(D)
∑

|Fk(I)| < ε.

If Fk = F for all k, then F is said to satisfy the strong Lusin condition. A
sequence {fk} is said to be equi-Henstock integrable on a cell E if for every
ε > 0 there is a positive function δ on E, independent of k, such that for any
δ-fine partition D = {(I,x)} of E and for every k,

|(D)
∑

fk(x)|I| −Ak| < ε.

The proof of Lemma 2.4 needs Lemma 2.3.
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Lemma 2.3. [6] Let fk, k = 1, 2, 3, . . ., be Henstock integrable on a cell E
with the primitives Fk, k = 1, 2, 3, . . . , respectively. If there is a non-negative
Lebesgue integrable function g on E such that |fk(x)| ≤ g(x) almost everywhere
for every k, and fk(x) → f(x) almost everywhere in E, then {Fk} satisfies
the USL condition on E and {fk} is equi-Henstock integrable on E.

Lemma 2.4. Let fk, k = 1, 2, 3, . . ., be Henstock integrable on a cell E and let
g be a non-negative Lebesgue integrable function on a cell E such that |fk(x)| ≤
g(x) almost everywhere for every k, and fk(x) → f(x) almost everywhere in
E, then for every ε > 0 there exist a positive function δ on E and a positive
integer k1 such that for every δ-fine partition D of E and for every k ≥ k1∣∣(D)

∑
|fk(x)|≤g(x)

fk(x)|I| − (D)
∑

|f(x)|≤g(x)

f(x)|I|
∣∣ < ε.

Proof. The proof is known. We sketch the proof as follows. Put

f∗kx) =

{
fk(x) |fk(x)| ≤ g(x)
0 otherwise

for k = 1, 2, 3, . . ..

f∗(x) =

{
f(x) |f(x)| ≤ g(x)
0 otherwise,

then using the Dominated Convergence Theorem we obtain that

f∗ is Henstock integrable and (H)
∫

E

f∗ = lim
k→∞

(H)
∫

E

f∗k .

The rest of proof can be done by Lemma 2.3.

A measurable function f defined on E has Functionally Small Riemann
Sums, or the FSRS property, if for every ε > 0 there exist a positive function
δ and a non-negative Lebesgue integrable g on E such that for any δ-fine D
of E, we have ∣∣(D)

∑
|f(x)|>g(x)

f(x)|I|
∣∣ < ε.

Theorem 2.5. [5] If f is Henstock integrable on E, then f has the FSRS
property on E.

A sequence {fk} of measurable functions has uniformly functionally small
Riemann sums, or the UFSRS property, if the conditions for FSRS hold with
f replaced by fk and both g and δ independent of k.
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Theorem 2.6. If the conditions in Theorem 2.2 hold, then {fk} has the UF-
SRS property.

Proof. Let ε > 0 be given. Since f is Henstock integrable on E, then f has
the FSRS property. So, there exists a positive function δ∗ on E and a non-
negative Lebesgue integrable function g such that for every δ∗-fine partition
D of E, ∣∣(D)

∑
|f(x)|>g(x)

f(x)|I|
∣∣ < ε. (9)

By condition (ii) in Theorem 2.2, there is an η > 0 such that for every G with
|G| < η there is a positive function δ such that for every partition D = {I}
with I ⊆ G, we have∣∣(D)

∑
x∈G

fk(x)|I| − (D)
∑
x∈G

f(x)|I|
∣∣ ≤ (D)

∑
{Uδ(I)− Vδ(I)} < ε. (10)

For every η∗ > 0, there is an open set G∗ ⊂ E with |G∗| < η∗ such that there
exists a positive integer ko such that for every k ≥ ko and for every x ∈ E \G∗,
we have

|fk(x)− f(x)| ≤ ε

|E|
. (11)

From Lemma 2.4, there exists a positive function δ∗ and a positive integer k1

such that for every δ∗-fine partition D of E and for every k ≥ k1,∣∣(D)
∑

|fk(x)|≤g(x)

fk(x)|I| − (D)
∑

|f(x)|≤g(x)

f(x)|I|
∣∣ < ε. (12)

Take K = max{ko, k1}, δ∗∗(x) = min{δ∗(x), δ∗(x), δ(x)}, and η∗ = η. Then
there exists G∗ with |G∗| < η∗ and (10) and (11) are satisfied. Then modify
δ∗∗ such that for every x ∈ G∗, B(x, δ∗∗(x)) ⊆ G∗. Then, for any δ∗∗-fine
partition D of E and k ≥ K, it follows from (10), (11), (12), and (9), we have∣∣(D)

