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Abstract

Green’s Theorem is proved using only the geometric (or physical)
definition of curl, without the use of partial derivatives. The curl free
(conservative) case can then be used to prove Cauchy’s Theorem.

1 Introduction.

Tradition has it that in order to deduce Cauchy’s Integral Theorem from
Green’s Theorem, one must assume continuity of the partial derivatives in
the Cauchy-Riemann equations. A generalization of this hypothesis requires
that the pointwise partial derivatives are distribution derivatives in L2

loc. The
continuity then follows from elliptic regularity of the Cauchy-Riemann oper-
ator (cf. [2]). But this is still an extra assumption as is seen by the example
of Cantor’s singular function. For Cantor’s function, the usual (pointwise)
derivative exists and is zero almost everywhere, but the distribution derivative
is the corresponding Lebesgue-Stieltjes measure (by the Riesz Representation
Theorem, cf. [8]).

In the next section concerning continuous two dimensional vector fields we
show that an extra hypothesis is unnecessary if curl is treated as a strictly ge-
ometric measure of circulation intensity. It is sufficient that the limit defining
curl be uniform on compacta. When curl vanishes identically, this unifor-
mity is equivalent to zero circulation around every square with sides parallel
to the coordinate axes. This is analogous to the proof of Cauchy’s Theorem
for a square, and is accomplished, as there, by bisection (cf. [15]). Thus
by verifying that complex contour integrals of holomorphic functions satisfy
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a condition implying Green’s Theorem, one obtains Cauchy’s Theorem from
Green’s Theorem.

Our hypothesis that the limit defining curl is uniform on compacta enables
one to mimic the proof of Green’s Theorem given in [3]. But that proof re-
quires a rather intricate geometric construction to treat general boundaries.
In contrast, the treatment of complex contour integrals over simple closed rec-
tifiable oriented curves to prove Cauchy’s Theorem involves considerably less
geometrical insight (cf. [3, Chapter 9] or [10]). In the treatment of Green’s
Theorem in many references, this issue is avoided by only considering curves
which are also smooth or piecewise smooth manifolds (cf. [16]). But as is
pointed out in [9], there are quite elementary examples of simple closed rec-
tifiable oriented curves which are not even topological manifolds. Our proof
of Green’s Theorem is constructed so that the boundary integral is treated in
a fashion analogous to the complex contour integral case. The key is the ob-
servation that when one has a parameterization, integration over a rectifiable
curve which may not be simple is not a problem. The end result is some sim-
plification to an exposition including both the theorems of Green and Cauchy,
as compared with, for example, [14]. We also obtain that a continuous radial
vector field is conservative even if nowhere pointwise differentiable.

In the final section, we extend Green’s Theorem by regularization to vector
fields with integrable partial derivatives in the sense of distributions. Some
vector fields with stronger singularities are then examined geometrically, and
it is shown that Cauchy’s Integral Formula of complex analysis is a natural
consequence of the geometric approach. We then close with comments on two
dimensional divergence, and a geometric characterization of holomorphy.

2 Results for Continuous Vector Fields.

Let Ω be a domain in R2, and let F = (P,Q) : Ω → R2 be continuous. For
(x0, y0) ∈ Ω and 0 < ε < dist((x0, y0), ∂Ω), where ∂Ω is the boundary of Ω,
let Rε be the open square {(x, y) : |x− x0| < ε/2 and |y − y0| < ε/2}. Let Cε

denote the positively oriented (square) curve whose range is ∂Rε. Recall that
the circulation of F around Cε is∫

Cε

F · dr =
∫

Cε

(P dx + Qdy),

and that positive orientation means in the counterclockwise sense. The circu-
lation intensity, or curl, of F at (x0, y0) is defined to be

curl F(x0, y0) = lim
ε→0

∫
Cε

F · dr
Area (Rε)

= lim
ε→0

1
ε2

∫
Cε

F · dr, (1)
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provided the limit exists. For the present, we will assume that the limit in
(1) is uniform on compact subsets of Ω; i.e., if K is a compact subset of Ω
with dist (K, ∂Ω) = d, for each η > 0 there exists ε0 ≤ d such that whenever
0 < ε < ε0, ∣∣∣∣curl F(x0, y0)−

1
ε2

∫
Cε

F · dr
∣∣∣∣ < η for all (x0, y0) ∈ K.

