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AN n-th ORDER INTEGRAL AND ITS
INTEGRATION BY PARTS WITH

APPLICATIONS TO TRIGONOMETRIC
SERIES

Abstract

An n-th order symmetric Perron type integral is defined and its
properties are studied. An integration by parts formula is proved and
applied to solve problems related to summable trigonometric series.

1 Introduction.

The Pn-integral introduced by James, [10], was defined to solve problems
related to summable trigonometric series, [11]. The definition has some lacunæ
that were removed in [13]. This integral is such that while the n-th primitive
of an integrable function exists the previous primitives may not exist. The
absence of the first primitive caused difficulty in expressing the coefficients of
a trigonometric series by the usual Fourier formulæ and expressions for the
coefficients of a trigonometric series take a different form; see [13, 7]. Also,
because of this absence of the first primitive, an integration by parts formula
could not be proved in its usual form and therefore these Fourier coefficients
were obtained by formal multiplication of trigonometric series thus avoiding
the need for integration by parts; see [11, 13, 7]. In addition additivity of the
integral for abutting intervals was a problem for this integral; see[8, 9, 19].

In the present paper the definition of the Pn-integral is simplified so that
a first primitive exists; see also [12]. This enables us to obtain an integration
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by parts formula and then to get the usual Fourier formulæ when applied to
trigonometric series. Finally additivity of the integral for abutting intervals
holds with no additional conditions; see [8, 9, 19].

2 Preliminaries.

Let f be a real-valued function defined on some neighborhood of x, x ∈ R. If
there is a polynomial P (t) = Px(t) of degree at most k such that

1
2
[
f(x+ t) + (−1)kf(x− t)

]
= P (t) + o(tk), (2.1)

then f is said to possess a k-th symmetric de la Vallée Poussin (d.l.V.P)
derivative at x, and if ak/k! is the coefficient of tk in P (t), then ak is called the
k-th symmetric d.l.V.P. derivative of f at x, denoted by Dkf(x).1 It is clear
that P (t) has only even or odd powers of t according as k is even or odd. Also
if Dkf(x) exists, then Dk−2f(x) also exists, where we take D0f(x) = f(x).
Thus P (t) in (2.1) has the form

P (t) =



k/2∑
i=0

t2i

(2i)!
D2if(x) if k is even

(k−1)/2∑
i=0

t2i+1

(2i+ 1)!
D2i+1f(x) if k is odd.

(2.2)

Suppose that Dkf(x) exists and write

tk+2

(k + 2)!
ωk+2(f, x, t) =

1
2
(
f(x+ t) + (−1)kf(x− t)

)
− P (t) (2.3)

The upper symmetric d.l.V.P. derivate of f at x of order k+2 is defined to be

D
k+2

f(x) = lim sup
t→0

ωk+2(f, x, t). (2.4)

Replacing lim sup in (2.4) by lim inf one gets the lower derivate Dk+2f(x). If
D

k+2
f(x) = Dk+2f(x), the common value is the derivativeDk+2f(x), possibly

infinite in this case.
The function f is said to be smooth at x of order k + 2 if Dkf(x) exists

and limt→0 tωk+2(f, x, t) = 0. If f is smooth at x of order k + 2, we write
f ∈ Sk+2(x), or f ∈ Sk+2 at x.

1Here and elsewhere o(tk) denotes a quantity which when divided by tk tends to 0 as
t→ 0; and O(tk) denotes a quantity which when divided by tk remains bounded as t→ 0.
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If there is a polynomial Q(t) = Qx(t) of degree at most ` such that

f(x+ t) = Q(t) + o(t`), (2.5)

then f is said to possess a `-th Peano derivative at x, and if a`/`! is the
coefficient of t` in Q(t), then a` is called the `-th Peano derivative of f at x,
denoted by f(`)(x). It is clear that if f(`)(x) exists, then f(`−1)(x) and D`f(x)
also exist; where f0(x) = f(x). Thus Q(t) in (2.5) has the form

Q(t) =
∑̀
i=0

ti

i!
f(i)(x). (2.6)

If f(`)(x), exists we write

t`+1

(`+ 1)!
γ`+1(f, x, t) = f(x+ t)−Q(t). (2.7)

The upper and lower Peano derivates of f at x of order `+1 ,which are denoted
by f (`+1)(x) and f

(`+1)
(x), are obtained by taking upper and lower limits of

γ`+1(f, x, t) respectively. By suitably restricting, the definitions of unilateral
Peano derivates are obtained; the right, (respectively left) Peano derivate of
f at x of order ` being denoted by f+

(`)(x), (respectively f−(`)(x)).
For the definition of n-convex functions we refer to [2]. Recall that a

function f is said to satisfy property R in an interval I, written f ∈ R in I, if
for every perfect set P ⊆ I there is a portion of P on which f restricted to P is
continuous; see [13]. The property R is also called the Baire∗-1 property . The
class of Darboux functions will be denoted by D and µ will denote Lebesgue
measure.

3 Auxiliary Results.

Lemma 3.1. Let f : [a, b] → R be continuous and let Dnf exist in (a, b). If
f ∈ Sn+2(x) for all x ∈ (a, b), then Dif ∈ R in (a, b) for i = n, n− 2, . . . .

Proof. Let i, as in the statement, be fixed and let P ⊂ (a, b) be any perfect
set. Choose a < c < d < b such that P ∩ [c, d] is perfect. Then it follows
from [4, Theorem 3.1] that there is a sequence of closed sets {Qk} such that
[c, d] =

⋃∞
k=1Qk and Dif |Qk, the restriction of Dif to Qk, is continuous for

all k. Since P ∩ [c, d] = ∪∞k=1(Qk ∩ P ), by Baire’s theorem there is a k0 and a
portion P ∩ (α, β) of P ∩ [c, d] such that P ∩ (α, β) ⊂ Qk0 . Since Dif |Qk0 is
continuous, Dif |P ∩ (α, β) is continuous and so Dif ∈ R in (a, b).
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Theorem 3.2. Let f : [a.b] → R be continuous and assume that in (a, b):

(i) Dn−2f exists and Dkf ∈ D for k = n− 2, n− 4, . . .;

(ii) D
n
f ≥ 0 almost everywhere;

(iii) D
n
f > −∞ nearly everywhere2;

(iv) f ∈ Sn.

Then the ordinary derivative of order (n−2), f (n−2), exists, is continuous and
convex in (a, b).

Proof. By Lemma 3.1, Dif ∈ R in (a, b) for i = n − 2, n − 4, . . . . Hence f
satisfies the hypotheses of [13, Theorem 3.2], or its analogue according as n
is even or odd, and hence by that theorem f (n−2), exists, is continuous and
convex in (a, b), completing the proof.

Lemma 3.3. If f ∈ Sk+2(x0) and if f(k)(x0) exists, then

f (k+1)(x0) = D
k+1

f(x0), and f
(k+1)

(x0) = Dk+1f(x0).

Proof. Since

γk+1(f, x0, t) =
t

k + 2
ωk+2(f, x0, t) + ωk+1(f, x0, t),

the result follows.

Lemma 3.4. If F is measurable and if Dr−2F exists on a set E and if

−∞ < DrF ≤ D
r
F <∞, for x ∈ E, (3.1)

then F(r) exists almost everywhere on E and is finite there.

Proof. Write

∆r(x, t, F ) =
r∑

j=0

(−1)r−j

(
r

j

)
F (x+ jt− 1

2
rt). (3.2)

2That is except on a countable set.
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Then since ∆r(x,−t, F ) = (−1)r∆r(x, t, F ), we have from (3.2) and (2.3) that

∆r(x, t, F ) =
1
2
(
∆r(x, t, F ) + (−1)r∆r(x,−t, F )

)
=

r∑
j=0

(−1)r−j

2

(
r

j

)(
F (x+ jt− 1

2
rt) + (−1)rF (x− jt+

1
2
rt)

)
(3.3)

=
r∑

j=0

(−1)r−j

(
r

j

)(
P

(
(j − 1

2
r)t

)
+

(
(j − 1

2r)t
)r

r!
ωr

(
F, x, (j − 1

2
r)t

))
.

where P is a polynomial of degree at most (r−2) having the form (2.2). Since∑r
j=0(−1)r−j

(
r
j

)
ji = 0 for i = 0, 1, . . . , r − 1, we have from (3.3) that

∆r(x, t, F ) =
r∑

j=0

(−1)r−j

(
r

j

)(
(j − 1

2r)t
)r

r!
ωr

(
F, x, (j − 1

2
r)t

)
. (3.4)

Since by (3.1), ωr(F, x, t) = O(1) as t→ 0, for each x ∈ E, we have ∆r(x, t, F ) =
O(tr), and so by [15, Theorem 3.1] the result follows.

4 The T n-Integral.

Definition 4.1. Let f be an extended real valued function defined on the
interval [a, b] and let n ≥ 2 be a fixed positive integer. A functionQ : [a, b] → R
is said to be a Tn-major function of f if:

(i) Q is continuous on [a, b];

(ii) Q(n−2) exists, finitely, on [a, b];

(iii) Q(n−1) exists, finitely, on [a.b] except on a set of measure zero in (a, b);

(iv) Q(r)(a) = 0 for r = 0, 1, . . . , n− 1;

(v) DnQ ≥ f almost everywhere on (a, b);

(vi) DnQ > −∞ nearly everywhere on (a, b);

(vii) Q ∈ Sn(x) for x ∈ (a, b).

A function q : [a, b] → R is said to be a Tn-minor function of f if − q is a
Tn-major function of − f .

If there is no confusion we shall simply say major or minor, omitting Tn.
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Lemma 4.2. If Q and q are major and minor functions of f , then for each
r, 1 < r ≤ n, (Q− q)(n−r) exists and is k-convex in [a, b] for all k, 0 ≤ k ≤ r;
and so Q(n−r) − q(n−r) is k-convex in [a, b] for all k, 0 ≤ k ≤ r.

Proof. Let φ = Q − q. Then φ is continuous and φ(n−2) exists in [a, b]. So
φ(k) ∈ D, 1 ≤ k ≤ n − 2; [16]. Also φ ∈ Sn(x) for x ∈ (a, b) and on (a, b),
Dnφ ≥ DnQ−Dn

q ≥ 0 almost everywhere andDnφ > −∞ nearly everywhere.
Hence by Theorem 3.2 φ(n−2) exists, is continuous and convex in [a, b]; so
φ(n−2) is the derivative φ(n−2) on [a, b], [16]. By convexity, the right-hand
derivative of φ(n−2) exists in [a,b), the left-hand derivative of φ(n−2) exists in
(a,b], and φ(n−1) exists nearly everywhere in (a, b) and is non-decreasing on
the set on which it exists. Also φ(n−2)(x) =

∫ x

a
φ(n−1), x ∈ [a, b], and so φ(n−2)

is non-negative and non-decreasing on [a, b]. Since φ(n−2) = Q(n−2) − q(n−2),
the result is proved for r = 2.

