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ON MODULI OF SMOOTHNESS OF
FRACTIONAL ORDER

Abstract

In this paper we consider the properties of moduli of smoothness of
fractional order. The main result of the paper describes the equivalence
of the modulus of smoothness and a function from some class.

1 Introduction.

In 1977 P. L. Butzer, H. Dyckhoff, E. Goerlich, R. L. Stens (see [2]) and
R. Tabersky (see [14]) introduced the modulus of smoothness of fractional
order. This notion can be considered as a direct generalization of the classical
modulus of smoothness and is more natural to use for a number of problems
in harmonic analysis (see, for example, [2], [5], [7], [10]).

An important problem in approximation theory and theory of Fourier se-
ries is the description of the moduli of smoothness (see [1], [4], [8], [11]). One
can consider this problem from the viewpoint of description of majorant of
smoothness moduli. Recently, A. Medvedev (see [6]) has proved that for any
modulus of continuity on [0,∞) there exists a concave majorant that is in-
finitely differentiable. In this paper, we obtain the description of the modulus
of smoothness of fractional order from the viewpoint of the order of decreasing
to zero of the modulus of smoothness.

Let us introduce some definitions. If p ∈ [1,∞), let Lp be the space of mea-

surable, 2π-periodic functions f(x) such that ‖f‖p =
( 2π∫

0

|f(x)|p dx
) 1

p

< ∞.
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Similarly, let L∞ be the space of 2π-periodic, continuous functions f(x) with
‖f‖∞ = max

x∈[0,2π]
|f(x)|. We define the difference of fractional order β (β > 0)

of the function f(x) at the point x (x ∈ R) with increment h (h ∈ R) by

4β
hf(x) =

∞∑
ν=0

(−1)ν

(
β

ν

)
f(x + (β − ν)h),

where
(
β
ν

)
= β(β−1)···(β−ν+1)

ν! for ν > 1,
(
β
ν

)
= β for ν = 1,

(
β
ν

)
= 1 for ν = 0.

The modulus of smoothness of order β (β > 0) of the function f ∈ Lp,

1 ≤ p ≤ ∞, is given by ωβ(f, t)p = sup
|h|≤t

∥∥∥4β
hf(·)

∥∥∥
p

(see [2],[14]).

Let Φγ (γ ∈ R) be the set of nonnegative, bounded functions ϕ(δ) on
(0,∞) such that:

a) ϕ(δ) → 0 as δ → 0,

b) ϕ(δ) is nondecreasing,

c) ϕ(δ)δ−γ is nonincreasing.

If for f ∈ Lp there exists g ∈ Lp such that lim
h→0+

∥∥∥h−β4β
hf(·)− g(·)

∥∥∥
p

= 0,

then g is called the Liouville-Grunwald-Letnikov derivative of order β > 0
of the function f in the Lp-norm, denoted by g = Dβf (see [2], [12]). Set
W β

p :=
{
f ∈ Lp : Dβf exists as element in Lp

}
. The K-functional is given by

K(f, t, Lp,W
β
p ) := inf

g∈W β
p

(
‖f − g‖p + t

∥∥Dβg
∥∥

p

)
.

2 Results.

Let f(x) ∈ Lp, p ∈ [1,∞] and β > 0. It is clear that (see [12])∣∣∣∣(β

ν

)∣∣∣∣ =
∣∣∣∣β(β − 1) · · · (β − ν + 1)

ν!

∣∣∣∣ ≤ C(β)
νβ+1

, ν ∈ N

implies C∗(β) :=
∞∑

ν=0

∣∣∣(β
ν

)∣∣∣ < ∞ and the fractional difference 4β
hf(x) is defined

almost everywhere, belongs to Lp and

‖4β
hf(·)‖p ≤ C∗(β) ‖f(·)‖p. (1)
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It is easy to write the following representation for C∗(β) (see [14]).

C∗(β) =


2

k∑
ν=0

(
β
2ν

)
, if 2k < β ≤ 2k + 1 (k = 0, 1, 2, . . . ),

2
k∑

ν=0

(
β

2ν+1

)
, if 2k + 1 < β ≤ 2k + 2 (k = 0, 1, 2, . . . ).