Since F is continuous, this implies that curl F is continuous.

Theorem 1. (Green’s Theorem) Let C be a simple closed rectifiable oriented
curve with interior R and R = R∪∂R ⊂ Ω. Then if the limit in (1) is uniform
on compact subsets of Ω, ∫

R

curl F dA =
∫

C

F · dr.

Before considering the proof of Theorem 1, we proceed to show how it
implies Cauchy’s Theorem. For this, we need part ii) of the following lemma.
The notation Ω′ ⊂⊂ Ω is used to denote that Ω′ is a set whose closure Ω

′
is a

compact subset of Ω.

Lemma 2. Let K be a compact subset of Ω which is the closure of its interior,
and let Ω′ be open with K ⊂ Ω′ ⊂⊂ Ω. Then:

i) the limit in (1) is uniform on K if ∂Q
∂x and ∂P

∂y are continuous on Ω′;
and

ii) if curl F = 0 on Ω′, the limit in (1) is uniform on K if and only if
for every square Rε as above with center in K and closure in Ω′, the
circulation around Cε is zero.

Proof. Criterion i) is classical and is a consequence of the identity,∫
Cε

F · dr =
∫

Rε

[
∂Q

∂x
− ∂P

∂y

]
dA,

since then ∣∣∣∣ 1
ε2

∫
Cε

F · dr−
(

∂Q

∂x
(x0, y0)−

∂P

∂y
(x0, y0)

)∣∣∣∣
≤ sup

(x,y)∈Rε

∣∣∣∣(∂Q

∂x
(x, y)− ∂P

∂y
(x, y)

)
−

(
∂Q

∂x
(x0, y0)−

∂P

∂y
(x0, y0)

)∣∣∣∣ ,

and uniform convergence on compacta follows from uniform continuity there.
In case ii) sufficiency is obvious. For necessity, let Rε be any open square with
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center in K, sides parallel to the coordinate axes, and closure in Ω′. Further,
let

k =
∣∣∣∣∫

Cε

F · dr
∣∣∣∣ .

Then if Rε is subdivided into four congruent squares, at least one, call it R1,ε,
satisfies ∣∣∣∣∣

∫
C1,ε

F · dr

∣∣∣∣∣ ≥ k

4
.

Continuing by induction, at the nth stage Rε is subdivided into 4n congruent
squares, at least one of which, Rn,ε, with Rn,ε ⊂ Rn−1,ε satisfies,∣∣∣∣∣

∫
Cn,ε

F · dr

∣∣∣∣∣ ≥ k

4n
.

There is exactly one point (x̂, ŷ) common to all the nested closed squares Rn,ε

and there

curl F(x̂, ŷ) = lim
n→∞

curl F(xn, yn)

= lim
n→∞

1
(ε/2n)2

∫
Cn,ε

F · dr

= lim
n→∞

4n

ε2

∫
Cn,ε

F · dr = 0,

by local uniformity of the limit in (1). So k = 0, and we are done.

To prove Cauchy’s Theorem recall that if Ω is a domain in C, a function
f : Ω → C is holomorphic on Ω if

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

(2)

exists at each z0 = x0 + iy0 ∈ Ω. Herein also z = x+ iy, and i is the imaginary
unit. Then f is continuous on Ω, and we may write (2) as

f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)η(z), (3)

where η(z) is continuous on Ω and η(z) → 0 as z → z0. With Cε as previously
we may integrate both sides of (3) around Cε, and obtain∫

Cε

f(z)dz =
∫

Cε

(z − z0)η(z)dz,
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since 1 and z have primitives. But the magnitude of the latter integral is
dominated by 2

√
2ε2 max

∂Rε

|η(z)|. Thus

lim
ε→0

1
ε2

∫
Cε

f(z) dz = 0,

and if f(z) = f(x + iy) = u(x, y) + iv(x, y),∫
Cε

f(z) dz =
∫

Cε

(u dx− v dy) + i

∫
Cε

(v dx + u dy).

