Uta Freiberg, Mathematisches Institut, Friedrich Schiller Universität Jena, Ernst-Abbé-Platz 1–4, D-07743 Jena, Germany. email: uta@mathematik.uni-jena.de

DIRICHLET FORMS ON FRACTAL SUBSETS OF THE REAL LINE

Abstract

Measure theoretic Dirichlet forms on compact subsets of the real line are introduced. Using the technique of Dirichlet-Neumann-bracketing, estimates of the eigenvalue counting functions of the associated measure geometric Laplacians are obtained.

1 Introduction.

In [2], a class of generalized second order differential operators of the form $\Delta^{\mu,\nu} = \frac{d}{d\mu} \frac{d}{d\nu}$ is introduced. These operators are given as the second derivative w.r.t. two atomless finite Borel measures μ and ν with compact supports $L := \operatorname{supp} \mu$ and $K := \operatorname{supp} \nu$, such that $L \subseteq K \subseteq \mathbb{R}$. This means that the functions in the domain of these operators are defined on the set K (which also can be a closed interval; i.e., a "fractal" of Hausdorff dimension equal to 1) while the function driving the diffusion is given only on a subset $L \subseteq$ K (which, of course, also can be all of K). Thus, the operator $\Delta^{\mu,\nu}$ has an interpretation as a measure geometric Laplacian on $L_2(K,\mu)$. Moreover, this approach generalizes the well-known notion of the Sturm–Liouville– (or, Krein–Feller–) operator of the form $\frac{d}{d\mu}\frac{d}{dx}$ which is introduced for example in [7].

In the present paper, the Dirichlet form, which is associated with the operator $\Delta^{\mu,\nu}$, is constructed. To this end, in Section 2, we recall the definition and

Key Words: Dirichlet form, Dirichlet-Neumann-bracketing, eigenvalue counting function, self similar measure, variational fractal

Mathematical Reviews subject classification: Primary 28A80, 28A25; Secondary 31C25, 35P20 Received by the editors June 10, 2004

Communicated by: Zoltán Buczolich

^{*}This work was supported by a fellowship within the Postdoc Programme of the German Academic Exchange Service (DAAD)

⁵⁸⁹

some fundamental properties of $\Delta^{\mu,\nu}$ which can be found in [2]. We introduce the first derivative $\frac{d}{d\nu}$ on the space

$$\mathcal{D}_{1}^{\nu} := \{ f : K \to \mathbb{R} : \exists f' \in L_{2}(K,\nu) : f(x) = f(a) + \int_{a}^{x} f'(y)d\nu(y), \ x \in K \}.$$

Iterating this procedure w.r.t. a second measure μ , the operator $\Delta^{\mu,\nu} = \frac{d}{d\mu} \frac{d}{d\nu}$ is introduced on $L_2(K,\mu)$. We restrict ourselves to the case where homogeneous Dirichlet– or, Neumann–boundary–conditions are satisfied, and we define the corresponding eigenvalue counting functions $N_D^{\mu,\nu}(\cdot)$ and $N_N^{\mu,\nu}(\cdot)$. The asymptotic behavior of these eigenvalue counting functions is determined in [3].

In Section 3, we recall the definition of a Dirichlet form, and we introduce the eigenvalues of a Dirichlet form. Following [8], we present the technique of the Dirichlet–Neumann–bracketing which gives a relation between the eigenvalue counting functions of two Dirichlet forms with domains which are related by a directed inclusion; i.e., the domain of one form has to be a closed subspace of the domain of the other form.

In Section 4, we prove that

$$\mathcal{E}^{\nu}(f,g) := \int_{a}^{b} \nabla^{\nu} f(x) \nabla^{\nu} g(x) d\nu(x) = \langle \nabla^{\nu} f, \nabla^{\nu} g \rangle_{\nu}, \ f, g \in \mathcal{D}_{1}^{\nu},$$

defines a Dirichlet form on $L_2(K, \mu)$.

In Section 5, we show that the Dirichlet form $(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu})$ has the same eigenvalues as the measure geometric Neumann Laplacian $\Delta_{N}^{\mu,\nu}$. Moreover, we construct a second Dirichlet form, which is in the same correspondence with the Dirichlet Laplacian $\Delta_{D}^{\mu,\nu}$. Applying the techniques introduced in Section 3, we obtain estimations of the eigenvalue counting functions $N_{D}^{\mu,\nu}(\cdot)$ and $N_{N}^{\mu,\nu}(\cdot)$.

In Section 6, we restrict ourselves to the case where ν and μ are the same and, in addition, self similar measures. In this special case, we can extend the notion of a "variational fractal", which has been introduced in [13] for certain connected fractals, to generalized Cantor sets, which are disconnected fractals. In particular, we obtain that the eigenvalue counting function behaves in this case asymptotically like $x^{1/2}$. Using other methods, this result was also obtained in [4].

2 Definition and Fundamental Properties of the Measure Geometric Laplacian.

Let $[a, b] \subset \mathbb{R}^1$ be a closed interval and ν be an atomless finite Borel measure on [a, b] with compact support $K := \text{supp } \nu$ and $a, b \in K$. Further, let $L_2 :=$

 $L_2(K,\nu)$ be the separable Hilbert space with scalar product $\langle f,g \rangle := \int_a^b fg \ d\nu$. Without loss of generality we assume that $\nu(K) = 1$. Let

$$\mathcal{D}_{1}^{\nu} := \{ f : K \to \mathbb{R} : \exists f' \in L_{2}(K,\nu) : f(x) = f(a) + \int_{a}^{x} f'(y) d\nu(y), \ x \in K \}.$$
(1)

By standard measure theoretic arguments, it follows that $\mathcal{D}_1^{\nu} \subset \mathcal{C}(K) \subset L_2(K,\nu)$; i.e., every function f in \mathcal{D}_1^{ν} is continuous on K. Moreover, the function f' defined in (1) is unique in $L_2(K,\nu)$. Thus, for any $f \in \mathcal{D}_1^{\nu}$, we can define the ν -derivative of f by setting

$$\nabla^{\nu} f = \frac{df}{d\nu} := f'.$$

Note that in the case K = [a, b] and $\nu = \lambda$, where λ denotes the normalized Lebesgue measure on [a, b], \mathcal{D}_1^{ν} coincides with the Sobolev space $W^{1,2}$.