(2)

The fractional differences and moduli of smoothness have some useful prop-
erties and we shall establish some of them in the following lemmas.

Lemma 2.1. ([2], [14]) Let f ∈ Lp, p ∈ [1,∞], α, β > 0; h ∈ R. Then

(a) 4α
h(4β

hf(x)) = 4α+β
h f(x) for almost every x;

(b) ‖4α+β
h f(·)‖p ≤ C∗(α)‖4β

hf(·)‖p;

(c) lim
h→0+

‖4α
hf(·)‖p = 0.

Lemma 2.2. Let f, f1, f2 ∈ Lp, p ∈ [1,∞], α, β > 0; x, h ∈ R. Then

(a) ωβ(f, δ)p is nondecreasing nonnegative function of δ on (0,∞) with
lim

δ→0+
ωβ(f, δ)p = 0;

(b) ωβ(f1 + f2, δ)p ≤ ωβ(f1, δ)p + ωβ(f2, δ)p;

(c) ωα+β(f, δ)p ≤ C∗(α)ωβ(f, δ)p;

(d) if λ ≥ 1, then ωβ(f, λδ)p ≤ C(β)λβωβ(f, δ)p;

(e) if 0 < t ≤ δ, then ωβ(f, δ)p δ−β ≤ C(β)ωβ(f, t)p t−β .

Indeed, we immediately have (a)− (c) from Lemma 2.1, (d) was proved in
[2], and (d) implies (e).

ωβ(f, δ)p = ωβ

(
f,

δ

t
t

)
p

≤ C(β)
(

δ

t

)β

ωβ(f, t)p.

Lemma 2.3. Let f ∈ Lp, p ∈ [1,∞], β > 0.

(a) If β ∈ N, then
∥∥4β

πf(·)
∥∥

p
≤ 2[ β+1

2 ]
∥∥∥4β

π
2
f(·)

∥∥∥
p
.

(b) If β /∈ N, then
∥∥4β

πf(·)
∥∥

p
≤ 2[ β+1

2 ]+1
∥∥∥4β

π
2
f(·)

∥∥∥
p
.
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Corollary 2.4. For a function ϕ(t) = tα (0 ≤ t ≤ π) to be a modulus of
smoothness of order β (β > 0) of a function f(·) ∈ Lp, 1 ≤ p ≤ ∞ it is

necessary to have α ≤
[

β+1
2

]
+ 1.

Theorem 2.5. Let p ∈ [1,∞], β > 0.

(A) If f(·) ∈ Lp, then there exists a function ϕ(·) ∈ Φβ such that

ϕ(t) ≤ ωβ(f, t)p ≤ C(β)ϕ(t) (0 < t < ∞),

where C(β) is a positive constant depending only on β.

(B) If ϕ(·) ∈ Φβ, then there exist a function f(·) ∈ Lp and a constant t1 > 0
such that

C1(β)ωβ(f, t)p ≤ ϕ(t) ≤ C2(β)ωβ(f, t)p (0 < t < t1),

where C1(β), C2(β) are positive constants depending only on β.

Corollary 2.6. Let p ∈ [1,∞], β > 0.

(A) If f(·) ∈ Lp, then there exists a function ϕ(·) ∈ Φβ such that

C1(β)ϕ(t) ≤ K(f, tβ , Lp,W
β
p ) ≤ C2(β)ϕ(t). (3)

(B) If ϕ(·) ∈ Φβ, then there exists a function f(·) ∈ Lp such that (3) is true.

Remark 2.7. 1). We can replace condition f ∈ Lp by condition f ∈ L∞ in
the part (B) of Theorem 2.5.
2). Note that theorem 2.5 for β ∈ N was proved in [11]. Also, for Hp-spaces
the analogue of Corollary 2.6 for β ∈ R+ and the analogue of theorem 2.5 for
β ∈ N were proved in [5].

3 Proofs.

Proof of Lemma 2.3. The first inequality was proved in [3]. Let β > 1, /∈ N.
We shall use the following representation (see [14]).