So holomorphy of f on Ω implies that both of the real vector fields (u,−v) and
(v, u) are continuous with vanishing curl on Ω. To verify that ii) of Lemma 2
applies, fix ε and let

k =
∣∣∣∣∫

Cε

f(z) dz

∣∣∣∣ .

Then bisection as in the proof of ii) of Lemma 2 yields the inequality

k

4n
≤

∣∣∣∣∣
∫

Cn,ε

f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫

Cn,ε

(z − z0)η(z) dz

∣∣∣∣∣ ≤ 4ε

2n
·
√

2ε

2n
max
∂Rn,ε

|η(z)| ,

where z0 is the limit of the centers of the nested squares {Cn,ε}. Thus

k ≤ 4
√

2ε2 max
∂Rn,ε

|η(z)| → 0 as n →∞.

Thus k = 0, so by Lemma 2 and Theorem 1, we have proved the following.

Theorem 3. (Cauchy’s Theorem) Let C be a simple closed rectifiable oriented
curve in Ω with interior R and R ⊂ Ω. Then if f is holomorphic on Ω,∫

C

f(z) dz = 0.

Proof of Theorem 1. We first use classical geometric ideas (cf. [13]) to prove
the theorem for the square R = {(x, y) : |x − x0| < `/2 and |y − y0| < `/2}.
For each positive integer m, consider the subdivision of R by the grid of m2

congruent squares of side length `/m, and pick η > 0. Since the limit in (1)
is uniform on compacta, there exists an integer M such that for each square
Rj,ε of the grid with ε = `/M ,∣∣∣∣∣ε2 curl F(xj , yj)−

∫
Cj,ε

F · dr

∣∣∣∣∣ < ηε2,
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where (xj , yj) is the center of Rj,ε. Addition over the M2 squares of the grid
gives ∣∣∣ ∑

j

curl F(xj , yj)ε2 −
∫

C

F · dr
∣∣∣ < η`2,

and this inequality holds if M is increased. But the sum is a Riemann sum
for

∫
R

curl F dA, and η is arbitrary. So the theorem is proved for squares with
sides parallel to the coordinate axes.

We next use ideas from [3] to prove the theorem for a polygon. Since every
polygon can be triangulated (cf. [10]), a standard argument shows that it
suffices to prove that the theorem holds whenever R is an open triangle with
R ⊂ Ω.

For ε > 0 let S(ε) be the collection of open squares in R2 determined
by the lines x = mε, y = mε, m = 0,±1,±2, . . .. Then R can be cov-
ered by a finite union of closures R1, R2, . . . , Rn of squares of S(ε), where
R1, . . . , Rk, k < n, are all the squares in S(ε) whose closures are contained
in R, and Rk+1, . . . , Rn are the squares in S(ε) whose closures intersect ∂R.
We discard any of Rk+1, . . . , Rn which have empty intersections with R. It is

obvious that if Rk = Int
( k⋃

j=1

Rj

)
,∫

Rk

curl F dA =
∫

R

χRk
curl F dA =

∫
Ck

F · dr, (4)

where χRk
is the characteristic function ofRk, and Ck is the positively oriented

curve whose range is ∂Rk. The dominated convergence theorem (the restricted
version for Riemann integrals, cf. [11], is sufficient) implies that the left side

of (4) converges to
∫

R

curl F dA as ε → 0.

To find the limit of the right side of (4) first let Bj = R
⋂

Rj , j = k +
1, . . . , n, and note that by construction, none of the sets Bj is empty. Then
each set Bj is either a triangle or a convex quadrilateral, and∫

C

F · dr =
∫
Ck

F · dr +
n∑

j=k+1

∫
Cj

F · dr,

where Cj is the positively oriented curve with range ∂Bj . It remains to show
that the latter sum of integrals tends to zero with ε. For this purpose, let N
be the greatest integer less than or equal to L(C)/ε, where L(C) is the length
of C. Starting at one corner of the triangle R, decompose C into N arcs of
length ε, and possibly one of length less than ε. Of such arcs, the linear ones
can (by construction) intersect at most three of Rk+1, . . . , Rn, while the at
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most two arcs with corners can intersect at most four of Rk+1, . . . , Rn. Thus
n− k < 8 + 3(N − 1) = 5 + 3N ≤ 5 + 3L(C)/ε. For j = k + 1, . . . , n, let