Suppose that the result is true for a fixed r, 1 < r < n. Since (Q− q)(n−r)

is k-convex in [a, b] for 0 ≤ k ≤ r, we have φ(n−r−1)(x) =
∫ x

a
φ(n−r), x ∈

[a, b], and hence φ(n−r−1)is k-convex on [a, b] for 0 ≤ k ≤ r + 1; that is,
Q(n−r−1) − q(n−r−1) is k-convex on [a, b] for 0 ≤ k ≤ r + 1, proving the result
for r + 1; and so the proof has been completed by induction.

Let M, respectively M, be the family of all major, respectively minor,
functions of f . Let

U = inf
Q∈M

Q(n−1)(b) and V = sup
q∈M

q(n−1)(b).

If Q ∈ M and q ∈ M, then by Lemma 4.2 (Q − q)(n−2)has a right-hand
derivative at a and a left-hand derivative

at b, and

0 = Q(n−1)(a)− q(n−1)(a) = (Q− q)(n−1)(a)

≤ (Q− q)(n−1)(b) = Q(n−1)(b)− q(n−1)(b).

Hence Q(n−1)(b) ≥ q(n−1)(b) which shows that U ≥ V .
If U = V 6= ±∞, then f is said to be Tn-integrable on [a, b] and the

common value is called the Tn-integral of f and is denoted by (Tn)
∫ n

a
f or

(Tn)
∫ n

a
f(t)dt.

Let f be Tn-integrable on [a, b] and let ε > 0 be arbitrary. Then there is a
Q ∈ M and a q ∈ M such that Q(n−1)(b)− q(n−1)(b) < ε. Hence from Lemma
4.2 and from the definitions of Q and q we have almost everywhere in (a, b)
that

0 ≤ Q(n−1)(x)− q(n−1)(x) ≤ Q(n−1)(b)− q(n−1)(b) < ε. (4.1,1)
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Since Q(n−2) − q(n−2) is convex,

Q(n−2)(x)− q(n−2)(x) =
∫ x

a

(Q(n−1) − q(n−1)), x ∈ [a, b].

Hence from (4.1,1) and Lemma 4.2 for x ∈ [a, b] we have

0 ≤ Q(n−2)(x)− q(n−2)(x) ≤ Q(n−2)(b)− q(n−2)(b) < ε(b− a). (4.1,2)

So, since ε is arbitrary, for each x ∈ [a, b],

inf
Q∈M

Q(n−2)(x) = sup
q∈M

q(n−2)(x) = F2(x), say.

The function F2 is called the second primitive of f . Suppose that the r-th
primitive of f is defined, Fr, 2 ≤ r < n, and that the relation

0 ≤ Q(n−r)(x)− q(n−r)(x) ≤ Q(n−r)(b)− q(n−r)(b) < ε(b− a)r−1, (4.1,r)

for x ∈ [a, b] is obtained. Since Q(n−r−1) − q(n−r−1) is convex,

Q(n−r−1)(x)− q(n−r−1)(x) =
∫ x

a

(Q(n−r) − q(n−r)), x ∈ [a, b].

Hence from (4.1,r) and Lemma 4.2 we have for x ∈ [a, b]

0 ≤ Q(n−r−1)(x)− q(n−r−1)(x)
≤ Q(n−r−1)(b)− q(n−r−1)(b) < ε(b− a)r,

(4.1,r+1)

and so, since ε is arbitrary, for each x ∈ [a, b],

inf
Q∈M

Q(n−r−1)(x) = sup
q∈M

q(n−r−1)(x) = Fr+1(x), say,

the (r + 1)-th primitive of f . So all of the primitives Fr, 2 ≤ r ≤ n of f have
been defined and it remains to define the first primitive of f, F1.

Henceforth we shall, where there is no confusion, write integrable and
integral instead of Tn-integrable and Tn-integral, and omit the prefix (Tn) in
the notation (Tn)

∫ n

a
f .

Lemma 4.3. Let f be integrable on [a, b] with Fr, 2 ≤ r ≤ n, its r-th primitive.
Then there is a sequence of major functions {Qi}, and a sequence of minor
functions {qi} such that {(Qi)(n−r)} and {(qi)(n−r)} converge uniformly in
[a, b] to Fr, 2 ≤ r ≤ n.
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Proof. Let i be a positive integer. Since f is integrable, there is a major
function Qi and a minor function qi such that (Qi)(n−1)(b)− (qi)(n−1)(b) < 1

i .
From this we get, as in (4.1,1)–(4.1.r), for x ∈ [a, b] that

0 ≤ (Qi)(n−r)(x)− (qi)(n−r)(x) ≤
1
i
(b− a)r−1.

Hence from the definition of Fr we have for x ∈ [a, b] that

0 ≤ (Qi)(n−r)(x)− Fr(x) ≤ (Qi)(n−r)(x)− (qi)(n−r)(x) ≤
1
i
(b− a)r−1.

This shows that the sequence {Qi)(n−r)} converges uniformly to Fr in [a, b].
The rest is clear.

Lemma 4.4. Let f be integrable on [a, b] with Fr, 2 ≤ r ≤ n, its r-th primi-
tive. Then for any major function Q and any minor function q the functions
Q(n−r) − Frand Fr − q(n−r) are k-convex, 0 ≤ k ≤ r, on [a, b].

Proof. By Lemma 4.3 there is a sequence of minor functions of f, {qi}, such
that {(qi)(n−r)} converges uniformly to Fr on [a, b], for 2 ≤ r ≤ n. Let Q be
any major function of f . Then by Lemma 4.2, Q(n−r) − (qi)(n−r) is k-convex
on [a, b] for 0 ≤ k ≤ n, and for each i, i = 1, 2, 3, . . . . Hence

Q(n−r) − Fr = Q(n−r) − lim
n→∞

(qi)(n−r) = lim
n→∞

(
Q(n−r) − (qi)(n−r)

)
is k-convex on [a, b]. A similar argument can be given for Fr − q(n−r).

Theorem 4.5. Let f be integrable on [a, b] and let Fn be its n-th primitive.
Then (Fn)(n−2) exists, finitely, on [a, b] and there is a set B ⊆ [a, b] such
that a ∈ B, b ∈ B, µ(B) = b − a and (Fn)n−1 exists, finitely, on B. Also
(Fn)n−1(a) = 0 and (Fn)n−1(b) =

∫ b

a
f.

Proof. Let Q be any major function of f . Then by Lemma 4.4 the function
φ = Q − Fn is k-convex, 0 ≤ k ≤ n, on [a, b]; in particular, φ is n-convex
on [a, b]. So φ(n−2) exists on [a, b]. Hence since Q(n−2) exists in [a, b], so
does (Fn)(n−2). Also φ+

(n−1)(a) and φ−(n−1)(b) exist and φ(n−1) exists , finitely,
nearly everywhere on (a, b). Since Q(n−1)(a) and Q(n−1)(b) exist and Q(n−1)

exists almost everywhere on (a, b), we have that (Fn)(n−1) exists, finitely at a
and b, and almost everywhere in (a, b). Let

B = {x ∈ [a, b]; (Fn)(n−1)(x) exists finitely}.

Then B satisfies the requirements.
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Let ε > 0 be arbitrary. Then there is major function Q̃ of f and a minor
function q̃ of f such that

0 ≤ Q̃(n−1)(b)− q̃(n−1)(b) < ε. (4.2)

By Lemma 4.4 if Q is any major function of F and q any minor function
of f , Q− Fn and Fn − q are k-convex, 0 ≤ k ≤ n, and hence

Q(n−1)(b)− (Fn)(n−1)(b) ≥ 0 and (Fn)(n−1)(b)− q(n−1)(b) ≥ 0, (4.3)

for Q ∈ M, q ∈ M. Hence from (4.2) and (4.3)

0 ≤ Q̃(n−1)(b)− (Fn)(n−1)(b) < ε. (4.4)

From (4.3) and (4.4)

inf
Q∈M

Q(n−1)(b) = (Fn)(n−1)(b). (4.5)

Since (4.3) holds if b is replaced by a, it follows from the definition of Q and
q that (Fn)(n−1)(a) = 0.

Definition 4.6. The set B in Theorem 4.5 is called the base of the integral
and (Fn)(n−1) is called the first primitive of f , denoted by F1.

Clearly the first primitive F1 is only defined on the set B.

Corollary 4.7. If f is integrable on [a, b] and if B is the base of the integral,
then for any c ∈ B f is integrable on [a, c] and (Fn)(n−1)(c) =

∫ c

a
f .

Proof. By k-convexity the relations (4.2)–(4.5) hold if b is replaced by c and
the rest is clear.

Theorem 4.8. If Q is a major function of f and q a minor function of f ,
then Q(n−1) and q(n−1) exist on B.

Proof. By Lemma 4.4, if Fn is the n-th primitive of f , then Q − Fn is n-
convex. So the unilateral derivatives (Q − Fn)+(n−1) and (Q − Fn)−(n−1) exist
in [a, b) and (a, b] respectively. Let ξ ∈ B ∩ (a, b). Then since (Fn)(n−1)(ξ)
exists both Q+

(n−1)(ξ) and Q−(n−1)(ξ) exist. Since Q ∈ Sn(ξ), it follows that
Q(n−1)(ξ) exists by [13, Lemma 2.1]. The proof for the case of the minor
function is similar.

Theorem 4.9. If f is integrable on [a, b] with Fr its r-th primitive, 1 ≤ r ≤ n,
then:
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(i) (Fn)(n−r)(x) = Fr(x) for x ∈ [a, b], 1 ≤ r ≤ n;

(ii) DnFn = f almost everywhere in (a, b);

(iii) Fn ∈ Sn(x) for all x ∈ (a, b).

Proof. (i) We may suppose that 1 < r < n since the case r = n is trivial
and the case r = 1 is Theorem 4.5. By Lemma 4.4 Q − Fn and Fn − q are
k-convex for 0 ≤ k ≤ n and so (Q− Fn)(n−r) and (Fn − q)(n−r) are k-convex
for 0 ≤ k ≤ r. Hence for x ∈ [a, b] and all Q ∈ M, q ∈ M,

Q(n−r)(x)− (Fn)(n−r)(x) ≥ 0, and (Fn)(n−r)(x)− q(n−r)(x) ≥ 0. (4.6)

Let ε > 0 be arbitrary. By (4.1,r) there is a major function of f , Q̃, and a
minor function of f , q̃, such that

0 ≤ Q̃(n−r)(x)− q̃(n−r)(x) ≤ ε(b− a)r−1 for x ∈ [a, b]. (4.7)

From (4.6) and (4.7)

0 ≤ Q̃(n−r)(x)− (Fn)(n−r)(x) ≤ ε(b− a)r−1 for x ∈ [a, b]. (4.8)

From (4.6) and (4.8)

inf
Q∈M

Q(n−r)(x) = (Fn)(n−r)(x) for x ∈ [a, b]. (4.9)

But by definition the left-hand side of (4.9) is Fr(x), so the proof of (i) is
complete.