4β
2hf(x− 2βh) =

∞∑
ν=0

(
β

ν

)
4β

hf(x− βh− νh) for almost every x (4)

By Lemma 2.1(a) and part (a) of this Lemma, it follows that∥∥4β
πf(·)

∥∥
p

=
∥∥∥(
4[β]

π (4β−[β]
π f)

)
(·)

∥∥∥
p

≤2[ [β]+1
2 ]

∥∥∥(
4[β]

π
2

(4β−[β]
π f)

)
(·)

∥∥∥
p
.
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Here we use (4) for h = π
2 . We have

∥∥4β
πf(·)

∥∥
p
≤2[ [β]+1

2 ]
∥∥∥∥∥4[β]

π
2

{ ∞∑
ν=0

(
β − [β]

ν

)
4β−[β]

π
2

f

}
(· − βπ

2
− νπ

2
)

∥∥∥∥∥
p

=2[ [β]+1
2 ]

∥∥∥∥∥
∞∑

ν=0

(
β − [β]

ν

) (
4[β]

π
2

(4β−[β]
π
2

f)
)

(·)

∥∥∥∥∥
p

.

Thus, by Lemma 2.1(a) and inequality (1), we get∥∥4β
πf(·)

∥∥
p
≤ C∗(β − [β]) 2[ [β]+1

2 ]
∥∥∥4β

π
2
f(·)

∥∥∥
p
.

If we combine this result with C∗(β − [β]) = 2 (see (2)) and 2[ [β]+1
2 ] = 2[ β+1

2 ],
we obtain the required inequality. If 0 < β < 1, then we use (1) and (4).

We will need the following lemma.

Lemma 3.1. Let β > 0, n ∈ N, δ > 0.

(a) If f(x) = sin x and p ∈ [1,∞], then there exist t1 > 0 and C1(β), C2(β) > 0
such that for any δ ∈ (0, t1) we have

C1(β)δβ ≤ ωβ(f, δ)p ≤ C2(β)δβ . (5)

(b) If f(x) = sinnx and p ∈ [1,∞], then for any δ ∈
(
0, π

2

]
we have1

‖4β
δ f(·)‖p ≤ (2π)

1
p (nδ)β

.

(c) If f(x) = sin nx, then ‖4β
π/nf(·)‖1 = 2β+2.

(d) If f(x) = sin nx, then for any δ ∈
(
0, π

n

]
we have ‖4β

δ f(·)‖1 ≥ 4
(

2
π

)β (δn)β
.

Proof of Lemma 3.1. Let Tn(x) =
n∑

ν=−n
cνeiνx. Then

4β
δ Tn(x− βδ

2
) =

n∑
ν=−n

(
2i sin

νδ

2

)β

cνeiνx.

Thus, for f(x) = sin nx, n ∈ N, we get

4β
δ f(x− βδ

2
) =

(
2 sin

nδ

2

)β

sin
(

nx +
βπ

2

)
. (6)

1Here 1
∞ = 0.
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For n = 1 we obviously have

C1(β)
(

2
∣∣∣∣sin δ

2

∣∣∣∣)β

≤ ‖4β
δ sin(·)‖p ≤ C2(β)

(
2

∣∣∣∣sin δ

2

∣∣∣∣)β

.

If we combine this inequality with sin t ≤ t (t ≥ 0) and sin t ≥ 2t
π (0 ≤ t ≤ π

2 ),
then we obtain (5). In the same way, by (6), we shall have the proofs of
(b)− (d).

Proof of Theorem 2.5. (A). Let ϕ(t) := tβ inf
0<ξ≤t

{ξ−βωβ(f, ξ)p}. We im-

mediately have ϕ(t) ∈ Φβ from [13, §2]. It is trivial, that ϕ(t) ≤ ωβ(f, t)p. By
Lemma 2.2(e), we have

ωβ(f, t)p = tβt−βωβ(f, t)p ≤ C(β)tβ inf
0<ξ≤t

{
ξ−βωβ(f, ξ)p

}
= C(β)ϕ(t).

Therefore, for any t > 0 the inequality ϕ(t) ≤ ωβ(f, t)p ≤ C(β)ϕ(t) holds and
(A) follows.