In order to define the second derivative, we repeat the above construction with respect to another measure. Let K and ν be as above.

Now let μ be a second atomless, normalized Borel measure on [a, b] with compact support $L := \text{supp } \mu$ and $a, b \in L$. Furthermore, we assume that $L \subset K$ and, if $K \setminus L \neq \emptyset$, we agree upon the following notation.

 $L^C := [a, b] \setminus L$ is open in \mathbb{R} and therefore a countable union of pairwise disjoint open intervals with endpoints in L. From $L = L \cap K = K \setminus L^C$ we obtain for some c_i and d_i , i = 1, 2, ...

$$L = K \setminus \left(\sum_{i=1}^{\infty} (c_i, d_i)\right) \text{ with } a < c_i < d_i < b, \ c_i, d_i \in L, \ i = 1, 2, \dots$$
 (2)

Furthermore, let $L_2(L,\mu)$ (and $L_2(K,\mu)$, resp.) denote the separable Hilbert space of all square μ -integrable functions on L (and K, resp.), both equipped with the scalar product $\langle f, g \rangle_{\mu} := \int_a^b fg \ d\mu$. Setting

$$\mathcal{D}_{2}^{\mu,\nu} := \{ f \in \mathcal{D}_{1}^{\nu} : \exists f'' \in L_{2}(L,\mu) : \nabla^{\nu} f(x) = \nabla^{\nu} f(a) + \int_{a}^{x} f''(y) d\mu(y), \ x \in K \},$$
(3)

the following properties are easy to show:

Proposition 2.1. (i) $\mathcal{D}_2^{\mu,\nu} \subset \mathcal{D}_1^{\nu} \subset \mathcal{C}(K) \subset L_2(K,\mu) \cap L_2(K,\nu).$

(ii) If $L \neq K$, then according to the notation of (2), for any $f \in \mathcal{D}_2^{\mu,\nu}$

$$\nabla^{\nu} f(x) \equiv \nabla^{\nu} f(c_i), \ x \in (c_i, d_i) \cap K, \ i = 1, 2, \dots;$$

i.e., for any function $f \in \mathcal{D}_2^{\mu,\nu}$ the ν -derivative $\nabla^{\nu} f$ is uniquely determined on all of K by its values on the subset L.

;

(iii) Under the same assumptions as made in (ii), we have for any $f \in \mathcal{D}_2^{\mu,\nu}$:

$$f(x) = f(c_i) + \nabla^{\nu} f(c_i) \cdot \nu([c_i, x]), \ x \in (c_i, d_i) \cap K, \ i = 1, 2, \dots$$

i.e., every function $f \in \mathcal{D}_2^{\mu,\nu}$ itself is uniquely determined on all of K by its values on L.

(iv) The function f'' defined by (3) is unique in $L_2(L,\mu)$.

We define the μ - ν -Laplacian of $f \in \mathcal{D}_2^{\mu,\nu}$ by

$$\Delta^{\mu,\nu}f = \nabla^{\mu}\left(\nabla^{\nu}f\right) = \frac{d}{d\mu}\left(\frac{df}{d\nu}\right) := \begin{cases} f'' & \text{on } L\\ 0 & \text{on } K \setminus L \end{cases}$$

where f'' is given by (3). Note that for $f \in \mathcal{D}_2^{\mu,\nu}$ the function $\nabla^{\nu} f$ is ν -unique and continuous on K and therefore unique on K. From Proposition 2.1, (iv) it follows that

$$\Delta^{\mu,\nu}: \mathcal{D}_2^{\mu,\nu} \subseteq L_2(K,\mu) \to L_2(K,\mu)$$

is well defined.

Remark 2.2. As $\mathcal{D}_2^{\mu,\nu}$ is the set of all functions $f: K \to \mathbb{R}$ such there exist functions $f' \in L_2(K,\nu)$ and $f'' \in L_2(L,\mu)$ with $f(x) = f(a) + \int_a^x f'(y) d\nu(y)$, $x \in K$, and $f'(y) = f'(a) + \int_a^y f''(z) d\mu(z)$, $y \in K$, we infer by Fubini's theorem the following representation of $f \in \mathcal{D}_2^{\mu,\nu}$.

$$f(x) = f(a) + \nabla^{\nu} f(a) \cdot \nu([a, x)) + \int_{a}^{x} \nu([y, x)) \Delta^{\mu, \nu} f(y) \, d\mu(y), \ x \in K.$$

We now introduce *Dirichlet* and *Neumann boundary conditions*, respectively:

$$\mathcal{D}_{2,D}^{\mu,\nu} := \{ f \in \mathcal{D}_2^{\mu,\nu} : f(a) = f(b) = 0 \}$$
(4)

and

$$\mathcal{D}_{2,N}^{\mu,\nu} := \{ f \in \mathcal{D}_2^{\mu,\nu} : \nabla^{\nu} f(a) = \nabla^{\nu} f(b) = 0 \}.$$
(5)