(ii) For any positive integer k, let

Ek =
{
x : x ∈ (a, b); f(x) > DnFn(x) +

1
k

}
.

Suppose that Ek has positive outer measure, p say, and choose ε such that
0 < ε <

p

2k
. Let Q be a major function of f such that

0 ≤ Q(n−1)(b)− (Fn)(n−1)(b) < ε; (4.10)

such a Q exists by (4.5). Let R = Q(n−1) − (Fn)(n−1) on B. Then R is
non-decreasing since Q− Fn is n-convex. Extend R to the whole of [a, b] as a
non-decreasing function. Then by (4.10)∫ b

a

R′ ≤ R(b) ≤ ε. (4.11)
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Let

Gk =
{
x; x ∈ B ∩ Ek; 0 ≤ R′(x) ≤ 1

2k

}
and Hk =

{
x; x ∈ B;R′(x) >

1
2k

}
.

Then Hk is measurable and µ(Hk) < p by (4.11). Since µ(B) = b− a, the set
B∩Ek has outer measure p and, since B∩Ek ⊂ Gk∪Hk, Gk has positive outer
measure. Since Qn − Fn is n-convex, Q(n−2) − (Fn)(n−2) is convex and so by
[21, Vol. I, p. 328, Lemma 3.16] D2(Q(n−2)−(Fn)(n−2)) exists, finitely, almost
everywhere in (a, b). Hence Dn(Q− Fn) exists, finitely, almost everywhere in
(a, b), and also, by Lemma 3.4, so does the Peano derivative (Q−Fn)(n). Since
(Q−Fn)(n−1) = R almost everywhere in (a, b) by [21, Vol. II, p. 77, Theorem
4.26] Dn(Q − Fn) = (Q − Fn)(n) = R′ap almost everywhere in (a, b). Since R
is monotonic, we deduce that Dn(Q − Fn) = R′ almost everywhere in (a, b).
So almost everywhere on Gk

f ≤ DnQ = DnFn +Dn(Q− Fn) = DnFn +R′ ≤ DnFn +
1
2k
.

But this is a contradiction since Gk ⊂ Ek. Therefore µ(Ek) = 0 and since{
x ∈ (a, b); f(x) > DnFn(x)

}
= ∪∞k=1Ek,

we have that f ≤ DnFn almost everywhere in (a, b). Similarly f ≥ D
n
Fn

almost everywhere in (a, b). This completes the proof of (ii).
(iii) Let ε > 0 be arbitrary and Q a major function of f , q a minor function

of f such that
Q(n−1)(b)− q(n−1)(b) < ε. (4.12)

Let c ∈ (a, b) and choose h, 0 < h < min{c − a, b − c}. By the mean value
theorem there is a θ, 0 < θ < 1 such that

hωn(Q, c, h)− hωn(Fn, c, h) =hωn(Q− Fn, c, h) = θhω2

(
(Q− Fn)(n−2), c, θh

)
=θhω2

(
Q(n−2) − (Fn)(n−2), c, θh

)
(4.13)

=θhω2

(
Q(n−2), c, θh

)
− θhω2

(
(Fn)(n−2), c, θh

)
.

Since (Q− Fn)(n−2) is non-decreasing,

Q(n−2)(c− θh)− (Fn)(n−2)(c− θh)−Q(n−2)(c) + (Fn)(n−2)(c) ≤ 0 (4.14)

and since (Q− Fn)(n−2) is also convex,

Q(n−2)(c+ θh)− (Fn)(n−2)(c+ θh)−Q(n−2)(c) + (Fn)(n−2)(c)

=
∫ c+θh

c

(Q− Fn)(n−1) ≤
(
Q(n−1)(b)− (Fn)(n−1)(b)

)
θh (4.15)

≤
(
Q(n−1)(b)− q(n−1)(b)

)
θh < εθh,
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by (4.12). Adding (4.14) and (4.15) and dividing by θh,

θhω2

(
Q(n−2), c, θh

)
− θhω2

(
(Fn)(n−2), c, θh

)
< ε. (4.16)

From (4.13) and (4.16)

hωn(Q, c, h)− hωn(Fn, c, h) < ε. (4.17)

Since Q ∈ Sn(c), from (4.17) lim infh→0 hωn(Fn, c, h) ≥ −ε and so since ε is
arbitrary, lim infh→0 hωn(Fn, c, h) ≥ 0 .

By a similar argument using q we get that lim suph→0 hωn(Fn, c, h) ≤ 0,
which completes the proof of (iii).

Theorem 4.10. If f is Tn-integrable, then f is Tm-integrable for any m > n
and the two integrals are equal.

Proof. Let f be Tn-integrable and let Q be any Tn-major function of f with
Q̃ the (m − n)-th indefinite integral of Q with Q̃(r)(a) = 0, r = 0, 1, . . . ,m −
n − 1. Since Q̃(m−n) = Q in [a, b], by the mean value theorem there is for
each x, a θ = θx, 0 < θ < 1, such that ωm(Q̃, x, t) = ωn(Q, x, θt). Hence
DmQ̃(x) ≥ DnQ(x) for all x and Q̃ ∈ Sm(x) for x ∈ (a, b). So Q̃ is a Tm-
major function of f . Also Q(n−1)(b) = Q̃(m−1)(b) by the mean value theorem.
The rest is clear.

Theorem 4.11. If f is integrable, then f is measurable and finite almost
everywhere.

Proof. Let Fn be the n-th primitive of f . Then Fn is continuous and since∑n
j=0(−1)n−j

(
n
j

)
ji = 0 for i = 0, 1, . . . , n−1 and

∑n
j=0(−1)n−j

(
n
j

)
jn = n! we

have by (3.4) that for each x ∈ (a, b) for whichDnFn(x) exists, lim
t→0

∆n(x, t, Fn)
tn

= DnFn(x), where ∆n(x, t, Fn) is given by (3.2). Therefore DnFn is mea-
surable on the set where it exists. By Theorem 4.9 (ii), f is measurable.
Suppose that f = ∞ on a set of positive measure. Then by Theorem 4.9
(ii), DnFn = ∞ on a set of positive measure. Let q be any minor function
of f . Then Fn − q is n-convex and as in the proof of Theorem 4.9 (ii) it can
be shown that Dn(Fn − q) exists, finitely, almost everywhere in (a, b). Since
DnFn = Dnq + Dn(Fn − q), we have that Dnq = ∞ on a set of positive
measure, which is a contradiction. Thus f <∞ almost everywhere. Similarly
f > −∞ almost everywhere.

Theorem 4.12. If f is integrable on [a, b] and if c ∈ B, where B is the base of
the integral, then f is integrable on [a, c] and [c, b]. Conversely if f is integrable
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on both [a, c] and [c, b] for some c, a < c < b, then f is integrable on [a, b]. In
both cases ∫ b

a

f =
∫ c

a

f +
∫ b

c

f. (4.18)

Proof. Let f be integrable on [a, b] and let c ∈ B. Then, by Corollary 4.7, f
is integrable on [a, c] and ∫ c

a

f = (Fn)(n−1)(c), (4.19)

where Fn is the n-th primitive of f on [a, b]. Also as remarked in the proof of
that corollary (4.5) holds if b is replaced by c and so

inf
Q∈M

Q(n−1)(c) = (Fn)(n−1)(c). (4.20)

For each Q ∈ M let

Q̃(x) = Q(x)−
n−1∑
i=0

(x− c)i

i!
Qi(c), for c ≤ x ≤ b.

Then Q̃ is a major function of f on [c, b]. Also

Q̃(n−1)(b) +Q(n−1)(c) = Q(n−1)(b). (4.21)

Hence, if U is the family of major functions of f on [c, b], we have from (4.21)
that

inf
U∈U

U(n−1)(b) + inf
Q∈M

Q(n−1)(c) ≤ inf
Q∈M

Q̃(n−1)(b) + inf
Q∈M

Q(n−1)(c) (4.22)

≤ inf
Q∈M

(
Q̃(n−1)(b) +Q(n−1)(c)

)
= inf

Q∈M
Q(n−1)(b).

From (4.19), (4.20) and (4.22)

inf
U∈U

U(n−1)(b) ≤
∫ b

a

f −
∫ c

a

f. (4.23)

Similarly if U is the family of minor functions of f on [c, b],

sup
u∈U

u(n−1)(b) ≥
∫ b

a

f −
∫ c

a

f. (4.24)



464 S. N. Mukhopadhyay

From (4.23) and (4.24) f is integrable on [c, b] and (4.18) holds.
Conversely, let f be integrable on [a, c] and [c, b] and let ε > 0 be arbitrary.

Let Q, respectively q, be a major, respectively a minor, function of f on [a, c],
and let U , respectively u, be a major, respectively a minor, function of f on
[c, b], chosen so that

Q(n−1)(c)− q(n−1)(c) < ε, and U(n−1)(b)− u(n−1)(b) < ε. (4.25)

Let

Q̃(x) =

{
Q(x) if a ≤ x ≤ c,

U(x) +
∑n−1

i=0
(x−c)i

i! Qi(c) if c ≤ x ≤ b.
(4.26)

and

q̃(x) =

{
q(x) if a ≤ x ≤ c

u(x) +
∑n−1

i=0
(x−c)i

i! qi(c) if c ≤ x ≤ b.
(4.27)

Then Q̃ is a major function of f on [a, b], and q̃ is a minor function of f on
[a, b]. Also by (4.25) Q̃(n−1)(b)− q̃(n−1)(b) < 2ε. Hence f is integrable on [a, b].

If Fn is the n-th primitive of f on [a, b] and if Q̃ is as in (4.26), then let
Ψ = Q̃−Fn. Since Ψ is n-convex on [a, b], the unilateral derivatives Ψ+

(n−1)(c),

and Ψ−(n−1)(c) exist and are finite. Further Ψ ∈ Sn(c) since Q̃ ∈ Sn(c), and by
Theorem 4.9 (iii) Fn ∈ Sn(c). Since

1
2
(
γn−1(Ψ, c, h)− γn−1(Ψ, c,−h)

)
=
h

n
ωn(Ψ, c, h)

we get, by letting h→ 0+ that Ψ+
(n−1)(c) = Ψ−(n−1)(c). Thus Ψ(n−1)(c) exists,

finitely, and from (4.26) Q̃(n−1)(c) exists, finitely, so then does (Fn)(n−1)(c).
Hence c ∈ B and the proof is complete by the first part.

Theorem 4.13. Suppose that:

(i) F is continuous on [a, b];

(ii) F(n−2) exists finitely on [a, b];

(iii) F(n−1) exists finitely on [a, b] except on a set of measure zero in (a, b);

(iv) DnF = f almost everywhere in (a, b);

(v) −∞ < DnF ≤ D
n
F <∞ nearly everywhere in (a, b);

(vi) F ∈ Sn(x) for x ∈ (a.b).
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Then f is Tn-integrable on [a, b] and (Tn)
∫ b

a
f = F(n−1)(b)− F(n−1)(a).