(B). Case 1. Let lim
t→0

ϕ(t)
tβ = C (0 ≤ C < ∞). Then, by virtue of mono-

tonicity of ϕ(t)
tβ , we write

(∗ ) ϕ(t) ≤ Ctβ for 0 < t ≤ π;
(∗∗ ) there exists t1 > 0 such that ϕ(t) ≥ Ctβ

2 for 0 < t ≤ t1.
Indeed, (∗) is trivial like (∗∗) for C = 0. If C > 0 and lim

t→0

ϕ(t)
tβ = C, then for

any ε > 0 there exists t1 > 0 such that C − ϕ(t)
tβ ≤ ε for 0 < t ≤ t1. Then

ϕ(t)
tβ ≥ C − ε, and choosing small ε we have (∗∗).

Let f(x) = C sinx. By Lemma 3.1(a), we have

ωβ(f, δ)p ≥ CC1(β)δβ ≥ C2(β)ϕ(δ) for 0 < δ ≤ π,

ωβ(f, δ)p ≤ CC3(β)δβ ≤ C4(β)ϕ(δ) for 0 < δ ≤ t1,

completing the proof in this case.
Case 2. Let lim

t→0

ϕ(t)
tβ = +∞. Then lim

t→0
ϕ(t) = 0 and lim

t→0

tβ

ϕ(t) = 0. We fix

a ≥ 2. Then, following Oskolkov ([9]), we define the sequence {nν}∞ν=1, where
nν = 2mν are the numbers mν such that

m1 = 2, mν+1 = min
{

m ∈ N :max
(

ϕ(2−m)
ϕ(2−mν )

,
2mνβϕ(2−mν )
2mβϕ(2−m)

)
≤ 1

a

}
(ν ∈ N).

From the definition of {nν}∞ν=1 it follows that mν+1 > mν , nν+1 ≥ 2nν and
for any ν ∈ N we have

ϕ

(
1

nν+1

)
≤ 1

a
ϕ

(
1
nν

)
; (7)
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nβ
νϕ

(
1
nν

)
≤ 1

a
nβ

ν+1ϕ

(
1

nν+1

)
. (8)

Let us fix κ = 2d (d ∈ N) such that κ > 2π. Note that (7) implies

∞∑
ν=1

ϕ

(
1
nν

)
≤ ϕ

(
1
n1

) ∞∑
ν=1

a1−ν < ∞,

and, therefore, we can define the function f(x) =
∞∑

ν=1
ϕ

(
1

nν

)
sin(κnνx).

First, we shall estimate ωβ(f, δ)p from above. By the inequality

‖f‖p ≤ (2π)
1
p ‖f‖∞ ≤ 2π‖f‖∞, p ∈ [1,∞),

it is enough to prove ωβ(f, δ)∞ ≤ C(β)ϕ(δ). Let δ ∈ (0, 1
n1

]. For all h ∈ (0, 1
n1

]
we can find the number N ∈ N such that 1

nN+1
< h ≤ 1

nN
. Then

∥∥∥4β
hf(x)

∥∥∥
∞
≤

∥∥∥∥∥
N∑

ν=1

ϕ

(
1
nν

)
4β

h sin(κnνx)

∥∥∥∥∥
∞

+

∥∥∥∥∥
∞∑

ν=N+1

ϕ

(
1
nν

)
4β

h sin(κnνx)

∥∥∥∥∥
∞

=:I1 + I2.

Combining Lemma 3.1(b), inequality (8), and condition (c) in the definition
of Φβ , we get

I1 ≤
N∑

ν=1

ϕ

(
1
nν

) ∥∥∥4β
h sin(κnνx)

∥∥∥
∞
≤ C(β) (κh)β

ϕ

(
1

nN

)
nβ

N

N∑
ν=1

a−(N−ν)

≤C(β) (nNh)β
ϕ

(
1

nN

)
≤ C(β)ϕ (h) .

Inequalities (1) and (7) yield

I2 ≤
∞∑

ν=N+1

ϕ

(
1
nν

) ∥∥∥4β
h sin(κnνx)

∥∥∥
∞
≤ C(β)

∞∑
ν=N+1

ϕ

(
1
nν

)

≤C(β)ϕ
(

1
nN+1

) ∞∑
ν=N+1

aN+1−ν ≤ C(β)ϕ
(

1
nN+1

)
≤ C(β)ϕ (h) .