The restriction of $\Delta^{\mu,\nu}$ on $\mathcal{D}_{2,D}^{\mu,\nu}$ (or $\mathcal{D}_{2,N}^{\mu,\nu}$, resp.) is called *Dirichlet-\mu-\nu-Laplacian* (or *Neumann-\mu-\nu-Laplacian*, resp.) and we denote it by $\Delta_D^{\mu,\nu}$ (or $\Delta_N^{\mu,\nu}$, resp.). In [2] is shown that $\Delta_D^{\mu,\nu}$ and $\Delta_N^{\mu,\nu}$ are negative symmetric operators on $L_2(K,\mu)$. Moreover, the eigenvalues of $\Delta_D^{\mu,\nu}$ (or $\Delta_N^{\mu,\nu}$, resp.) have finite multiplicities. They form a countable sequence which has no accumulation point except $-\infty$. Thus, we are allowed to define the eigenvalue counting function of $-\Delta_{D/N}^{\mu,\nu}$ given by

$$N_{D/N}^{\mu,\nu}(x) := \#\left\{\kappa_k \le x : \kappa_k \text{ is eigenvalue of } -\Delta_{D/N}^{\mu,\nu}\right\}$$
(6)

– counting according to multiplicities. Further, in [2] is obtained that the domains \mathcal{D}_{1}^{ν} , $\mathcal{D}_{2}^{\mu,\nu}$, $\mathcal{D}_{2/D}^{\mu,\nu}$ and $\mathcal{D}_{2/N}^{\mu,\nu}$ defined by (1), (3), (4) and (5) are dense subspaces of $L_2(K,\mu)$.

Remark 2.3. By $\mathcal{H}^{\mu,\nu}$, we denote the space of the $\Delta^{\mu,\nu}$ -harmonic functions; i.e.,

$$\mathcal{H}^{\mu,\nu} := \{ f \in \mathcal{D}_2^{\mu,\nu} : \Delta^{\mu,\nu} f \equiv 0 \}.$$

It is easy to see that $\dim_{\mathbb{R}} \mathcal{H}^{\mu,\nu} = 2$ and $\mathcal{D}_{2}^{\mu,\nu} = \mathcal{D}_{2,D}^{\mu,\nu} \oplus \mathcal{H}^{\mu,\nu}$.

In the following theorem, we state that every boundary value problem has a unique solution. This solution is given with respect to a kernel, which is given in terms of the measure ν .

Theorem 2.4 (see [2]). For any function $f \in L_2(K, \mu)$ and for any boundary values u(a) and u(b), the equation

$$\Delta^{\mu,\nu} u = f$$

has a solution $u \in \mathcal{D}_2^{\mu,\nu}$. Further, u is unique in $L_2(K,\mu)$ and has the representation

$$u(x) = u(a)\nu([x,b)) + u(b)\nu([a,x)) - \int_a^b g^\nu(x,y)f(y)\,d\mu(y), \ x \in K,$$

where $g^{\nu}(.,.)$ denotes the ν -Green function, which is given on $K \times K$ by

$$g^{\nu}(y,x) = g^{\nu}(x,y) := \begin{cases} \nu([a,x))\nu([y,b)) & \text{for } x \le y\\ \nu([a,y))\nu([x,b)) & \text{for } x > y. \end{cases}$$

3 Dirichlet Forms and Dirichlet-Neumann-Bracketing.

In this section, we recall the definition of a Dirichlet form and present the technique of the so-called Dirichlet-Neumann-bracketing which goes back to Métivier [12] and Lapidus [10]. A general survey on Dirichlet forms can be found, for example, in [5] or [11].

Let X be a compact set, and let τ be a Borel measure on X.

Definition 3.1. Let \mathcal{F} be a dense subspace of the Hilbert space $L_2(X, \tau)$ equipped with the scalar product

$$\langle u, v \rangle_{L_2(X,\tau)} := \int_X uv \, d\tau,$$

and let \mathcal{E} be a positive definite symmetric bilinear form on \mathcal{F} . Then we call the pair $(\mathcal{E}, \mathcal{F})$ a Dirichlet form on $L_2(X, \tau)$ if the following properties hold:

(i) For any $\alpha > 0$, we define

$$\mathcal{E}_{\alpha}(u,v) := \mathcal{E}(u,v) + \alpha \langle u, v \rangle_{L_2(X,\tau)}.$$

Then $(\mathcal{F}, \mathcal{E}_{\alpha})$ has to be a Hilbert space for any $\alpha > 0$. (ii) (Markov property:) For any $u \in \mathcal{F}$ we define the function \bar{u} by

$$\bar{u}(x) := \begin{cases} 1 & \text{if } u(x) > 1, \\ 0 & \text{if } u(x) < 0, \\ u(x) & \text{otherwise.} \end{cases}$$

Then \bar{u} has to be in \mathcal{F} and $\mathcal{E}(\bar{u}, \bar{u}) \leq \mathcal{E}(u, u)$.

Remark 3.2. If $(\mathcal{F}, \mathcal{E}_1)$ is a Hilbert space, it is every $(\mathcal{F}, \mathcal{E}_\alpha)$, $\alpha > 0$ (see, for example, [11]).

Now we formulate the eigenvalue problem associated with a Dirichlet form.

Definition 3.3. Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on $L_2(X, \tau)$. If for a function $u \in \mathcal{F}$

$$\mathcal{E}(u,v) = \lambda \langle u, v \rangle_{L_2(X,\tau)}, \ \forall \ v \in \mathcal{F},$$

then we call λ an eigenvalue of the form $(\mathcal{E}, \mathcal{F})$, and u is a corresponding eigenfunction.