Proof. The function Φ(x) = F (x) −
∑n−1

i=0
(x−a)i

i! F(i)(a) for a ≤ x ≤ b, is
both a Tn-major function and a Tn-minor function of f on [a, b]. So f is
Tn-integrable on [a, b] and

(Tn)
∫ b

a

f = Φ(n−1)(b) = F(n−1)(b)− F(n−1)(a).

5 Integration by Parts.

In what follows we need two theorems on the CrP -integral introduced in [5]
and which is equivalent to the Zr-integral defined in [1]. A major function
for the Zr-integral of a function f defined on [a, b] is required to satisfy the
following conditions on [a, b]:

(i) M is continuous;

(ii) M(r) exists finitely;

(iii) M (r+1) ≥ f ;

(iv) M (r+1) > −∞.

The conditions for a minor function are similar. We note that the conditions
(iii) and (iv) can be relaxed to

(iii)′ M (r+1) ≥ f almost everywhere;

(iv)′ M (r+1) > −∞ nearly everywhere.

This modification defines an integral, say the Z∗r -integral, that clearly in-
cludes the Zr-integral. It can be verified that all the properties of the Zr-
integral remain true for the Z∗r -integral; see [6].

The theorems that we need are the following:

Theorem 5.1. If F(r) exists finitely in [a, b] and if F(r+1) exist almost every-
where in [a, b] and if F (r+1) and F (r+1) are finite nearly everywhere on [a, b],

then F(r+1) is Z∗r -integrable and (Z∗r )
∫ b

a
F(r+1) = F(r)

∣∣∣b
a
.

Theorem 5.2. Let f be Z∗r -integrable on [a, b] and let F (x) = (Z∗r )
∫ x

a
f for

a ≤ x ≤ b. If g is of bounded variation on [a, b] and if

G(x) =
1

(r − 1)!

∫ x

a

(x− t)r−1g(t)dt, a ≤ x ≤ b,
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then fG is Z∗r -integrable on [a, b] and

(Z∗r )
∫ b

a

fG = FG
∣∣∣b
a
− (Z∗r−1)

∫ b

a

FG′.

These are analogues for the Z∗r -integral of [1, Propositions 3.4 and 5.1].

Lemma 5.3. For any positive integer n ≥ 2 we have:

(i)
∑n

r=0(−1)n−r
(
n
r

)
ri =

{
0 for i = 0, 1, . . . , n− 1,
n for i = n;

(ii)
∑n−k

r=0 (−1)r
(
n
r

)(
n−r

k

)
=

{
0 for k = 0, 1, . . . , n− 1,
1 for k = n;

(iii)
∑n−k−1

r=1 (−1)r
(
n−1
r−1

)(
n−r−1

k

)
= (−1)n−k−1 for k = 0, 1, . . . , n− 2;

(iv)
∑n−k−1

r=1 (−1)r
(

n
r−1

)(
n−r−1

k

)
= (−1)n−k−1(n−k−1) for k = 0, 1, . . . , n− 2.

Proof. (i) This is a well known result.
(ii) If 0 ≤ k ≤ n then

I1 =
n−k∑
r=0

(−1)r

(
n

r

)(
n− r

k

)

=
1
k!

n−k∑
r=0

(−1)r

(
n

r

)
(n− r)(n− r − 1) · · · (n− r − k + 1)

=
1
k!

n∑
r=0

(−1)r

(
n

r

)
(n− r)(n− r − 1) · · · (n− r − k + 1)

=
(−1)n−k

k!

n∑
r=0

(−1)n−r

(
n

r

) k∑
i=0

pir
k−i,

where p0 = 1 and the remaining p’s depend on n and k. So by (i) I1 = 0 for
k = 0, . . . , n− 1 and I1 = 1 for k = n, as had to be proved.



An n-th Order Integral and Its Integration by Parts 467

(iii) If 0 ≤ k ≤ n− 2 then

I2 =
n−k−1∑

r=1

(−1)r

(
n− 1
r − 1

)(
n− r − 1

k

)

=
1
k!

n−k−1∑
r=1

(−1)r

(
n− 1
r − 1

)
(n− r − 1)(n− r − 2) · · · (n− r − k)

=
1
k!

n−1∑
r=1

(−1)r

(
n− 1
r − 1

)
(n− r − 1)(n− r − 2) · · · (n− r − k) (5.1)

=
(−1)n−k

k!

n−1∑
r=1

(−1)n−r

(
n− 1
r − 1

)(
(r − 1)− (n− 2)

)
· · ·

(
(r − 1)− (n− k − 1)

)
=

(−1)n−k

k!

n−1∑
r=1

(−1)n−r

(
n− 1
r − 1

) k∑
i=0

qi(r − 1)k−i,

where q0 = 1 and q1, . . . , qk are given by

xk + q1x
k−1 + · · ·+ qk =

(
x− (n− 2)

)(
x− (n− 3)

)
· · ·

(
x− (n−k− 1)

)
. (5.2)

Since 0 ≤ k ≤ n − 2, we have by (i) that
∑n−1

ν=0(−1)n−ν−1
(
n−1

ν

)
νi = 0, i =

0, 1, . . . , k, and so

n−2∑
ν=0

(−1)n−ν−1

(
n− 1
ν

)
νi = −(n− 1)i, for i = 0, 1, . . . , k. (5.3)

From (5.1) and (5.3)

I2 =
(−1)n−k

k!

n−2∑
ν=0

(−1)n−ν−1

(
n− 1
ν

) k∑
i=0

qiν
k−i

=
(−1)n−k−1

k!

k∑
i=0

qi(n− 1)k−i = (−1)n−k−1,

by (5.2) completing the proof of (iii).
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(iv) As in (5.1) we have

I3 =
n−k−1∑

r=1

(−1)r

(
n

r − 1

)(
n− r − 1

k

)
(5.4)

=
(−1)n−k

k!

n−1∑
r=1

(−1)n−r

(
n

r − 1

) k∑
i=0

qi(r − 1)k−i

=
(−1)n−k

k!

n−2∑
ν=0

(−1)n−ν−1

(
n

ν

) k∑
i=0

qiν
k−i

where q0 = 1 and the remaining q are given in equation (5.2). Since 0 ≤ k ≤
n − 2, we have by (i)

∑n
ν=0(−1)n−ν

(
n
ν

)
νi = 0 for i = 0, 1, . . . , k, which gives∑n−2

ν=0(−1)n−ν−1
(
n
ν

)
νi = ni−n(n− 1)i for i = 0, 1, . . . , k. Hence by (5.2) and

(5.4)

I3 =
(−1)n−k

k!

( k∑
i=0

qin
k−i − n

k∑
i=0

qi(n− 1)k−i
)

=
(−1)n−k

k!
(
(k + 1)!− n(k!)

)
= (−1)n−k−1(n− k − 1).

Lemma 5.4. Let F (n) exist in [a, b], for some n ≥ 2, and let g be of bounded
variation in [a, b]. If G(x) = 1

(n−2)!

∫ x

a
(x− t)n−2g(t) dt for a ≤ x ≤ b, then the

function S defined by

S(x) = F (x)G(x) +
n−2∑
r=1

(−1)r

(
n

r

)
1

(r − 1)!

∫ x

a

(x− t)r−1F (t)G(r)(t)dt

+ (−1)n−1 n

(n− 2)!

∫ x

a

(x− t)n−2F (t)g(t)dt

+ (−1)n 1
(n− 2)!

∫ x

a

(x− t)n−2
(∫ t

a

Fdg
)
dt,

(5.5)

is such that S(n−1)) exists in [a, b] and for all x ∈ [a, b]

S(n−1)(x) =
(∫ x

a

F (n)G
)

+ (−1)n−1F (a)g(a)

=
n−2∑
k=0

(−1)kF (n−k−1)(x)G(k)(x) + (−1)n−1
(
F (x)g(x)−

∫ x

a

Fdg
)
.
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Proof. Integrating by parts

1
(r − 1)!

∫ x

a

(x− t)r−1F (t)G(r)(t)dt =
∫ x

a

dξ1
∫ ξ1

a

dξ2 · · ·
∫ ξr−1

a

FG(r),

and taking the derivative of order (n− 2), for 0 ≤ r ≤ n− 2 we have(
1

(r − 1)!

∫ x

a

(x− t)r−1F (t)G(r)(t)dt
)(n−2)

=
(
FG(r)

)(n−r−2)(x).

Similarly (
1

(n− 2)!

∫ x

a

(x− t)n−2F (t)g(t)dt
)(n−2)

=
∫ x

a

Fg,

and (
1

(n− 2)!

∫ x

a

(x− t)n−2
(∫ t

a

Fdg
)
dt

)(n−2)

=
∫ x

a

(∫ t

a

Fdg
)
dt.

Hence from (5.5)

S(n−2)(x) =
(
FG

)(n−2)(x) +
n−2∑
r=1

(−1)r

(
n

r

)(
F (x)G(r)(x)

)(n−r−2)

+ (−1)n−1n

∫ x

a

Fg + (−1)n

∫ x

a

(∫ t

a

Fdg
)
dt.

Since
(
n
r

)
=

(
n−2

r

)
+

(
n−2
r−1

)
+

(
n−1
r−1

)
, we have

S(n−2)(x) =
n−2∑
k=0

(
n− 2
k

)
F (k)(x)G(n−k−2)(x)

+
n−2∑
r=1

(−1)r

(
n− 2
r

)(n−r−2∑
k=0

(
n− r − 2

k

)
F (k)(x)G(n−k−2)(x)

)
(5.6)

+
n−2∑
r=1

(−1)r

((
n− 2
r − 1

)
+

(
n− 1
r − 1

))(n−r−2∑
k=0

(
n− r − 2

k

)
F (k)(x)G(n−k−2)(x)

)
+ (−1)n−1n

∫ x

a

Fg + (−1)n

∫ x

a

(∫ t

a

Fdg
)
dt.
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By Lemma 5.3 (ii)

n−2∑
k=0

(
n− 2
k

)
F (k)G(n−k−2)

+
n−2∑
r=1

(−1)r

(
n− 2
r

)(n−r−2∑
k=0

(
n− r − 2

k

)
F (k)G(n−k−2)

)

=
n−2∑
r=0

(−1)r

(
n− 2
r

)(n−r−2∑
k=0

(
n− r − 2

k

)
F (k)G(n−k−2)

)
(5.7)

=
n−2∑
k=0

(n−k−2)∑
r=0

(−1)r

(
n− 2
r

)(
n− r − 2

k

)
F (k)G(n−k−2) = F (n−2)G.

Also by Lemma 5.3 (iii)

n−3∑
r=1

(−1)r

(
n− 2
r − 1

)(n−r−2∑
k=1

(
n− r − 2

k

)
F (k)G(n−k−2)

)
(5.8)

=
n−3∑
k=1

(n−k−2∑
r=1

(−1)r

(
n− 2
r − 1

)(
n− r − 2

k

)
F (k)G(n−k−2)

)

=
n−3∑
k=1

(−1)n−k−2F (k)G(n−k−2),

and by Lemma 5.3 (iv)

n−3∑
r=1

(−1)r

(
n− 1
r − 1

)(n−r−2∑
k=1

(
n− r − 2

k

)
F (k)G(n−k−2)

)
(5.9)

=
n−3∑
k=1

(n−k−2∑
r=1

(−1)r

(
n− 1
r − 1

)(
n− r − 2

k

)
F (k)G(n−k−2)

)

=
n−3∑
k=1

(−1)n−k−2(n− k − 2)F (k)G(n−k−2).