Therefore, if h ∈ ( 1
nN+1

, 1
nN

], N ∈ N, then ‖4β
hf(x)‖∞ ≤ C(β)ϕ(h), which

implies ωβ(f, δ)∞ ≤ C(β)ϕ(δ). Now we shall obtain the inequality ϕ(δ) ≤
C(β)ωβ(f, δ)p. From the inequality ‖f‖1 ≤ 2π‖f‖p, p ∈ [1,∞] it is sufficient
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to prove ϕ(δ) ≤ C(β)ωβ(f, δ)1. Also, we note that if the last inequality holds
for δ = π

2k , k = N,N + 1, N + 2, . . . , where N ∈ N, then it holds for δ ∈(
π
2k , π

2k+1

)
. Indeed, from the monotonicity of t−βϕ(t), we see that the estimate

ϕ (δ) ≤ C(β)ϕ
(

π
2k

)
is true. By Lemma 2.2(a), we get

ϕ (δ) ≤ C(β)ϕ
( π

2k

)
≤ C(β)ωβ

(
f,

π

2k

)
1
≤ C(β)ωβ(f, δ)1.

To go further, we suppose that δ = π
2k .

Let M be the integer, M > 1, and let h1 = π
κnM

. We shall show that

∥∥∥4β
h1

f(x)
∥∥∥

1
≥ 4ϕ

(
1

nM

) (
2β − πβ+1

a

)
. (9)

For this purpose, we shall use the representation of a function f(x)

f(x) =
M−1∑
ν=1

ϕ

(
1
nν

)
sin(κnνx) +ϕ

(
1

nM

)
sin(κnMx) +

∞∑
ν=M+1

ϕ

(
1
nν

)
sin(κnνx)

=: f1 + f2 + f3.

Note that sin(κnνx + πnν

nM
) = sin(κnνx) for ν > M , and f3(x) has the period

T = h1 = π
κnM

. We therefore obtain

4β
h1

f3(x) = f(x + βh1)
∞∑

ξ=0

(−1)ξ

(
β

ξ

)
= 0.

By Lemma 3.1(b) and (8), we have

∥∥∥4β
h1

f1(x)
∥∥∥

1
≤

M−1∑
ν=1

ϕ

(
1
nν

) ∥∥∥4β
h1

sin(κnνx)
∥∥∥

1
≤

M−1∑
ν=1

2π (κnνh1)
β

ϕ

(
1
nν

)

=2π

(
π

nM

)β M−1∑
ν=1

ϕ

(
1
nν

)
nβ

ν

≤2π

(
π

nM

)β

ϕ

(
1

nM−1

)
nβ

M−1

M−1∑
ν=1

a−(M−1−ν).

Using
M−1∑
ν=1

a−(M−1−ν) ≤ 2 and (8), we obtain
∥∥∥4β

h1
f1(x)

∥∥∥
1
≤ 4πβ+1

a ϕ
(

1
nM

)
.

By Lemma 3.1(c),
∥∥∥4β

h1
f2(x)

∥∥∥
1

= ϕ
(

1
nM

) ∥∥∥4β
h1

sin(κnMx)
∥∥∥

1
= 2β+2ϕ

(
1

nM

)
.
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Therefore, for h1 = π
κnM

, the inequality |f | ≥ |f2| − |f1| − |f3| implies∥∥∥4β
h1

f(x)
∥∥∥

1
≥

∥∥∥4β
h1

f2(x)
∥∥∥

1
−

∥∥∥4β
h1

f1(x)
∥∥∥

1
−

∥∥∥4β
h1

f3(x)
∥∥∥

1

=
∥∥∥4β

h1
f2(x)

∥∥∥
1
−

∥∥∥4β
h1

f1(x)
∥∥∥

1
≥ 4ϕ

(
1

nM

) (
2β − πβ+1

a

)
;

i.e., we obtain (9). Further, we choose the integer i such that

1
ni+1

=
1

2mi+1
< δ ≤ 1

2mi
=

1
ni

.