ρj = max
∂Bj

P −min
∂Bj

P, σj = max
∂Bj

Q−min
∂Bj

Q,

and choose η > 0. Now note, as in [3], that for any constant K∫
Cj

P dx =
∫

Cj

(P −K) dx,

so by choosing K =
1
2

(
max
∂Bj

P −min
∂Bj

P

)
one obtains |P (x, y)−K| ≤ 1

2ρj for

all (x, y) ∈ ∂Bj and so ∣∣∣∣∣
∫

Cj

P dx

∣∣∣∣∣ ≤ 1
2
ρjL(Cj). (5)

Similarly, ∣∣∣∣∣
∫

Cj

Qdy

∣∣∣∣∣ ≤ 1
2
σjL(Cj), (6)

and so by continuity of P and Q there exists ε0 ≤ 1 such that if 0 < ε < ε0,∣∣∣∣∣
∫

Cj

(P dx + Qdy)

∣∣∣∣∣ ≤ 1
2
(ρj + σj)L(Cj) < ηL(Cj)

for all j = k + 1, . . . , n. But then

n∑
j=k+1

L(Cj) ≤ L(C) + 4ε(n− k) < 20 + 12L(C),

so ∣∣∣∣∣∣
n∑

j=k+1

∫
Cj

F · dr

∣∣∣∣∣∣ < η(20 + 12L(C)).

Since η is arbitrary, this concludes the proof for polygons.
We are now ready to prove the theorem in full generality. Let π be a

polygonal path approximation to the rectifiable curve C, with π
⋃

Intπ ⊂ Ω.
As noted in [10], π may enclose more than one open connected polygonal
region. If this is the case, parameterization of π will not yield a simple curve.
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This is of concern in the non-conservative case due to the reversal of orientation
at crossing points. We proceed by first parameterizing π.

For this purpose, pick η > 0. By continuity of P and Q, each point (x, y)
on ∂R is the center of an open disk D(x, y) such that both

ρx,y = supP − inf P and σx,y = sup Q− inf Q

are less than η/2L(C), where the suprema and infima are over D(x, y). Since
∂R is compact, there are a finite number D1, D2, . . . , DM of such disks which
cover ∂R, with corresponding quantities ρj and σj for j = 1, . . . ,M . Pick the
polygonal path π such that the endpoints of each linear segment lie within a
single disk Dj . There may be more than M linear segments in π, N ≥ M
say. Call the endpoints of the linear segments of π, ordered with the positive
orientation of C,P1, P2, . . . , PN+1 = P1. For each j = 1, 2, . . . , N we form a
rectifiable oriented closed curve Cj , in general not simple, as follows. Proceed
from Pj to Pj+1 along the linear segment of π joining Pj to Pj+1 and then
proceed back from Pj+1 to Pj along C via reverse parameterization of C. Then∫

Cj

F · dr =
∫

πj

F · dr−
∫

γj

F · dr,

where πj and γj are the corresponding arcs with orientation induced by π and
C, respectively. By refinement, if necessary, all the points of each curve Cj lie
in a single disk Dj . The proof of inequalities (5) and (6) did not require that
the rectifiable oriented closed curves Cj be simple. Thus∣∣∣∣∣

∫
Cj

F · dr

∣∣∣∣∣ =

∣∣∣∣∣
∫

πj

F · dr−
∫

γj

F · dr

∣∣∣∣∣ < η
L(Cj)
2L(C)

for each j = 1, 2, . . . , N . Since
N∑

j=1

L(Cj) =
N∑

j=1

L(πj) +
N∑

j=1

L(γj) = L(π) + L(C) ≤ 2L(C),

addition gives ∣∣∣∣∫
π

F · dr−
∫

C

F · dr
∣∣∣∣ < η. (7)