Since
∑n−2

r=1 (−1)r
(
n−2
r−1

)
= (−1)n−2 and

∑n−2
r=1 (−1)r

(
n−1
r−1

)
= (−1)n−2(n− 2),

we have
n−2∑
r=1

(−1)r

((
n− 2
r − 1

)
+

(
n− 1
r − 1

))
= (−1)n−2(n− 1). (5.10)
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From (5.8), (5.9) and (5.10)
n−2∑
r=1

(−1)r

((
n− 2
r − 1

)
+

(
n− 1
r − 1

))(n−r−2∑
k=0

(
n− r − 2

k

)
F (k)G(n−k−2)

)

=
n−2∑
r=1

(−1)r

((
n− 2
r − 1

)
+

(
n− 1
r − 1

)))
FG(n−2) (5.11)

+
n−3∑
r=1

(−1)r

((
n− 2
r − 1

)
+

(
n− 1
r − 1

))(n−r−2∑
k=1

(
n− r − 2

k

)
F (k)G(n−k−2)

)

=(−1)n−2(n− 1)FG(n−2) +
n−3∑
k=1

(−1)n−k−2(n− k − 1)F (k)G(n−k−2).

Finally, integrating by parts yields

(−1)n−1n

∫ x

a

Fg + (−1)n

∫ x

a

(
∫ t

a

Fdg)dt

=(−1)n−1
(
n

∫ x

a

Fg −
∫ x

a

(
F (t)g(t)− F (a)g(a)−

∫ t

a

F ′(u)g(u)du
)
dt

)
=(−1)n−1

(
(n− 1)F (x)G(n−2)(x)− (n− 1)

∫ x

a

F ′G(n−2)

+
∫ x

a

(
F (a)g(a) + (

∫ t

a

F ′g)
)
dt

)
(5.12)

Using (5.7), (5.11) and (5.12) we get from (5.6)

S(n−2)(x) =F (n−2)(x)G(x) +
(n−3)∑
k=1

(−1)n−k−2(n− k − 1)F (k)(x)G(n−k−2)(x)

+(−1)n(n− 1)
∫ x

a

F ′G(n−2) + (−1)n−1

∫ x

a

(
F (a)g(a) + (

∫ t

a

F ′g)
)
dt

Hence

S(n−1)(x) =F (n−2)(x)G′(x) + F (n−1)(x)G(x)

+
(n−3)∑
k=1

(−1)n−k−2(n− k − 1)
(
F (k+1)(x)G(n−k−2)(x)

+ F (k)(x)G(n−k−1)(x)
)

+ (−1)n(n− 1)F ′(x)G(n−2)(x) (5.13)

+ (−1)n−1
(
F (a)g(a) +

∫ x

a

F ′g
)
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Now

(n−3)∑
k=1

(−1)n−k−2(n− k − 1)
(
F (k+1)G(n−k−2) + F (k)G(n−k−1)

)
=

n−2∑
k=2

(−1)n−k−1(n− k)F (k)G(n−k−1)

+
n−3∑
k=1

(−1)n−k−2(n− k − 1)F (k)G(n−k−1) (5.14)

=− 2F (n−2)G′ +
n−3∑
k=2

(−1)n−k−1
(
(n− k)− (n− k − 1)

)
F (k)G(n−k−1)

+ (−1)n−3(n− 2)F ′G(n−2)

=− F (n−2)G′ +
n−2∑
k=1

(−1)n−k−1F (k)G(n−k−1) + (−1)n−3(n− 1)F ′G(n−2).

Also integrating by parts successively leads to

∫ x

a

F ′g =
n−1∑
k=1

(−1)k−1F (k)(x)G(n−k−1)(x) + (−1)n−1

∫ x

a

F (n)G. (5.15)

Using (5.14) and (5.15) we get from (5.13)

S(n−1)(x) =
∫ x

a

F (n)G+ (−1)n−1F (a)g(a), (5.16)

which proves the first part.
Integrating the right-hand side of (5.16) by parts we get

S(n−1)(x) =
n−2∑
k=0

(−1)kF (n−k−1)(x)G(k)(x) + (−1)n−1
(
F (x)g(x)−

∫ x

a

Fdg
)
,

which completes the proof.

Lemma 5.5. Let M : [a, b] → R be continuous, g : [a, b] → R be of bounded
variation, and, for an n ≥ 2, let M(n−2) exist on [a, b]. If G is defined by
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G(x) = 1
(n−2)!

∫ x

a
(x− t)n−2g(t) dt, a ≤ x ≤ b, then the function S defined by

S(x) =M(x)G(x) +
n−2∑
r=1

(−1)r

(
n

r

)
1

(r − 1)!

∫ x

a

(x− t)r−1M(t)G(r)(t)dt

+
(−1)n−1n

(n− 2)!

∫ x

a

(x− t)n−2M(t)g(t)dt (5.17)

+
(−1)n

(n− 2)!

∫ x

a

(x− t)n−2
(∫ t

a

Mdg
)
dt

is such that:

(i) S is continuous and S(n−2) exists in [a, b];

(ii) tωn(S, x0, t) = tG(x0)ωn(M,x0, t) + o(1) for all x0, a < x0 < b;

(iii) if n > 2, then

ωn(S, x0, t) =G(x0)ωn(M,x0, t) + nG′(x0)
(
ωn−1(M,x0, t)

− n

tn

∫ t

a

ξn−1ωn−1(M,x0, ξ)dξ
)

+ o(1), for a < x0 < b;

(iii) ′ if n = 2, then3

ω2(S, x0, t) =G(x0)ω2(M,x0, t) + 2g(x0)
[
ω1(M,x0, t)

− 2
t2

∫ t

a

ξω1(M,x0, ξ)dξ
]
+ o(1),

for those x0, a < x0 < b, for which

x0+h

V
x0

(g) = O(h) and
x0

V
x0−h

(g) = O(h). (5.18)

(iv) for those x0, a < x0 < b, for which M(n−1)(x0)exists

S(n−1)(x0) =
n−1∑
r=1

(−1)n−r−1M(r)(x0)G(n−r−1)(x0)

+ (−1)n−1M(x0)g(x0) + (−1)n

∫ x

a

Mdg.

3The total variation of g in [c, d] is written
d
V
c
(g).
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Proof. Suppose that x0 ∈ [a, b], and without loss in generality assume x0 =
0. Let:

P (t) =M(0) + tM(1)(0) + · · ·+ tn−2

(n− 2)!
M(n−2)(0);

L(t) =M(t)− P (t);

R(t) =P (t)G(t) +
n−2∑
r=1

(−1)r

(r − 1)!

(
n

r

) ∫ t

0

(t− ξ)r−1P (t)G(r)(t)dξ

+
(−1)n−1n

(n− 2)!

∫ t

0

(t− ξ)n−2P (ξ)g(ξ)dξ (5.19)

+
(−1)n

(n− 2)!

∫ t

0

(t− ξ)n−2
(∫ ξ

0

Pdg
)
dξ;

T (t) =L(t)G(t) +
n−2∑
r=1

(−1)r

(r − 1)!

(
n

r

) ∫ t

0

(t− ξ)r−1L(ξ)G(r)(ξ)dξ

+
(−1)n−1n

(n− 2)!

∫ t

0

(t− ξ)n−2L(ξ)g(ξ)dξ (5.20)

+
(−1)n

(n− 2)!

∫ t

0

(t− ξ)n−2
(∫ ξ

0

Ldg
)
dξ;

U(t) =
(−1)n

(n− 2)!

∫ t

0

(t− ξ)n−2
(∫ 0

a

Mdg
)
dξ; (5.21)

V (t) =
n−2∑
r=1

(
n

r

)
(−1)r

(r − 1)!

∫ 0

a

(t− ξ)r−1M(ξ)G(r)(ξ)dξ (5.22)

+ (−1)n−1 n

(n− 2)!

∫ 0

a

(t− ξ)n−2M(ξ)g(ξ)dξ

+
(−1)n

(n− 2)!

∫ 0

a

(t− ξ)n−2
(∫ ξ

a

Mdg
)
dξ

Then, summing (5.19)–(5.22), we get from (5.17)

S = R+ T + U + V. (5.23)

Since P is a polynomial of degree at most (n − 2), by Lemma 5.4, R(n−1) is
constant and so R is a polynomial of degree at most (n−1). Also from (5.21),
(5.22)

U (n−1) = (−1)n

∫ 0

a

Mdg and V (n−1) = 0; (5.24)
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so R+ U + V is a polynomial of degree at most (n− 1).
Since

L(t) = M(t)− P (t) = o(tn−2) (5.25)

we have

1
(r − 1)!

∫ t

0

(t− ξ)r−1L(ξ)G(ξ)dξ = o(tn+r−2) for 1 ≤ r ≤ n− 2; (5.26)

1
(n− 2)!

∫ t

0

(t− ξ)n−2L(ξ)g(ξ)dξ = o(t2n−3); (5.27)

1
(n− 2)!

∫ t

0

(t− ξ)n−2
(∫ ξ

0

Ldg
)
dξ = o(t2n−3). (5.28)

From (5.20) and from (5.25)–(5.28) we get

T (t) = L(t)G(t) + o(tn−1). (5.29)

Since g is bounded

G(t) =G(0) + tg(0) +O(t) for n = 2, (5.30)

and

G(t) =G(0) + tG′(0) + o(t) for n > 2; (5.31)

and so from (5.23), (5,25), (5.29) and from (5.30) or (5.31)

S(t) = R(t) + U(t) + V (t) +G(0)L(t) + o(tn−1), (5.32)

Since R is a polynomial, from (5.24), (5.25) and (5.32) S is continuous and
S(n−2) exists in [a, b] proving (i). Further R+U +V is a polynomial of degree
(n− 1) so from (5.32)

ωn(S, 0, t) = G(0)ωn(L, 0, t) + o(t−1) = G(0)ωn(M, 0, t) + o(t−1),

proving (ii).
To prove (iii) note that in this case G′ exists and

G′(t)−G′(0) = O(t). (5.33)

Hence
G(t) = G(0) + tG′(0) +O(t2), (5.34)
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and so from (5.20), (5.26)–(5.28), (5.33) and (5.34)

T (t) =L(t)G(t)− n

∫ t

0

LG′ + o(tn)

=G(0)L(t) + tG′(0)L(t)− nG′(0)
∫ t

0

L+ o(tn).

Hence

T (t) + (−1)nT (−t) =G(0)
(
L(t) + (−1)nL(−t)

)
+G′(0)

(
L(t) + (−1)n−1L(−t)

)
t (5.35)

− nG′(0)
(∫ t

0

(
L(ξ) + (−1)n−1L(−ξ)

)
dξ

)
+ o(tn).