Note that, by definition of mi, at the least one of the following inequalities is
true:

2β(mi+1−1)ϕ

(
1

2mi+1−1

)
< a2βmiϕ

(
1

2mi

)
, (10)

ϕ

(
1

2mi+1−1

)
>

1
a

ϕ

(
1

2mi

)
(11)

Case 2(a). Let (10) hold. Using the monotonicity of ϕ(t) and (10), we get

nβ
i+1ϕ

(
1

ni+1

)
≤2β2β(mi+1−1)ϕ

(
1

2mi+1−1

)
<a 2βnβ

i ϕ

(
1
ni

)
.

(12)

We write

f(x) =
i−1∑
ν=1

ϕ

(
1
nν

)
sin(κnνx) + ϕ

(
1
ni

)
sin(κnix) +

∞∑
ν=i+1

ϕ

(
1
nν

)
sin(κnνx)

=: f1 + f2 + f3.

It is clear, that the function f3 has a period T = 2π
κni+1

. Then, for κ = 2d > 2π

we have δ = π
2r > 1

ni+1
> T . Therefore, f3 has a period δ and 4β

δ f3(x) = 0.

For 0 < δ ≤ π
κni

, by Lemma 3.1(d), we have

∥∥∥4β
δ f2(x)

∥∥∥
1

= ϕ

(
1
ni

) ∥∥∥4β
δ sin(κnix)

∥∥∥
1
≥ 4

(
2
π

)β

ϕ

(
1
ni

)
(κniδ)

β
.
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Using Lemma 3.1(b) and inequality (8)∥∥∥4β
h1

f1(x)
∥∥∥

1
≤

i−1∑
ν=1

ϕ

(
1
nν

) ∥∥∥4β
δ sin(κnνx)

∥∥∥
1
≤

i−1∑
ν=1

2π (κnνδ)β
ϕ

(
1
nν

)
≤4π (κni−1δ)

β
ϕ

(
1

ni−1

)
≤ 4π (κniδ)

β 1
a
ϕ

(
1
ni

)
.

For 1
ni+1

< δ ≤ π
κni

we obtain∥∥∥4β
δ f(x)

∥∥∥
1
≥

∥∥∥4β
δ f2(x)

∥∥∥
1
−

∥∥∥4β
δ f1(x)

∥∥∥
1

≥ϕ

(
1
ni

)
(κniδ)

β

{
4

(
2
π

)β

− 4π

a

}
.

Now we choose a such that 2β − πβ+1

a = γ1 > 0. (Then 4
(

2
π

)β − 4π
a = γ2 > 0.)

From (12) and condition (c) in the definition of Φβ , we have

(δni)
β

ϕ

(
1
ni

)
≥

(
δni+1

2

)β 1
a
ϕ

(
1

ni+1

)
≥ 2−β 1

a
ϕ (δ) .

Thus, the inequality ωβ(f, δ)p ≥ C(β)ϕ(δ) holds for 1
ni+1

< δ ≤ π
κni

. If
π

κni
< δ ≤ 1

ni
, then (9) implies

ωβ(f, δ)p ≥ ωβ

(
f,

π

κni

)
p

≥ C(β)ϕ
(

1
ni

)
≥ C(β)ϕ (δ) .

The theorem has been proved in case 2(a).
Case 2(b). Let (11) hold. By virtue of the monotonicity of ϕ(t)

tβ , we write

ϕ
(

1
2mi+1−1

)
≤ 2βϕ

(
1

2mi+1

)
.

Hence,

ϕ

(
1

ni+1

)
= ϕ

(
1

2mi+1

)
≥ 2−βϕ

(
1

2mi+1−1

)
>

2−β

a
ϕ

(
1

2mi

)
=

2−β

a
ϕ

(
1
ni

)
.

(13)

From (9) and (13) it follows that

ωβ (f, δ)1 ≥ ωβ

(
f,

1
ni+1

)
1

≥ ωβ

(
f,

π

κni+1

)
1

≥ C(β)ϕ
(

1
ni+1

)
≥ C(β)ϕ

(
1
ni

)
≥ C(β)ϕ (δ) .
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This completes the proof of case 2(b) and Theorem 2.5.

Proof of Corollary 2.6. The proof follows from (see [2])

C1(β)ωβ(f, t)p ≤ K(f, tβ , Lp,W
β
p ) ≤ C2(β)ωβ(f, t)p.
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