Note that (7) remains true if the polygonal approximation π is further refined.
To complete the proof, let Λ(δ) = {(x, y) : dist ((x, y), ∂R) < δ}, and

assume that δ is small enough that Λ(δ) ⊂ Ω. By refinement, if necessary, we
may assume that the polygonal path π is contained in Λ(δ). Then∫

R\Λ(δ)

curl F dA +
∫

Int π
T

Λ(δ)

f dA =
∫

π

F · dr, (8)
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where f = ± curl F with sign that of the orientation previously ascribed to
that portion of π bounding a connected component of Intπ, and \ denotes
relative complement. The dominated convergence theorem then shows that
there exists δ0 such that if 0 < δ < δ0, both∣∣∣∣∣

∫
R\Λ(δ)

curl F dA−
∫

R

curl F dA

∣∣∣∣∣ < η, (9)

and ∣∣∣∣∣
∫

Int π
T

Λ(δ)

f dA

∣∣∣∣∣ < η. (10)

The theorem follows from (7), (8), (9), and (10).

The following corollary which appears to be new, though the analogous
result for complex contour integrals has long been known (cf. [3], [10]), is
contained in the third part of the proof of Theorem 1. Though our proof is in
two dimensions, the n-dimensional proof is the same.

Corollary 4. Let C be a rectifiable oriented curve, and let F be a vector field
defined and continuous on an open set Ω containing the range of C. Then for
each η > 0 there exists a polygonal path approximation π to C, also contained
in Ω, such that ∣∣∣∣∫

C

F · dr−
∫

π

F · dr
∣∣∣∣ < η.

Theorem 1 implies that geometric shapes other than squares with sides
parallel to the coordinate axes can be used to calculate curl.

Corollary 5. Let Ω be a domain in R2 and let F : Ω → R2 be continuous and
such that the hypothesis of Green’s Theorem holds. For 0 < ε ≤ ε0, let Cε be
a family of simple closed rectifiable oriented curves in Ω. Denote by Rε the
interior of Cε, and assume that for each ε ∈ (0, ε0]

i) Rε ⊂ {(x, y) : |(x, y)− (x0, y0)| ≤ ε} ⊂ Ω,

ii) (x0, y0) ∈ Rε, and

iii) there exists a constant α > 0 such that Area (Rε) ≥ απε2.

Then

curl F(x0, y0) = lim
ε→0

∫
Cε

F · dr
Area (Rε)

.
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Proof. By Theorem 1, ∫
Rε

curl F dA =
∫

Cε

F · dr,

and so continuity of curl F at (x0, y0) implies the result.

Example 6. (Continuous Central Fields) With the usual polar coordinates
r = (x2 + y2)1/2 and θ = tan−1(y/x), let f(r) be such that f : [0,∞) → R
is continuously differentiable with f ′(0+) = 0. Further, let F = (P,Q) =
f ′(r)(∂r/∂x, ∂r/∂y), defined by the limit, zero, at the origin. Thus F is the
gradient of a radial function. Then F is continuous on R2 and curl F ≡ 0 even
though F need not be pointwise differentiable. That curl F vanishes, and that
criterion ii) of Lemma 2 is everywhere satisfied can be established by a variant
of regularization (cf. [2], [17]).

First extend f by reflection to a continuously differentiable function on R
(cf. [6, Proposition VII.19.1]). Let d be a positive number and multiply f by
a function ϕ ε C∞0 (R) such that ϕ ≡ 1 on [−d, d]. Now regularize ϕf . Then
the regularization, fε, ε > 0, has the property that both fε and f ′ε converge
uniformly to f and f ′ on [0, d]. In particular f ′ε (0) → 0 as ε → 0. The gradient
of fε (r) − f ′ε (0) r, call it Fε is then infinitely continuously differentiable on
R2\ {0}, and continuous on R2. Standard deformation of contours techniques
(which are only necessary near the origin) verify criterion ii) of Lemma 2 for
Fε. So if C is a square, Green’s Theorem gives∫

C

Fε·dr = 0.

Now pick d large enough that the range of C is interior to r < d. Then
Fε converges uniformly to F on C, so∫

C

F·dr = 0,

and we are done.