Since R+ U + V is a polynomial of degree (n− 1), from (5.23) and (5.35)

ωn(S, 0, t) =G(0)ωn(L, 0, t) + nG′(0)
(
ωn−1(L, 0, t)

− n

tn

∫ t

0

ξn−1ωn−1(L, 0, ξ)dξ
)

+O(1)

=G(0)ωn(M, 0, t) + nG′(0)
(
ωn−1(M, 0, t)

− n

tn

∫ t

0

ξn−1ωn−1(M, 0, ξ)dξ
)

+O(1),

proving (iii). For (iii)′ note from (5.18) that

g(t) = g(0) +O(t) (5.36)

and hence
G(t) = G(0) + tg(0) +O(t2). (5.37)

Also, from (5,18) and (5.25)∫ t

0

(
∫ ξ

0

Ldg)dξ = o(t2). (5.38)

From (5.36)–(5.38)

T (t) =L(t)G(t)− 2
∫ t

o

Lg +
∫ t

0

(∫ ξ

0

Ldg
)
dξ

=G(0)L(t) + tg(0)L(t)− 2
∫ t

0

g(0)L(ξ) dξ + o(t2),
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and hence

T (t) + T (−t) =G(0)
(
L(t) + L(−t)

)
+ g(0)

(
L(t)− L(−t)

)
t

− 2g(0)
∫ t

0

(
L(ξ)− L(−ξ)

)
dξ + o(t2).

(5.39)

Since R+ U + V is linear, we have from (5.23) and (5.39)

ω2(S, 0, t) =G(0)ω2(L, 0, t) + 2g(0)
L(t)− L(−t)

2t

− 2g(0)
t2

∫ t

0

(
L(ξ)− L(−ξ)

)
dξ + o(1)

=G(0)ω2(M, 0, t) + 2g(0)
(
ω1(M, 0, t)− 2

t2

∫ t

0

ξω1(M, 0, ξ) dξ
)

+ o(1),

proving (iii) ′.

To prove (iv) we have by Lemma 5.4

R(n−1)(x) =
n−2∑
k=0

(−1)kP (n−k−1)(x)G(k)(x)

+ (−1)n−1P (x)g(x) + (−1)n

∫ x

0

P dg

and hence

R(n−1)(0) =
n−2∑
k=0

(−1)kP (n−k−1)(0)G(k)(0) + (−1)n−1P (0)g(0)

=
n−2∑
k=1

(−1)kP (n−k−1)(0)G(k)(0) + (−1)n−1P (0)g(0),

(5.40)

since P is a polynomial of degree (n − 2). Since M(n−1)(0) exists, L(n−1)(0)
exists and L(n−1)(0) = M(n−1)(0). Hence, from (5.32), (5.24) and (5.40) we
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have

S(n−1)(0) =
n−2∑
r=1

(−1)n−r−1P (r)(0)G(n−r−1)(0) + (−1)n−1P (0)g(0)

+ (−1)n

∫ 0

a

M dg +M(n−1)(0)G(0)

=
n−1∑
r=1

(−1)n−r−1M(r)(0)G(n−r−1)(0)

+ (−1)n−1M(0)g(0) + (−1)n

∫ 0

a

M dg.

Theorem 5.6 (Integration by Parts). Let f be Tn integrable on [a, b],
n ≥ 2, and let F (x) = (Tn)

∫ x

a
f, x ∈ B. Let φ be the n-th primitive of f and

let φ satisfy

ωn−1(φ, x, t)−
n

tn

∫ t

0

ξn−1ωn−1(φ, x, ξ) dξ = O(1) (5.41)

nearly everywhere on (a, b). Let g be of bounded variation in [a, b] and let
G(x) = 1

(n−2)!

∫ x

a
(x− t)n−2g(t) dt, a ≤ x ≤ b. Then:

(i) if n > 2, then fG is Tn-integrable on [a, b] and

(Tn)
∫ b

a

fG =
[
φ(n−1)(x)G(x)−φ(n−2)(x)G′(x)

]∣∣∣b
a
+(Z∗(n−3))

∫ b

a

φ(n−2)G
(2);

the last integral exists by Theorems 5.1 and 5.2. Moreover, if F is Z∗n−2-
integrable on [a, b], then

(Tn)
∫ b

a

fG = F (x)G(x)
∣∣∣b
a
− (Z∗n−2)

∫ b

a

FG′;

(ii) if n = 2 and if g satisfies the conditions (5.18) nearly everywhere on
(a, b), then fG is Tn-integrable on [a, b] and

(T 2)
∫ b

a

fG =
[
φ(1)(x)G(x)− φ(x)G′(x)

]∣∣∣b
a

+
∫ b

a

φdg.

If moreover F is D∗-integrable on [a, b], then

(T 2)
∫ b

a

fG = F (x)G(x)
∣∣∣b
a
− (D∗)

∫ b

a

Fg.



An n-th Order Integral and Its Integration by Parts 479

Proof. (i) We first suppose that g ≥ 0. Then G ≥ 0 and G(r) ≥ 0 for
1 ≤ r ≤ n − 2. Let Q be any major function of f and let L = Q − φ. Then
L is n-convex and so L(n−1) exists, finitely, nearly everywhere in (a, b) and
so, nearly everywhere in (a, b), ωn−1(L, x, t) tends to a finite limit as t → 0.
Since by the mean value theorem n

tn

∫ t

0
ξn−1ωn−1(L, x, ξ) dξ = ωn−1(L, x, θt)

for 0 < θ < 1, we have nearly everywhere on (a, b) that

ωn−1(L, x, t)−
n

tn

∫ t

0

ξn−1ωn−1(L, x, ξ) dξ = o(1).

So by (5.41)

ωn−1(Q, x, t)−
n

tn

∫ t

0

ξn−1ωn−1(Q, x, ξ) dξ = O(1), (5.42)

nearly everywhere on (a, b). Let, a ≤ x ≤ b,

S(x) =Q(x)G(x) +
n−2∑
r=1

(−1)r

(r − 1)!

(
n

r

)∫ x

a

(x− t)r−1Q(t)G(r)(t) dt (5.43)

+
(−1)n−1n

(n− 2)!

∫ x

a

(x− t)n−2Q(t)g(t) dt+
(−1)n

(n− 2)!

∫ x

a

(x− t)n−2(
∫ t

a

Qdg) dt.

Then by Lemma 5.5 (i), (ii), in [a, b], S is continuous and S(n−2) exists, and
in (a, b) S is smooth of order n, and by Lemmas 5.5 (iv) S(n−1) exists at a
and b and almost everywhere in (a, b). Also by (5.42) and Lemma 5.5 (iii)
DnS > −∞ nearly everywhere on (a, b), and since the existence of Q(n−1)(x)
implies

ωn−1(Q, x, t)−
n

tn

∫ t

0

ξn−1ωn−1(Q, x, ξ) dξ = o(1),

DnS ≥ fG almost everywhere in (a, b). let

U(x) = S(x)−
n−1∑
r=0

(x− a)r

r!
S(r)(a).

Then U has the above properties of S and moreover U(r))(a) = 0 for r =
0, 1, . . . , (n− 1). So U is a major function of fG.

Similarly if q is a minor function of f , then u is a minor function of fG
where

u(x) = s(x)−
n−1∑
r=0

(x− a)r

r!
s(r)(a).
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and

s(x) =q(x)G(x) +
n−2∑
r=1

(−1)r

(r − 1)!

(
n

r

)∫ x

a

(x− t)r−1q(t)G(r)(t) dt (5.44)

+
(−1)n−1n

(n− 2)!

∫ x

a

(x− t)n−2q(t)g(t) dt+
(−1)n

(n− 2)!

∫ x

a

(x− t)n−2(
∫ t

a

q dg) dt.

Applying Lemma 5.5 (iv) in (5.43) and (5.44) we get∣∣S(n−1)(x0)− s(n−1)(x0)
∣∣ ≤

n−1∑
r=1

∣∣Q(r)(x0)− q(r)(x0)
∣∣G(n−r−1)(x0) (5.45)

+ |Q(x0)− q(x0)|g(x0) +
∣∣∫ x0

a

(Q− q) dg
∣∣,

for those x0 for which Q(n−1)(x0) and q(n−1)(x0) exist.
Let ε > 0 be arbitrary. Since f is integrable, there is a major function Q

and a minor function q which satisfy the conditions (4.1,1)–(4.1,n). For these
Q and q we have from (5.45)∣∣S(n−1)(b)− s(n−1)(b)

∣∣ ≤ Kε, (5.46)

where K is a constant. Since S(n−1)(a) = s(n−1)(a) = 0, by Lemma 5.5 (iv),
we have from (5.46) and from the definitions of U and u that

∣∣U(n−1)(b) −
u(n−1)(b)

∣∣ ≤ Kε, showing that fG is integrable on [a, b].
Now using integration by parts for the D∗-integral [17, p. 246], and then

successively for the Z∗r - integrals by Theorem 5.2∫ b

a

Qdg =Qg
∣∣∣b
a
−

∫ b

a

Q(1)g = Qg
∣∣∣b
a
−Q(1)G

(n−2)
∣∣∣b
a

+
∫ b

a

Q(2)G
(n−2) = · · ·

=Q(b)g(b) +
n−3∑
r=1

(−1)rQ(r)(b)G(n−r−1)(b) (5.47)

+ (−1)n−2(Z∗n−3)
∫ b

a

Q(n−2)G
(2).

Applying Lemma 5.5 (iv) to the function S in (5.43) we have

S(n−1)(b) =
n−1∑
r=1

(−1)n−r−1Q(r)(b)G(n−r−1)(b)

+ (−1)n−1Q(b)g(b) + (−1)n

∫ b

a

Qdg.

(5.48)
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From (5.47) and (5.48)

U(n−1)(b) =S(n−1)(b) = Q(n−1)(b)G(b)−Q(n−2)(b)G′(b)

+
∫ b

a

Q(n−2)G
(2).

(5.49)

Let ε > 0 be arbitrary. Then as in (4.6) and (4.9) there is a major function Q
of f such that

0 ≤Q(n−1)(b)− φ(n−1)(b) < ε,

0 ≤Q(n−2)(x)− φ(n−2)(x) < ε(b− a), a ≤ x ≤ b.

Hence

Q(n−1)(b)G(b)−Q(n−2)(b)G′(b) +
∫ b

a

Q(n−2)G
(2) (5.50)

< φ(n−1)(b)G(b)− φ(n−2)(b)G′(b) +
∫ b

a

φ(n−2)G
(2) + εK,

where K is a constant.
Since (5.49) holds for any major function Q of f , we have from (5.49) and

(5.50)

U(n−1)(b) < φ(n−1)(b)G(b)− φ(n−2)(b)G′(b) +
∫ b

a

φ(n−2)G
(2) + εK.