∑
|fk(x)|>g(x)

fk(x)|I|
∣∣ ≤∣∣(D)

∑
x∈G∗

fk(x)|I| − (D)
∑

x∈G∗

f(x)|I|
∣∣

+
∣∣(D)

∑
x/∈G∗

fk(x)|I| − (D)
∑

x/∈G∗

f(x)|I|
∣∣

+
∣∣(D)

∑
|fk(x)|≤g(x)

fk(x)|I| − (D)
∑

|f(x)|≤g(x)

f(x)|I|
∣∣

+
∣∣(D)

∑
|f(x)|>g(x)

f(x)|I|
∣∣ < 4ε.
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Modify δ∗∗ and g, if necessary, so that the above inequality holds for every k.
Hence, {fk} has the UFSRS property.

We fail to prove the converse of Theorem 2.6. In order to establish the
converse relation with UFSRS, we extend Theorem 2.2 further in the next
section.

3 Another Dominated Convergence Theorem.

Let E be a cell in an n-dimensional space. A partial partition D = {(I,x)}
of E is said to be non-absolute in an open set G if there exists δ(x) > 0 for
x ∈ E such that

⋃
(I,x)∈D I is the complement of a δ-fine cover of E \ G. A

δ-fine cover of E \G is the union of the intervals

I1, I2, I3, . . . , Ip

such that (Ii,xi) is δ-fine with xi ∈ E \G for i = 1, 2, 3, . . . , p, and the union
contains E \G.

When E = [a, b] ⊂ R, that a partial partition D is non-absolute in G
means: the union of the intervals from D in each component interval of G is
again an interval and not the union of disjoint components.

Theorem 3.1. If the following conditions are satisfied:

(i) {fk} is a sequence of Henstock integrable functions on E,

(ii) there exists an open set G such that fk(x) → f(x) uniformly on E \ G
and for every ε > 0 there is a positive function δ such that for every
non-absolute partition D = {(I,x)} in G using δ, we have

(D)
∑

{Uδ(I)− Vδ(I)} < ε,

then f is Henstock integrable on E and

lim
k→∞

(H)
∫

E

fk = (H)
∫

E

f.

Proof. We may assume that fk(x) converges to f(x) everywhere in E. Let
ε > 0 be given, and Ak =

∫
E

fk for every k. For every k, since fk is Henstock
integrable on E, there exists a function δk on E such that for any δk-fine
partition D of E,

|(D)
∑

fk(x)|I| −Ak| < ε. (13)
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For every δ-fine interval (I,x), we have

Vδ(I) ≤ fk(x)|I| ≤ Uδ(I) (14)

for every k. Further, (4) implies that for every δ-fine interval (I,x),

Vδ(I) ≤ f(x)|I| ≤ Uδ(I). (15)

By condition (ii) in Theorem 3.1, there is a positive integer ko such that for
every x ∈ E \G and for every k, m ≥ ko,

|fk(x)− fm(x)| < ε

|E|
. (16)

Again from (ii) in Theorem 3.1, for every non-absolute partition D = {(I,x)}
in G using δ, we have∣∣(D)

∑
x∈G

fk(x)|I| − (D)
∑
x∈G

f(x)|I|
∣∣ ≤ (D)

∑
{Uδ(I)− Vδ(I)} < ε. (17)

For m, k ≥ ko, take δ∗(x) = min{δ(x), δk(x), δm(x)}. Modify the positive
function δ∗ such that for every x ∈ G, we have B(x, δ∗(x)) ⊆ G. Therefore,
for every k,m ≥ ko and for every δ∗-fine partition D of E, by (13), (16), and
(17), we obtain

|Ak −Am| ≤ |Ak − (D)
∑

fk(x)|I|
∣∣

+
∣∣(D)

∑
x/∈G

fk(x)|I| − (D)
∑
x/∈G

fm(x)|I|
∣∣

+
∣∣(D)

∑
x∈G

fk(x)|I| − (D)
∑
x∈G

fm(x)|I|
∣∣

+
∣∣(D)

∑
fm(x)|I| −Am| < 4ε.

So, the sequence {Ak} is a Cauchy sequence. The rest of the proof follows in
similar way as the proof of Theorem 2.2.