Following [8], we introduce the technique of the Dirichlet-Neumann-bracketing.

Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on $L_2(X, \tau)$ such that the eigenvalues of $(\mathcal{E}, \mathcal{F})$ form a sequence of real, nonnegative numbers with finite multiplicities which have no accumulation point except $+\infty$. (For example, it is sufficient that for some fixed $\alpha > 0$ the natural inclusion $(\mathcal{F}, \mathcal{E}_{\alpha}) \hookrightarrow L_2(X, \tau)$ is a compact operator, see [8].) Then, the eigenvalue counting function $N(x; \mathcal{E}, \mathcal{F})$ of $(\mathcal{E}, \mathcal{F})$

$$N(x; \mathcal{E}, \mathcal{F}) := \#\{i \ge 1 : \lambda_i \le x\}$$

is well defined, where $\{\lambda_i\}_{i=1}^{\infty}$ denotes the increasing sequence of the eigenvalues of $(\mathcal{E}, \mathcal{F})$, according to multiplicities. These eigenvalues are given by the following Maximum–Minimum–principle (see Reed and Simon, [15]).

Proposition 3.4. Let $\{\lambda_i\}_{i=1}^{\infty}$ denote the sequence of the eigenvalues of $(\mathcal{E}, \mathcal{F})$ as introduced above and fix $\alpha > 0$. Then

$$(\lambda_i + \alpha)^{-1/2} = d_{i-1} \left(S_\alpha(\mathcal{F}) \right),$$

where $S_{\alpha}(\mathcal{B})$ is defined by

$$S_{\alpha}(\mathcal{B}) := \{ u \in \mathcal{B} \cap \mathcal{F} : \mathcal{E}_{\alpha}(u, u) \le 1 \}, \ \mathcal{B} \subset L_2(X, \tau),$$

and $d_i = d_i(S_\alpha(\mathcal{B})), i \ge 0$ is given by

$$d_{i} := \inf \left\{ \sup_{x \in S_{\alpha}(\mathcal{B})} \inf_{y \in \mathcal{Y}} ||x - y||_{L_{2}(X,\tau)} / \mathcal{Y} \subseteq L_{2}(X,\tau) \text{ is a subspace} \right.$$

with dim $\mathcal{Y} = i \right\}.$

Remark 3.5. If $\mathcal{B} \subseteq \mathcal{Y}$, where \mathcal{Y} is a *n*-dimensional subspace of $L_2(X, \tau)$, then it follows that $d_i(S_\alpha(\mathcal{B})) = 0$ for $i \geq n$.

From Proposition 3.4 we conclude that

$$N(x; \mathcal{E}, \mathcal{F}) = \#\{i \ge 0 : d_i \left(S_\alpha(\mathcal{F}) \right) \ge (x + \alpha)^{-1/2} \}.$$

Now we introduce the technique of the Dirichlet-Neumann-bracketing. Let $(\mathcal{E}', \mathcal{F}')$ be another Dirichlet form on $L_2(X, \tau)$ such that $\mathcal{F}' \subseteq \mathcal{F}$ is a closed subspace, and \mathcal{E}' is given by $\mathcal{E}' := \mathcal{E}_{|\mathcal{F}' \times \mathcal{F}'}$. The following property gives a relation between the eigenvalue counting functions $N(x; \mathcal{E}, \mathcal{F})$ and $N(x; \mathcal{E}', \mathcal{F}')$ (for the proof we refer to [8]):

Proposition 3.6. If $\dim(\mathcal{F}/\mathcal{F}') < \infty$, then for any $x \ge 0$.

$$N(x; \mathcal{E}', \mathcal{F}') \le N(x; \mathcal{E}, \mathcal{F}) \le N(x; \mathcal{E}', \mathcal{F}') + \dim \mathcal{F}/\mathcal{F}'.$$

4 The ν -Dirichlet Form.

Suppose we are given two measures ν and μ with supp $\mu = L \subset K = \text{supp } \nu$ as in Section 2. Furthermore, as above, \mathcal{D}_1^{ν} denotes the space of all functions possessing a ν -derivative in $L_2(K,\nu)$. We define the following nonnegative symmetric bilinear form \mathcal{E}^{ν} on \mathcal{D}_1^{ν} .

$$\mathcal{E}^{\nu}(f,g):=\int_{a}^{b}\nabla^{\nu}f(x)\nabla^{\nu}g(x)d\nu(x)=\langle\nabla^{\nu}f,\nabla^{\nu}g\rangle_{\nu},\ f,g\in\mathcal{D}_{1}^{\nu}$$

Then the following holds.

Theorem 4.1. $(\mathcal{E}^{\nu}, \mathcal{D}_1^{\nu})$ is a Dirichlet form on $L_2(K, \mu)$.

PROOF. We have to show:

- (i) $\mathcal{D}_1^{\nu} \subset L_2(K,\mu)$ is a dense subspace.
- (ii) $(\mathcal{D}_1^{\nu}, \mathcal{E}_1^{\nu})$ is a Hilbert space.
- (iii) The Markov property holds.

(i) The density of \mathcal{D}_1^{ν} in $L_2(K,\mu)$ is proved in [2], Corollary 6.4.