Since ε is arbitrary,∫ b

a

fG ≤ φ(n−1)(b)G(b)− φ(n−2)(b)G′(b) +
∫ b

a

φ(n−2)G
(2). (5.51)

In a similar manner, considering a minor function q of f we get∫ b

a

fG ≥ φ(n−1)(b)G(b)− φ(n−2)(b)G′(b) +
∫ b

a

φ(n−2)G
(2). (5.52)

From (5.51) and (5.52)∫ b

a

fG = φ(n−1)(b)G(b)− φ(n−2)(b)G′(b) +
∫ b

a

φ(n−2)G
(2), (5.53)

which completes the proof of the first part of (i).
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Now if F is Z∗n−2-integrable on [a, b], then since φ(n−2) is an indefinite
Z∗n−2-integral of F , we get using integration by parts for the Z∗n−2-integral,
by Theorem 5.2,

(Z∗n−2)
∫ b

a

FG′ = φ(n−2)(x)G′(x)
∣∣b
a
− (Z∗n−3)

∫ b

a

φ(n−2)G
(2). (5.54)

From (5.53) and (5,54) we get∫ b

a

fG = φ(n−1)(b)G(b)− (Z∗n−2)
∫ b

a

FG′,

which completes the proof of (i).
The proof of (ii) is similar but uses Lemma 5.5 (iii) ′ instead of Lemma

5.5 (iii).

6 Applications to Trigonometric Series.

We write for convenience:

A0(x) =
1
2
a0, An(x) = an cosnx+ bn sinnx, n ≥ 1,

B0(x) = 0, Bn(x) = bn cosnx− an sinnx, n ≥ 1,

C0(x) = 0, Cn(x) = −Bn(x)
n

, n ≥ 1,

A0
n(x) =

n∑
r=0

Ar(x), Ak
n(x) =

n∑
r=0

Ak−1
r (x), k ≥ 1;

with similar meaning for Bk
n(x) and Ck

n(x). The upper and lower (C, k) sums
of the series

∞∑
n=0

An(x) (6.1)

will be denoted by Sk(x) andsk(x) respectively.
The following theorem includes an extension of a result of Zygmund, [21,

II, p. 66, Theorem 2.1], and a result of Wolf, [20, Theorem B].

Theorem 6.1. Let k be a fixed positive integer and let the series (6.1) in-
tegrated term-by-term r times, r > k + 1, converge to a function F in some
neighborhood of x0. Then:

(i) if Ak−1
n (x0) = o(nk), then Dr−2F (x0) exists and F ∈ Sr(x0);
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(ii) if Ak
n(x0) = O(nk), then D

r
F (x0) and DrF (x0) are finite;

(iii) if Ak−1
n (x0) = o(nk) and if Ck−2

n (x0) = o(nk−1), then F(r−2)(x0) exists
finitely, where for k = 1 we take Ck−2

n (x0) to be C0
n(x0).

(iv) if Ak−1
n (x0) = o(nk), Ck−2

n (x0) = o(nk−1) and Ck−1
n (x0) = O(nk−1),

then F (r−1)(x0) and F (r−1)(x0) are finite.

Proof. We may assume that r = k+2, x0 = 0, a0 = 0 and at first we suppose
that r is even. Let

γ(t) =
cos t
tr

, t 6= 0; P (t) =
k/2∑
ν=0

(−1)ν t2ν

(2ν)!
;

λ(t) = γ(t)− P (t)
tr

=
∞∑

ν=k/2+1

(−1)ν t
2ν−r

(2ν)!
.

Then

F (t) + F (−t)
2

=(−1)r/2
∞∑

n=1

An(t) +An(−t)
2nr

= (−1)r/2
∞∑

n=1

an cosnt
nr

(6.2)

=(−1)r/2tr
∞∑

n=1

anγ(nt)

=(−1)r/2tr
∞∑

n=1

anP (nt)
(nt)r

+ (−1)r/2tr
∞∑

n=1

anλ(nt)

=
k/2∑
ν=0

t2ν

(2ν)!
β2ν +

tr

r!
ωr(t),

where

β2ν = (−1)r/2+ν
∞∑

n=1

ann
2ν−r; (6.3)

ωr(t) = (−1)r/2r!
∞∑

n=1

anλ(nt). (6.4)

Consider the difference operator ∆jun, for any sequence {un} defined by
∆1un = un − un+1 and ∆jun = ∆1(∆j−1un) for j > 1. It can be proved
by induction that

∆jun =
j∑

i=0

(−1)i

(
j

i

)
un+i. (6.5)
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Now, summing by parts k times and writing σk−1
n = Ak−1

n (0), we get from
(6.3) and (6.4)

β2ν = (−1)r/2+ν
∞∑

n=1

σk−1
n ∆kn2ν−r; (6.6)

ωr(t) = (−1)r/2r!
∞∑

n=1

σk−1
n ∆kλ(nt). (6.7)

Since λ is infinitely differentiable, for each i, 0 ≤ i ≤ k, there is a θi, 0 < θi < 1,
such that

λ(nt+ it) =
k−1∑
j=0

(it)j

j!
λ(j)(nt) +

(it)k

k!
λ(k)(nt+ θiit). (6.8)

Using (6.5) and (6.8)

∆kλ(nt) =
k∑

i=0

(−1)i

(
k

i

)(k−1∑
j=0

(it)j

j!
λ(j)(nt)

)

+
k∑

i=0

(−1)i

(
k

i

)
(it)k

k!
λ(k)(nt+ θiit)

=
k−1∑
j=0

tj

j!
λ(j)(nt)

( k∑
i=0

(−1)i

(
k

i

)
ij

)

+
k∑

i=0

(−1)i

(
k

i

)
(it)k

k!
λ(k)(nt+ θiit)

=
tk

k!

k∑
i=0

(−1)i

(
k

i

)
ikλ(k)(nt+ θiit).

(6.9)

Since λ(k) remains bounded, we have

∆kλ(nt) = O(tk). (6.10)

Since ∆kn2ν−r = O(n2ν−r−k) and σk−1
n = o(nk), and since 2ν − r ≤ −2, the

series in (6.6) is absolutely convergent and so β2ν is finite for ν = 0, 1, . . . k/2

Let 0 < t < 1 and choose a positive integer N such that N ≤ 1
t
< N + 1.



An n-th Order Integral and Its Integration by Parts 485

Then from (6.7)

∣∣tωr(t)
∣∣ = r!t

∣∣ ∞∑
n=1

σk−1
n ∆kλ(nt)

∣∣
≤ r!t

( N∑
n=1

∣∣σk−1
n ∆kλ(nt)

∣∣ +
∞∑

n=N+1

∣∣σk−1
n ∆kλ(nt)

∣∣)
= r!t

(
U(t) + V (t)

)
, say.

(6.11)

From (6.10) there is a constant C such that

r!tU(t) ≤Ctk+1
N∑

n=1

∣∣σk−1
n

∣∣ = Ctk+1
N∑

n=1

o(nk)

=Ctk+1o(Nk+1) = o(1).

(6.12)

Again if x ≥ 1, then there are constants C1 and C2 such that
∣∣γ(k)(x)

∣∣ ≤ C1x
−r

and
∣∣(P (x)x−r

)(k)∣∣ ≤ C2x
−r and so

∣∣λ(k)(x)
∣∣ ≤ (C1 + C2)x−r. Therefore if

n ≥ N + 1, then nt ≥ (N + 1)t > 1 and so

∣∣λ(k)(nt+ θiit)
∣∣ ≤ C1 + C2

(nt+ θiit)r
≤ C1 + C2

(nt)r
, 0 ≤ i ≤ k. (6.13)

From (6.9) and (6.13) there is a constant C3 such that
∣∣∆kλ(nt)

∣∣ ≤ C3t
k/(nt)r,

and therefore

r!tV (t) = r!t
( ∞∑
n=N+1

∣∣σk−1
n ∆kλ(nt)

∣∣) ≤ C3r!tk+1
∞∑

n=N+1

∣∣σk−1
n

∣∣
(nt)r

= C3
r!
t

∞∑
n=N+1

o(nk)
nr

= C3
r!
t

∞∑
n=N+1

o(n−2) = o(1).

(6.14)

From (6.11), (6.12) and (6.14) we get

tωr(t) = o(1). (6.15)

Hence (tr/r!)ωr(t) = o(tk+1), that is, (tr/r!)ωr(t) = o(tk). So from (6.2), (2.1)
and (2.3) it follows that β2ν is the symmetric d.l.V.P. derivative of F at 0 of
order 2ν, 0 ≤ ν ≤ k/2, and ωr(t) is ωr(F, 0, t) defined in (2.3). It also follows
from (6.15) that F is smooth at 0 of order r. This completes the proof of (i).
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To prove (ii), summing by parts (k + 1) times and writing σk
n = Ak

n(0) we
get from (6.4) that

ωr(t) = (−1)r/2r!
∞∑

n=1

σk
n∆k+1λ(nt). (6.16)

Taking 0 < t < 1 and N ≤ t−1 < N + 1 we get,as above, from (6.16)

∣∣ωr(t)
∣∣ ≤ r!

N∑
n=1

∣∣σk
n∆k+1λ(nt)

∣∣ + r!
∞∑

n=N+1

∣∣σk
n∆k+1λ(nt)

∣∣
= G(t) +H(t), say.

(6.17)

As in (6.10) we have ∆k+1(nt) = O(tk+1) and form this we have, as in (6.12)

G(t) ≤ C1t
k+1

N∑
n=1

|σk
n| = O(1), (6.18)

where C1 is a constant. Also if n ≥ N + 1, then we have as in (6.14) that

H(t) = O(1). (6.19)

From (6.17)–(6.19) ωr(t) = O(1), completing the proof of (ii).
Now since a0 = 0, F is obtained from

∑
Cn(x) by integrating this series

term-by-term (r−1) times. So replacing k, r and Ak−1
n (x0) by k−1, r−1 and

Ck−2
n (x0) respectively, we get from (i) that F is smooth at x0 of order r − 1.

Also by (i) F is smooth at x0 of order r. So, by [13, Lemma 2.1], F(r−2)(x0)
exists. This proves (iii).

Now note that since F is obtained from
∑
Cn(x) we apply (ii) to get that

D
r−1

F (x0) and Dr−1F (x0) are finite. Also by (i) F is smooth at x0 of order
r and by (iii) F(r−2)(x0) exists. So DiF (x0) exists and DiF (x0) = F(i)(x0)
for i = 1, 2, . . . r− 2. Hence by a simple calculation applying (2.2), (2.3), (2.6)
and (2.7) we have

ωr−1(F, x0, t) +
t

r
ωr(F, x0, t) = γr−1(F, x0, t);

and so F being smooth at x0 of order r, we have that F (r−1)(x0) = Dr−1(x0)

and F (r−1)(x0) = D
r−1

(x0), completing the proof of (iv) and the consideration
of the case r even.
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If r is odd let

γ(t) =
sin t
tr+1

, t 6= 0; P (t) =
(k−1)/2∑

ν=0

(−1)ν t2ν + 1
(2ν + 1)!