3 Extensions.

As before, let Ω be a domain in R2, and let F = (P,Q) : Ω → R2. We will
weaken the continuity assumption made on F in the previous section. First
note that if P and Q are in L1

loc(Ω), P and Q have distribution derivatives on



On Green’s Theorem and Cauchy’s Theorem 713

Ω. So we may define curl F in the sense of distributions by,

< curl F, ϕ >=<
∂Q

∂x
− ∂P

∂y
, ϕ >=

∫
Ω

(
P

∂ϕ

∂y
−Q

∂ϕ

∂x

)
dA

for all ϕ ∈ C∞0 (Ω), where < · , · > denotes the duality between D′(Ω) and
C∞0 (Ω). This is consistent with uniform convergence on compacta, used in
the previous section, since such convergence implies convergence in L1

loc(Ω).
When the distribution curl F is in L1

loc(Ω), one can hope to obtain a version
of Green’s Theorem.

Theorem 7. Let C be a simple closed rectifiable oriented curve with interior
R, and R ⊂ Ω. Assume that P, Q and curl F are in L1

loc(Ω). If also F is
continuous on a neighborhood of C, Green’s Theorem holds, i.e.,∫

R

curl F dA =
∫

C

F · dr.

Proof. Regularize F, i.e., regularize each of the functions P and Q (cf. [2],
[17]). Since the regularization Fε = (Pε, Qε) with ε > 0 small enough is in
C∞(Ωε), with R ⊂ Ωε = {(x, y) ∈ Ω : dist ((x, y), ∂Ω) > ε}, Theorem 1 and
part i) of Lemma 2 give∫

R

curl Fε dA =
∫

R

(
∂Qε

∂x
− ∂Pε

∂y

)
dA =

∫
C

Fε · dr. (11)

That
lim
ε→0

∫
R

curl Fε dA =
∫

R

curl F dA

is a well known property of regularization (cf. [7], [17]). For the right hand side
of (11), note that if C is parameterized by arc length, the parameterization is
Lipschitzian; hence absolutely continuous. Then since as in the proof of part
i) of Lemma 2, or [7], Pε and Qε converge uniformly to P and Q respectively
on the compact subset ∂R of Ω,

lim
ε→0

∫
C

Pε dx + Qε dy =
∫

C

P dx + Qdy =
∫

C

F · dr.

To relax the hypothesis of continuity of F on a neighborhood of ∂R requires
assumptions guaranteeing integrable traces (cf. [6]) of P and Q on ∂R. First
recall that a simple closed curve need not be a topological manifold (cf. [9]).
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If we require that ∂R be a topological manifold, then ∂R satisfies the segment
property (cf. [9]), and if also each of P and Q are in W 1,1(R), then each of
P and Q are limits in W 1,1(R) of functions in C∞0 (R2) (cf. [6]). If we further
require R to be a Lipschitz Graph domain, i.e., that ∂R be a Lipschitzian
manifold, or geometrically, satisfies the uniform cone property (cf. [1], [5],
[9]), a satisfactory trace on ∂R is obtainable. This is somewhat more direct
than studying the “fine properties” of functions in W 1,1 as in [4], [7].

Theorem 8. Let C be a simple closed rectifiable oriented curve with interior
R. Further, let ∂R be Lipschitz and F = (P,Q) with P and Q in W 1,1(R).
Then ∫

R

curl F dA =
∫

R

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
C

F · dr =
∫

C

P dx + Qdy,

where the trace of F = (P,Q) on ∂R is understood.

Proof. Regularization as in the proof of Theorem 7 gives convergence of the
area integral directly, and that of the line integral by the estimate,∫

C

|h| dS ≤ K||h||W 1,1(R) (12)

for all h ε W 1,1 (R), where K is a constant independent of h, and dS is the
element of arc length along C. The estimate (12) is a special case of a well
known inequality for BV functions [17, Theorem 5.10.7], and a direct proof in
W 1,1 can be obtained by a trivial modification of the proof of Théorème 1.2
in [12].

The following examples illustrate the strong role of geometry in vector
calculus.