(ii) Obviously, \mathcal{E}_1^{ν} defines a scalar product on \mathcal{D}_1^{ν} , therefore $(\mathcal{D}_1^{\nu}, \mathcal{E}_1^{\nu})$ is a pre-Hilbert space. It remains to show that \mathcal{D}_1^{ν} is complete w.r.t. to the norm $\sqrt{\mathcal{E}_1^{\nu}}$. Let $(u_n) \subset \mathcal{D}_1^{\nu}$ be a Cauchy sequence w.r.t. $\sqrt{\mathcal{E}_1^{\nu}}$; i.e.,

$$||\nabla^{\nu} u_n - \nabla^{\nu} u_m||^2_{L_2(K,\nu)} + ||u_n - u_m||^2_{L_2(K,\mu)} \to 0, \quad n, m \to \infty.$$

As $L_2(K,\nu)$ and $L_2(K,\mu)$ are Hilbert spaces, there exist functions $f \in L_2(K,\nu)$ and $u \in L_2(K,\mu)$ such that

$$||\nabla^{\nu} u_n - f||^2_{|L_2(K,\nu)} \to 0, \quad n \to \infty,$$

and

$$||u_n - u||^2_{|L_2(K,\mu)} \to 0, \ n \to \infty.$$

Because of

$$\begin{split} &\int_{K} \left| \int_{c}^{x} \left(f(z) - \nabla^{\nu} u_{n}(z) \right) d\nu(z) \right| d\mu(x) \\ &\leq \int_{K} \int_{K} \left| f(z) - \nabla^{\nu} u_{n}(z) \right| d\mu(x) d\nu(z) \to 0, \ n \to \infty, \end{split}$$

we obtain

$$\int_{K} \left| u(x) - u(c) - \int_{c}^{x} f(z) d\nu(z) \right| d\mu(x)$$

= $\lim_{k \to \infty} \int_{K} \left| u_{n_{k}}(x) - u_{n_{k}}(c) - \int_{c}^{x} \nabla^{\nu} u_{n_{k}}(z) d\nu(z) \right| d\mu(x) = 0.$

Hence,

$$u(x) = u(c) + \int_c^x f(z)d\nu(z)$$
(7)

holds for μ -almost every x and for μ -almost every c in K; i.e., (7) holds in $L_2(K,\mu)$. Thus, we conclude that u is in \mathcal{D}_1^{ν} with $\nabla^{\nu} u = f$ and therefore

 $\mathcal{E}_1^{\nu}(u_n, u) \to 0 \text{ as } n \to \infty.$

(iii) Choose $u \in \mathcal{D}_1^{\nu}$; i.e., there exists a function $\nabla^{\nu} u \in L_2(K, \nu)$ with

$$u(x) = u(a) + \int_{a}^{x} \nabla^{\nu} u(y) d\nu(y), \quad x \in K.$$

Setting $\bar{u} = 0 \lor u \land 1$, we define the function $\nabla^{\nu} \bar{u}$ in $L_2(K, \nu)$ by

$$\nabla^{\nu}\bar{u}(y) := \begin{cases} \nabla^{\nu}u(y) & y \in A := K \cap \{0 \le u(y) \le 1\} \\ 0 & y \in B := K \setminus A \end{cases}$$

Obviously,

$$\bar{u}(x) = \bar{u}(a) + \int_a^x \nabla^\nu \bar{u}(y) d\nu(y), \ x \in K,$$

and therefore we infer $\bar{u} \in \mathcal{D}_1^{\nu}$. The definition of $\nabla^{\nu} \bar{u}$ yields immediately $\mathcal{E}^{\nu}(\bar{u}, \bar{u}) \leq \mathcal{E}^{\nu}(u, u)$.

Remark 4.2. As in the classical Lebesgue case we have the Gauß-Greenformula (see [2], Proposition 3.1.):

$$\int_{a}^{b} \left(\Delta^{\mu,\nu}f,g\right) d\mu = \left(\nabla^{\nu}f\right)g\Big|_{a}^{b} - \mathcal{E}^{\nu}(f,g) \quad f \in \mathcal{D}_{2}^{\mu,\nu}, g \in \mathcal{D}_{1}^{\nu}.$$
(8)

Remark 4.3. From $\mathcal{D}_1^{\nu} \subseteq \mathcal{C}(K)$ we obtain that $\mathcal{C}_0(K) \cap \mathcal{D}_1^{\nu}$ is dense in \mathcal{D}_1^{ν} w.r.t. the norm $\sqrt{\mathcal{E}_1^{\nu}}$ and dense in $\mathcal{C}_0(K)$ w.r.t. the norm $|| \cdot ||_{\infty}$. Hence, the form $(\mathcal{E}^{\nu}, \mathcal{D}_1^{\nu})$ is a regular Dirichlet form on $L_2(K, \mu)$. Moreover, it is easy to see that $(\mathcal{E}^{\nu}, \mathcal{D}_1^{\nu})$ is local. From the theory of Dirichlet forms it follows (see, for example, [11]) that there exists an associated strong Markovian process with almost surely continuous paths on L. In the special case of the operator $\frac{d}{d\mu} \frac{d}{dx}$; i.e., ν is just given by Lebesgue measure, these operators have already been studied. The corresponding stochastic processes are the so-called quasi-, or gap-diffusions (see, for exp, [7], [9]).

Remark 4.4. Obviously, the functions ϕ_C^{ν} , $C \in \mathbb{R}$, defined by $\phi_C^{\nu}(x) := C \cdot \nu([a, x)), x \in K$, are in \mathcal{D}_1^{ν} , their ν -derivative is given by $\nabla^{\nu} \phi_C^{\nu} \equiv C$. Hence, $\mathcal{E}^{\nu}(\phi_C^{\nu}, \phi_C^{\nu}) = C^2$; i.e., the form $(\mathcal{E}^{\nu}, \mathcal{D}_1^{\nu})$ is non vanishing.