;

λ(t) = γ(t)− P (t)
tr+1

=
∞∑

ν=(k+1)/2

(−1)ν t2ν−r

(2ν + 1)!
.

and compute

F (t)− F (−t)
2

=
(k−1)/2∑

ν=0

t2ν+1

(2ν + 1)!
β2ν+1 +

tr

r!
ωr(t);

where

β2ν+1 = (−1)(r−1)/2+ν
∞∑

n=1

ann
2ν+1−r;

ωr(t) = (−1)(r−1)/2r!
∞∑

n=1

anntλ(nt).

The rest of the proof of this case is similar to the above and is omitted.

Theorem 6.2. Let the series (6.1) be such that

(i) −∞ < sk(x) ≤ Sk(x) <∞ nearly everywhere;

(ii) Ak−1
n (x) = o(nk) for all x;

(iii) Ck−2
n (x) = o(nk−1) for all x;

(iv) Ck−1
n (x) = O(nk−1) nearly everywhere.

Then the series obtained by integrating (6.1) term-by-term (k + 2) times con-
verges to a continuous function G such that G(k+2) exists almost everywhere
and is T k+2-integrable and (6.1) is the T k+2-Fourier series of G(k+2). More-
over, for each j, 1 ≤ j ≤ k+ 1, the (k+ 2− j) times integrated series of (6.1)
is the Z∗j−1-Fourier series of G(j)(x)−

(
a0x

k+2−j
/
2(k + 2− j)!

)
.

Proof. Condition (i) implies that an = O(nk), bn = O(nk); [21, Volume I,
p. 317, Theorem 1.4] and therefore the series obtained by integrating (6.1)
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term-by-term (k + 2) times converges uniformly to a continuous function, G
say. Let

H(x) = G(x)− a0

2
xk+2

(k + 2)!
. (6.20)

By Theorem 6.1 G(k) exists, G is smooth of order (k + 2) everywhere and

G(k+1), G(k+1), D
k+2G,D

k+2
G are all finite nearly everywhere. So from (6.20)

H(k) exists, H is smooth of order (k + 2) everywhere and nearly everywhere

−∞ < H(k+1) ≤ H(k+1) <∞, (6.21)

−∞ < Dk+2H ≤ D
k+2

H <∞. (6.22)

From (6.22) and Lemma 3.4 H(k+2) exists finitely almost everywhere. Let
B be the set where H(k+1) exists finitely. By Theorem 4.13 H(k+2) is T k+2-
integrable and

(T k+2)
∫ x2

x1

H(k+2) = H(k+1)(x2)−H(k+1)(x1), for x1, x2 ∈ B. (6.23)

Let α ∈ B. Then α + 2π ∈ B. So from (6.23) and (6.20) we get that
(T k+2)

∫ α+2π

α
(G(k+2) −

a0

2
) = 0 giving

a0 =
1
π

(T k+2)
∫ α+2π

α

G(k+2). (6.24)

Let k be even. Then from (6.20)

H(x) = (−1)k/2+1
∞∑

n=1

An(x)
nk+2

. (6.25)

Since the series in (6.25) converges uniformly, it is the Lebesgue-Fourier series
of H. Hence

(−1)k/2+1 an

nk+2
=

1
π

(L)
∫ α+2π

α

H(x) cosnxdx. (6.26)

SinceH(k) exists in [α, α+2π] andH(k+1) exists almost everywhere in the same
interval and since (6.21) is satisfied nearly everywhere, we have by Theorem
5.1 that the function H(r) is Z∗r−1-integrable with H(r−1) its indefinite Z∗r−1-
integral, r = 1, 2, . . . , k + 1. Hence applying Theorem 5.2 successively we
get

(Z∗k)
∫ α+2π

α

H(k+1)(x) sinnxdx = (−1)k/2+1nk+1(L)
∫ α+2π

α

H(x) cosnxdx.

(6.27)
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Writing
F (x) = H(k+1)(x)−H(k+1)(α), x ∈ B, (6.28)

we have from (6.23) that F (x) = (T k+2)
∫ x

α
H(k+2), x ∈ B. Also from (6.21)

and Lemma 3.3 ωk+1(H,x, t) = O(1) nearly everywhere, and so nearly every-
where we have

ωk+1(H,x, t)−
k + 2
tk+2

∫ t

0

ξk+1ωk+1(H,x, ξ) dξ = O(1).

Integrating by parts by Theorem 5.6

(T k+2)
∫ α+2π

α

H(k+2)(x) cosnxdx

= F (x) cosnx
∣∣α+2π

α
+ n(Z∗k)

∫ α+2π

α

F (x) sinnxdx.
(6.29)

Now F (α) = 0 and since by (6.25) H(k+1) is periodic, by (6.28), F (α+2π) = 0.
So from (6.20), (6.29), (6.27) and (6.26)

(T k+2)
∫ α+2π

α

G(k+2)(x) cosnxdx

= (T k+2)
∫ α+2π

α

H(k+2)(x) cosnxdx

= n(Z∗k)
∫ α+2π

α

H(k+1)(x) sinnxdx

= (−1)k/2+1nk+2(L)
∫ α+2π

α

H(x) cosnxdx = πan.

(6.30)

Similarly

(T k+2)
∫ α+2π

α

G(k+2)(x) sinnxdx = πbn. (6.31)

The first part of the theorem now follows from (6.24), (6.30) and (6.31).
To prove the second part note that since G(j) is Z∗j−1-integrable for j =

1, . . . , k + 1 we have, when j is even, by Theorem 5.2, (6.25) and (6.26)

1
π

(Z∗j−1)
∫ α+2π

α

H(j)(x) cosnxdx =(−1)j/2nj 1
π

(D∗)
∫ α+2π

α

H(x) cosnxdx

=(−1)(k+2−j)/2 an

nk+2−j
.
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When j is odd an analogous relation holds.
This completes the proof of the theorem in the case of even k; the proof

when k is odd is similar.

Remark. If in Theorem 6.2 the (C, k) summability almost everywhere of the
series (6.1) is assumed, in addition to (i), and if the conditions (iii) and (iv)
are replaced by the single condition Bk−1

n (x) = o(nk) for all x, then it can be
proved that (6.1) is the Fourier series of f where f is its (C, k) sum. However
now we have to apply formal multiplication of trigonometric series since the
integration by parts formula cannot be used.

7 Concluding Remarks.

In [3] we gave a proof for the integration by parts formula for the SCP -integral
in the following form; [3, Theorem 1].

Theorem 7.1. Assume that f is (SCP,B)-integrable on [a, b] and let F (x) =
(SCP,B)

∫ x

a
f, x ∈ B. Let g be a continuous function of bounded variation

on [a, b] with G(x) =
∫ x

a
g, a ≤ x ≤ b. If

ω1(φ, x, h) = O(h) nearly everywhere, (7.1)

where φ(x) = (D∗)
∫ x

a
F, a ≤ x ≤ b. Then fG is (SCP,B)-integrable on [a, b]

and (SCP,B)
∫ b

a
fG = FG

∣∣b
a
− (D∗)

∫ b

a
Fg.

We also remarked at the end of [3] that this integration by parts formula
could not be applied to solve the so-called ‘coefficient problem’ for convergent
trigonometric series because the condition (7.1) need not be satisfied by every
φ that is the sum of the twice integrated series of a convergent trigonometric
series. However Skljarenko, [18], proved the above theorem without assuming
the condition (7.1) and we have shown, [14], that not only is the condition
(7.1) redundant but also the requirement made above that the function g be
continuous. Since the proofs in [18] and [14] are long and involved whereas the
proof of Theorem 5.6 is considerably simpler when n = 2 we will now discuss
how Theorem 5.6, in the case n = 2, which is the same as Theorem 7.1 except
that (7.1) is replaced by

ω1(φ, x, h)−
2
h2

∫ h

0

ξω1(φ, x, ξ) dξ = O(1); (7.2)

x+h

V
x

(g) = O(h);
x

V
x−h

(g) = O(h), (7.3)
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and omitting the condition of continuity of g, helps to solve the coefficient
problem. All we need to show is that for every convergent trigonometric series
the function φ satisfies the condition (7.2), since (7.3) is satisfied trivially as
g(x) is either cosnx or sinnx. This we do in the following theorem.

Theorem 7.2. Let (6.1) be such that
∑n

k=1kρk =O(n2), where ρn =
√
a2

n + b2n;
and let φ and ψ be the sum of the twice and thrice integrated series of (6.1).
Then for all x

φ(x+ h)− φ(x− h)
2h

− ψ(x+ h)− 2ψ(x) + ψ(x− h)
h2

= O(1). (7.4)

Proof. Let 0 < h < 1 and N be a positive integer such that N ≤ 1
h < N + 1

and suppose that a0 = 0. Since φ and ψ are the sums of once and twice

integrated series of −
∞∑

n=1

Bn(x)
n

, we have

φ(x+ h)− φ(x− h)
2h

=−
∞∑

n=1

Bn(x)
n

sinnh
nh

;

ψ(x+ h)− 2ψ(x) + ψ(x− h)
h2

=−
∞∑

n=1

Bn(x)
n

( sinnh
nh

)2

.

So the left-hand side of (7.4) is

−
N∑

n=1

Bn(x)
n

(
sinnh
nh

−
( sinnh

nh

)2
)
−

∞∑
n=N+1

Bn(x)
n

sinnh
nh

+
∞∑

n=N+1

Bn(x)
n

( sinnh
nh

)2

= P +Q+R, say;

see [21, Volume I, pp. 319–322]. Since
sinu
u

−
( sinu

u

)2

= O(u2) writing
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τn =
∑n

k=1 kρk, we have:

|P | ≤
N∑

n=1

ρn

n
O(n2h2) = O

(
(h2

N∑
n=1

nρn

)
= O(1);

|Q| ≤ 1
h

∞∑
n=N+1

ρn

n2
=

1
h

∞∑
n=N+1

nρn

n3
=

1
h

∞∑
n=N+1

τn − τn−1

n3

≤ 1
h

∞∑
n=N+1

τn

( 1
n3

− 1
(n+ 1)3

)
=

1
h

∞∑
n=N+1

O(n2)O(n−4)

= O(N)O(N−1) = O(1);

|R| ≤ 1
h2

∞∑
n=N+1

ρn

n3
=

1
h2

∞∑
n=N+1

nρn

n4
=

1
h2

∞∑
n=N+1

τn − τn−1

n4

≤ 1
h2

∞∑
n=N+1

τn

( 1
n4

− 1
(n+ 1)4

)
= O(N2)

∞∑
n=N+1

O(n2)O(n−5)

= O(N2)
∞∑

n=N+1

O(n−3) = O(N2)O(N−2) = O(1).

Now if (6.1) is convergent, then an = o(1), bn = o(1) and so ρn = o(1).
Hence

∑n
k=1 kρk =

∑n
k=1 o(k) = o(n2) and so by Theorem 7.2 the condition

(7.4) is satisfied and hence the condition (7.2) is also satisfied. Thus the
problem raised in our remark in [3] is solved.
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