It is easy to see that the conditions in Theorem 2.2 imply those in Theorem
3.1, but not conversely as shown in the example below.

Example. Let

f(x) =

{
(−1)k+1k x ∈ ( 1

k+1 , 1
k ], k = 1, 2, 3, . . .

0 x = 0;
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fk(x) =

{
f(x) x ∈ ( 1

2k+1 , 1]
0 otherwise

for k = 1, 2, 3, . . ..
Take G = [0, η) such that |F (x)| < ε for 0 < x < η. Then condition (ii) in
Theorem 3.1 is satisfied using the above G. Note that condition (ii) in Theo-
rem 2.2 is not satisfied.

The proof of Theorem 3.4 needs the definition and a property of uniformly
absolutely continuous.

A family of functions {Fk}, k = 1, 2, . . . , is said to be uniformly absolutely
continuous on a cell E ⊂ Rn if for every positive ε there is a positive η such
that if D is partial partition of E with (D)

∑
|I| < η, then

(D)
∑

|F (I)| < ε.

Lemma 3.2. [3] Let fk, k = 1, 2, 3, . . ., be Henstock integrable on a cell E
with the primitives Fk, k = 1, 2, 3, . . . , respectively. If there is a non-negative
Lebesgue integrable function g on E such that |fk(x)| ≤ g(x) almost everywhere
for every k, then {Fk} is uniformly absolutely continuous on E.

Lemma 3.3. If {fk} has the UFSRS property on E, then {fk} is equi-
Henstock integrable on E.

Proof. The proof is standard and therefore omitted. See [6].

Theorem 3.4. If {fk} has the UFSRS property on E and fk(x) → f(x)
almost everywhere in E, then the condition (ii) in Theorem 3.1 holds.

Proof. Let ε > 0 be given. There exist a nonnegative Lebesgue integrable
function g and a positive function δ∗ on E such that for every δ∗-fine partition
D of E and for every k, ∣∣(D)

∑
|fk(x)|>g(x)

fk(x)|I|
∣∣ < ε. (18)

For every k, we define

hk(x) =

{
fk(x) |fk(x)| ≤ g(x)
0 otherwise,

and then {hk} is a sequence of equi-Henstock integrable functions. Let Hk be
the primitive of hk, for every k. So, there is a positive function δ∗ on E such
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that for every δ∗-fine partial partition D of E and for every k, by Henstock’s
Lemma,

|(D)
∑

hk(x)|I| −Hk(I)| < ε. (19)

Since {hk} is dominated by g, by Lemma 3.2, {Hk} is uniformly absolutely
continuous on E. There is an η > 0 such that for every partial partition
D = {I} with (D)

∑
|I| < η, we have

(D)
∑

|Hk(I)| < ε (20)

for every k. Since fk(x) → f(x) almost everywhere in E, then for η > 0 above
there is an open set G, with |G| < η, such that fk(x) → f(x) uniformly on
E \G. Put δ(x) = min{δ∗(x), δ∗(x)}. Modify δ such that for every x ∈ G, we
have B(x, δ(x)) ⊆ G. Therefore, for every non-absolute partition D = {(I,x)}
of G using δ, it follows from (19), (18), and (20), we have

(D)(fj(x)|I| − fk(x)|I|)

≤
∣∣(D)

∑
|fj(x)|≤g(x)

fj(x)|I| − (D)
∑

|fk(x)|≤g(x)

fk(x)|I|
∣∣

+
∣∣(D)

∑
|fj(x)|>g(x)

fj(x)|I|
∣∣ + |(D)

∑
|fk(x)|>g(x)

fk(x)|I|
∣∣

≤|(D)
∑

hj(x)|I|)−Hj(I))|+ |(D)
∑

Hj(I)|+ |(D)
∑

Hk(I)|

+ |(D)
∑

(Hk(I)− hk(x)|I|))|+ 2ε < 6ε.

Since the above inequality holds for all j, k, hence for any non-absolute
partition D = {(I,x)} of G using δ, (D)

∑
{Uδ(I)−Vδ(I)} is small. Therefore,

condition (ii) in Theorem 3.1 holds.

In conclusion, if the conditions in Theorem 2.2 hold, then the sequence
{fk} has the UFSRS property. Conversely, if {fk} has the UFSRS property,
then a weaker condition follows, namely condition (ii) of Theorem 3.1.
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