5 Application of the Dirichlet-Neumann-Bracketing.

In the present section, we show that the eigenvalue problem for the ν -Dirichlet form $(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu})$ and the eigenvalue problem for the negative Neumann- μ - ν -Laplacian – $\Delta_{N}^{\mu,\nu}$ are equivalent. Moreover, we define another Dirichlet form

which is in the same correspondence with the Dirichlet- μ - ν -Laplacian $\Delta_D^{\mu,\nu}$. The aim of this construction is to get from Proposition 3.6 estimations for the eigenvalue counting functions of the Laplacian $N_N^{\mu,\nu}(\cdot)$ and $N_D^{\mu,\nu}(\cdot)$ introduced in (6).

Let $(\mathcal{E}^{\nu}, \mathcal{D}_1^{\nu})$ be the ν -Dirichlet form defined in Section 4.

Proposition 5.1. For any $\lambda \in \mathbb{R}$ and any function $u \in \mathcal{D}_1^{\nu}$

$$\mathcal{E}^{\nu}(u,v) = \lambda \langle u, v \rangle_{\mu}, \text{ for every } v \in \mathcal{D}_{1}^{\nu},$$

(i.e., u is an eigenfunction of $(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu})$ to the eigenvalue λ) if and only if

$$u \in \mathcal{D}_{2,N}^{\mu,\nu}$$
 and $\Delta^{\mu,\nu}u = -\lambda u$

(i.e., u is a Neumann-eigenfunction of $\Delta^{\mu,\nu}$ to the eigenvalue $-\lambda$).

In order to prove this proposition we make use of the following lemma.

Lemma 5.2. For any $x \in K$ let $g^{\nu,x}(y) := g^{\nu}(x,y)$, where $g^{\nu}(x,y)$ is the ν -Green function given in Theorem 2.4. Then:

(i)
$$g^{\nu,a} \equiv g^{\nu,b} \equiv 0$$

(ii) For any $x \in K$, $g^{\nu,x}$ is in \mathcal{D}_1^{ν} and

$$\mathcal{E}^{\nu}(g^{\nu,x}, f) = f(x) - f(a)\phi_{a}^{\nu}(x) - f(b)\phi_{b}^{\nu}(x), \ f \in \mathcal{D}_{1}^{\nu},$$

where ϕ^{ν}_{a} and ϕ^{ν}_{b} are special μ - ν -harmonic functions given by

$$\phi_a^{\nu}(x) := \nu([x,b)) \text{ and } \phi_b^{\nu}(x) := \nu([a,x)).$$

(*iii*) $\mathcal{E}^{\nu}(g^{\nu,x}, g^{\nu,x}) = g^{\nu}(x, x), \ x \in K.$

PROOF. (i) This assertion follows immediately from the definition of $g^{\nu}(x, y)$.

(ii) Obviously, it holds that $\nabla^{\nu}\nu([a,\cdot)) \equiv 1$ and $\nabla^{\nu}\nu([\cdot,b)) \equiv -1$, therefore

we have for fixed $x \in K$: $g^{\nu,x} \in \mathcal{D}_1^{\nu}$ and

$$\begin{split} \mathcal{E}^{\nu}(g^{\nu,x},f) &= \int_{a}^{b} \nabla^{\nu} g^{\nu,x}(y) \nabla^{\nu} f(y) \, d\nu(y) \\ &= \int_{a}^{x} \nabla^{\nu} \Big[\nu([a,y)) \nu([x,b)) \Big] \nabla^{\nu} f(y) \, d\nu(y) \\ &\quad + \int_{x}^{b} \nabla^{\nu} \Big[\nu([a,x)) \nu([y,b)) \Big] \nabla^{\nu} f(y) \, d\nu(y) \\ &= \nu([x,b)) \int_{a}^{x} \nabla^{\nu} f(y) d\nu(y) - \nu([a,x)) \int_{x}^{b} \nabla^{\nu} f(y) \, d\nu(y) \\ &= \nu([x,b)) \Big[f(x) - f(a) \Big] - \nu([a,x)) \Big[f(b) - f(x) \Big] \\ &= f(x) - f(a) \phi_{a}^{\nu}(x) - f(b) \phi_{b}^{\nu}(x). \end{split}$$

(iii) From (i), (ii) and the symmetry of $g^{\nu}(x, y)$ we obtain

$$\begin{aligned} \mathcal{E}^{\nu}(g^{\nu,x},g^{\nu,x}) = &g^{\nu,x}(x) - g^{\nu,x}(a)\phi_{a}^{\nu}(x) - g^{\nu,x}(b)\phi_{b}^{\nu}(x) \\ = &g^{\nu,x}(x) - g^{\nu,a}(x)\phi_{a}^{\nu}(x) - g^{\nu,b}(x)\phi_{b}^{\nu}(x) \\ = &g^{\nu,x}(x) = g^{\nu}(x,x). \end{aligned}$$

PROOF OF PROPOSITION 5.1. First, we assume that $\mathcal{E}^{\nu}(u,v) = \lambda \langle u,v \rangle_{\mu}$ for every $v \in \mathcal{D}_{1}^{\nu}$, and we choose $v = g^{\nu,x}$, $x \in K$ fixed. According to Lemma 5.2 (ii) the function $g^{\nu,x}$ is in \mathcal{D}_{1}^{ν} , and

$$\begin{split} u(x) - u(a)\nu([x,b)) - u(b)\nu([a,x)) = &\mathcal{E}^{\nu}(g^{\nu,x}, u) = \lambda \langle u, g^{\nu,x} \rangle_{\mu}, \\ = &\lambda \int_{a}^{b} u(y)g^{\nu}(x,y)d\mu(y). \end{split}$$