Example 9. (Central Fields) We return to the situation in Example 6, but
now only assume that f is continuously differentiable on (0,∞). Then F =
(P,Q) = f ′(r)

(
∂r
∂x , ∂r

∂y

)
may have a singularity at the origin. As in Example

6, curl F ≡ 0, even though F need not be pointwise differentiable, and no
restriction has been placed on the possible singularity of F at the origin. But
the limit in (1) will not be uniform in neighborhoods of (0, 0) if F is strongly
singular there. Standard methods give independence of path provided the
path avoids the origin. Note that one may also define curl for F in the sense
of distributions on R2 by

< curl F, ϕ >= − lim
ε→0

∫
r>ε

(
Q

∂ϕ

∂x
− P

∂ϕ

∂y

)
dA
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for all ϕ ∈ C∞0 (R2). If, for simplicity, f ′ is also continuously differentiable on
(0,∞), integration by parts gives curl F = 0 in D′(R2) no matter how strong
the singularity of F may be at the origin.

Example 10. (A rotational field) On R2 let F = grad θ where θ = tan−1(y/x)
is the usual polar angle. It is elementary that curl F vanishes on R2\{0},
while use of circles centered at the origin from Corollary 5 (together with
an elementary deformation of contours argument) gives curl F(0, 0) = 2π.
Defining curl F in the sense of distributions as in the previous example yields
curl F = 2πδ, where δ is the Dirac measure at the origin.

The reasoning in Example 10 leads directly to Cauchy’s Integral Formula
of complex analysis.

Theorem 11. Let Ω be a domain in C and let f : Ω → C be holomorphic.
Let C be a simple closed rectifiable oriented curve in Ω with interior R and
R ⊂ Ω. Then if z0 ∈ R,

f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz.

Proof. Since f(z)/(z − z0) is holomorphic on R\{z0}, Theorem 3 and de-
formation of contours shows that we may take C to be the circle of radius ε
centered at z0. Parameterize C by z − z0 = εeiθ, 0 ≤ θ ≤ 2π , and write
f(z) = f(x + iy) = u(x, y) + iv(x, y) = U(x− x0, y − y0) + iV (x− x0, y − y0).
Then∫

C

f(z)
z − z0

dz =
∫ 2π

0

(U(ε cos θ, ε sin θ) + iV (ε cos θ, ε sin θ)) i dθ, (13)

and by continuity of U and V , the (constant) limit of the right side of (13) as
ε → 0 is 2πi(U(0, 0) + iV (0, 0)) = 2πif(z0).

As a final comment, note that the two dimensional divergence, or Gauss,
theorem can be obtained geometrically by applying the previous methods to
G = (−Q,P ). In other words, if F = (P,Q) and G = (−Q,P ), define div F
by the equation

div F = curl G.

The roles of our examples then reverse. The rotational field of Example 10
gives div F ≡ 0 on R2 both pointwise and in the sense of distributions. The
particular central field defined as in Example 9 with f(r) = ln r yields div
F = 2πδ, with δ the Dirac measure at the origin, in D′(R2). This leads to
the following geometric characterization of holomorphy - a geometric version
of the Cauchy-Riemann equations.



716 W. M. Greenlee

Theorem 12. Let F = (P,Q) : Ω → R2 be continuous. Then P + iQ : Ω → C
is holomorphic if and only if the limits (1) for curl (Q,P ) and curl (P,−Q) =
− div (Q,P ) both vanish on Ω and are uniform on compact subsets of Ω.

Proof. For necessity note that if f(z) = P + iQ is holomorphic,∫
C

f(z)dz =
∫

C

(Pdx−Qdy) + i

∫
C

(Qdx + Pdy) = 0 (14)

by Cauchy’s Theorem, and the conclusion follows from part ii) of Lemma 2.
On the other hand, if the limits defining curl (Q, P ) and curl (P,−Q) vanish
and are uniform on compacta, Lemma 2 shows that (14) holds for squares with
sides parallel to the coordinate axes. Green’s Theorem then shows that (14)
holds whenever C is a triangle in Ω. Sufficiency thus follows from Morera’s
Theorem (cf. [10,15]).
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