This is true for any $x \in K$. Hence we infer from Theorem 2.4 that u is in $\mathcal{D}_2^{\mu,\nu}$ and $\Delta^{\mu,\nu} u = -\lambda u$ on $L_2(K,\mu)$. Moreover, (8) yields

$$\begin{aligned} \lambda \langle u, v \rangle_{\mu} &= \mathcal{E}^{\nu}(u, v) = (\nabla^{\nu} u) \, v |_{a}^{b} - \langle \Delta^{\mu, \nu} u, v \rangle_{\mu} \\ &= (\nabla^{\nu} u) \, v |_{a}^{b} + \lambda \langle u, v \rangle_{\mu}, \quad \forall v \in \mathcal{D}_{1}^{\nu}. \end{aligned}$$

From this we obtain $\nabla^{\nu} u(a) = \nabla^{\nu} u(b) = 0$; i.e., $u \in \mathcal{D}_{2,N}^{\mu,\nu}$. The converse is an immediate consequence of formula (8).

599

Now we define the closed subspace of \mathcal{D}_1^{ν} by

$$\mathcal{D}_{1,D}^{\nu} := \{ f \in \mathcal{D}_1^{\nu} : f(a) = f(b) = 0 \},\$$

and we consider the restriction of \mathcal{E}^{ν} to this subspace $\mathcal{E}_{0}^{\nu} := \mathcal{E}_{|\mathcal{D}_{1,D}^{\nu} \times \mathcal{D}_{1,D}^{\nu}}^{\nu}$. Analogous to Proposition 5.1, we have the following.

Proposition 5.3. (i) $(\mathcal{E}_0^{\nu}, \mathcal{D}_{1,D}^{\nu})$ is a Dirichlet form on $L_2(K, \mu)$.

(ii) For any $\lambda \in \mathbb{R}, u \in \mathcal{D}_{1,D}^{\nu}$

 $\mathcal{E}_0^{\nu}(u,v) = \lambda \langle u, v \rangle_{\mu}, \text{ for every } v \in \mathcal{D}_{1,D}^{\nu},$

(i.e., u is an eigenfunction of $(\mathcal{E}_0^{\nu}, \mathcal{D}_{1,D}^{\nu})$ to the eigenvalue λ) if and only if

$$u \in \mathcal{D}_{2,D}^{\mu,\nu}$$
 and $\Delta^{\mu,\nu}u = -\lambda u$

(i.e., u is a Dirichlet-eigenfunction of $\Delta^{\mu,\nu}$ to the eigenvalue $-\lambda$).

PROOF. Note that $\mathcal{D}_1^{\nu} = \mathcal{D}_{1,D}^{\nu} \oplus \mathcal{H}^{\mu,\nu}$, where $\mathcal{H}^{\mu,\nu}$ is the space of μ - ν -harmonic functions introduced in Remark 2.3. From dim $\mathcal{H}^{\mu,\nu} = 2$ we obtain that $\mathcal{D}_{1,D}^{\nu}$ is dense in $L_2(K,\mu)$ because \mathcal{D}_1^{ν} is dense in $L_2(K,\mu)$. The rest of the proof is a simple modification of the proofs of Theorem 4.1 and Proposition 5.1. \Box

From Proposition 5.1 and Proposition 5.3, we obtain for any $x \ge 0$:

$$N_N^{\mu,\nu}(x) = N(x; \mathcal{E}^\nu, \mathcal{D}_1^\nu) \tag{9}$$

and

$$N_D^{\mu,\nu}(x) = N(x; \mathcal{E}_0^{\nu}, \mathcal{D}_{1,D}^{\nu}),$$
(10)

where $N(x; \mathcal{E}, \mathcal{F})$ denotes the eigenvalue counting function of the Dirichlet form $(\mathcal{E}, \mathcal{F})$. In particular, we conclude the following.

Corollar 5.4. The eigenvalues of $-\Delta_N^{\mu,\nu}$ (or $-\Delta_D^{\mu,\nu}$, respectively) are given by the Maximum-Minimum-principle stated in Proposition 3.4 where one has to set $\mathcal{F} = \mathcal{D}_1^{\nu}$ (or $\mathcal{F} = \mathcal{D}_{1,D}^{\nu}$, respectively) and $\mathcal{E}_{\alpha} = \mathcal{E}_{\alpha}^{\nu}$.

Finally, we get from Proposition 3.6, Remark 2.3 and the equalities (9) and (10) the following estimation.

Proposition 5.5. For any real number $x \ge 0$

$$N_D^{\mu,\nu}(x) \le N_N^{\mu,\nu}(x) \le N_D^{\mu,\nu}(x) + 2.$$

Remark 5.6. The last proposition is a crucial tool in determining the spectral asymptotics of the Dirichlet-and Neumann-Laplacians in the case of self similar measures (see [3]).

6 Self-Similar Measures and Variational Fractals.

In this section we restrict ourselves to the case where ν and μ are the same and, in addition, self similar measures. This makes it possible to extend the notion of a "variational fractal" to a certain class of disconnected fractal subsets of the real line. For the definition of self-similar sets and self-similar measures, we refer the reader to [1] and [6].

Let K be the unique self similar set with respect to a finite family of affine contractions $S = \{S_1, \ldots, S_N\}$ from [a, b] to [a, b] with contraction ratios r_1, \ldots, r_N such that the images $S_i[a, b]$ and $S_j[a, b]$ intersect in at most one point for $i \neq j$. Without loss of generality, we assume that $a, b \in K$. Furthermore, we are given a vector of weights $\rho = (\rho_1, \ldots, \rho_N)$; i.e., $\rho_i \in (0, 1), i = 1 \ldots N, \sum_{i=1}^N \rho_i = 1$. Then there exists a unique self similar measure $\mu = \mu(S, \rho)$ with respect to S and ρ ; i.e.,

$$\mu(A) = \sum_{i=1}^{N} \rho_i \mu(S_i^{-1}A)$$

for any Borel set A in [a, b].

Now we assume that $\nu = \mu = \mu(S, \rho)$; i.e, the measures are equal and given as a self similar measure w.r.t. a family of contractions S and weights ρ as described above. In this case, the eigenvalue counting function behaves asymptotically under both, Dirichlet and Neumann boundary conditions, as follows (see [4] for the proof):

$$N_{D/N}^{\mu,\mu}(x) \asymp x^{1/2}, \ x \to \infty; \tag{11}$$

i.e., there exist positive constants C_1 , C_2 and x_0 , such that

$$C_1 x^{1/2} \le N_{D/N}^{\mu,\mu}(x) \le C_2 x^{1/2}, \ x \ge x_0.$$

Now we introduce the notion of a variational fractal which goes back to Mosco (see [13]).

Definition 6.1. A triple (K, μ, \mathcal{E}) is called a variational fractal if the following is satisfied.

- (i) \mathcal{E} is a strongly local, regular, non vanishing Dirichlet form on $L_2(K, \mu)$ with domain \mathcal{F} .
- (ii) \mathcal{E} satisfies the scaling property; i.e., there exists a constant $\sigma < 1$, s.t.

$$\mathcal{E}(u,u) = \sum_{i=1}^{N} \left[\mu(S_i K) \right]^{\sigma} \mathcal{E}(u \circ S_i, u \circ S_i), \ u \in \mathcal{F}.$$
 (12)

Proposition 6.2. $(K, \mu, \mathcal{E}^{\mu})$ with the previous properties is a variational fractal with $\sigma = -1$.

PROOF. According to Theorem 4.1, Remark 4.3 and Remark 4.4 we only have to show the scaling property. By the self similarity of the measure μ we have $\mu \sqcup S_i[a, b] = \rho_i \mu \circ S_i^{-1} \sqcup S_i[a, b], i = 1 \dots N$, and therefore we obtain

$$\begin{split} \mathcal{E}^{\mu}(f,g) &= \int_{a}^{b} (\nabla^{\mu}f) (\nabla^{\mu}g) d\mu = \sum_{i=1}^{N} \int_{S_{i}a}^{S_{i}b} (\nabla^{\mu}f) (\nabla^{\mu}g) d\mu \\ &= \sum_{i=1}^{N} \rho_{i} \int_{S_{i}a}^{S_{i}b} (\nabla^{\mu}f) (y) (\nabla^{\mu}g) (y) dS_{i}\mu(y) \\ &= \sum_{i=1}^{N} \rho_{i} \int_{a}^{b} (\nabla^{\mu}f) (S_{i}y) (\nabla^{\mu}g) (S_{i}y) d\mu(y). \end{split}$$

Note that $\nabla^{\mu} f(S_i(y)) = \rho_i^{-1} \nabla^{\mu} (f \circ S_i)(y), i = 1 \dots N$. Hence, we obtain

$$\mathcal{E}^{\mu}(f,g) = \sum_{i=1}^{N} \rho_i^{-1} \int_a^b \nabla^{\mu} \left(f \circ S_i \right)(y) \nabla^{\mu} \left(g \circ S_i \right)(y) d\mu(y),$$

which yields the assertion.

Remark 6.3. In [14], Posta proved that the eigenvalue counting function of the Laplacian which is associated with the Dirichlet form of a variational fractal behaves asymptotically like $x^{\nu/2}$, where $\nu = \frac{2}{1-\sigma}$ and σ is the exponent in the scaling property (12). This coincides with our result (11).

Remark 6.4. Obviously, the notion of a variational fractal does not make sense if μ and ν are different measures, even not if supp $\mu = \text{supp } \nu$.

References

- K. J. Falconer, *The geometry of fractal sets*, Cambridge Univ. Press., Cambridge, 1985.
- [2] U. Freiberg, Analytic properties of measure geometric Krein-Felleroperators on the real line, Math. Nach., 260 (2003), 34–47.
- U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math., 17 (2005), 87–104.

- [4] U. Freiberg and M. Zähle, Harmonic calculus on fractals—A measure geometric approach I, Potential Anal., 16 (2002), 265–277.
- [5] M. Fukushima, Dirichlet forms and Markov processes, North Holland, Amsterdam, 1980.
- [6] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
- [7] K. Itô and H. P. McKean, Diffusion processes and their sample paths, 2nd edition, Springer, Berlin, Heidelberg, New York, 1974.
- [8] J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys., 158 (1993), 93–125.
- U. Küchler, Some asymptotic properties of the transition densities of onedimensional quasidiffusions, Publ. RIMS, Kyoto Univ., 16, No. 1 (1980), 245–268.
- [10] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., **325**, No. 2 (1991), 465–529.
- [11] Z.-M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer, Berlin, Heidelberg, New York, 1992.
- [12] G. Métivier, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France, Mém., 51–52 (1977), 125–219.
- [13] U. Mosco, Variational metrics on self-similar fractals, C. R. Acad. Sci. Paris, **321**, Série I (1995), 715–720.
- [14] G. Posta, Spectral asymptotics for variational fractals, Zeit. Anal. Anw., 17, No. 2 (1998), 417–430.
- [15] M. Reed and B. Simon, Methods of modern mathematical physics, IV, Analysis of operators, Academic press, New York, 1978.