DIRICHLET FORMS ON FRACTAL SUBSETS OF THE REAL LINE

Abstract

Measure theoretic Dirichlet forms on compact subsets of the real line are introduced. Using the technique of Dirichlet-Neumann-bracketing, estimates of the eigenvalue counting functions of the associated measure geometric Laplacians are obtained.

1 Introduction.

In [2], a class of generalized second order differential operators of the form $\Delta^{\mu, \nu}=\frac{d}{d \mu} \frac{d}{d \nu}$ is introduced. These operators are given as the second derivative w.r.t. two atomless finite Borel measures μ and ν with compact supports $L:=\operatorname{supp} \mu$ and $K:=\operatorname{supp} \nu$, such that $L \subseteq K \subseteq \mathbb{R}$. This means that the functions in the domain of these operators are defined on the set K (which also can be a closed interval; i.e., a "fractal" of Hausdorff dimension equal to 1) while the function driving the diffusion is given only on a subset $L \subseteq$ K (which, of course, also can be all of K). Thus, the operator $\Delta^{\mu, \nu}$ has an interpretation as a measure geometric Laplacian on $L_{2}(K, \mu)$. Moreover, this approach generalizes the well-known notion of the Sturm-Liouville- (or, Krein-Feller-) operator of the form $\frac{d}{d \mu} \frac{d}{d x}$ which is introduced for example in [7].

In the present paper, the Dirichlet form, which is associated with the operator $\Delta^{\mu, \nu}$, is constructed. To this end, in Section 2, we recall the definition and

[^0]some fundamental properties of $\Delta^{\mu, \nu}$ which can be found in [2]. We introduce the first derivative $\frac{d}{d \nu}$ on the space
$$
\mathcal{D}_{1}^{\nu}:=\left\{f: K \rightarrow \mathbb{R}: \exists f^{\prime} \in L_{2}(K, \nu): f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) d \nu(y), x \in K\right\}
$$

Iterating this procedure w.r.t. a second measure μ, the operator $\Delta^{\mu, \nu}=\frac{d}{d \mu} \frac{d}{d \nu}$ is introduced on $L_{2}(K, \mu)$. We restrict ourselves to the case where homogeneous Dirichlet- or, Neumann-boundary-conditions are satisfied, and we define the corresponding eigenvalue counting functions $N_{D}^{\mu, \nu}(\cdot)$ and $N_{N}^{\mu, \nu}(\cdot)$. The asymptotic behavior of these eigenvalue counting functions is determined in [3].

In Section 3, we recall the definition of a Dirichlet form, and we introduce the eigenvalues of a Dirichlet form. Following [8], we present the technique of the Dirichlet-Neumann-bracketing which gives a relation between the eigenvalue counting functions of two Dirichlet forms with domains which are related by a directed inclusion; i.e., the domain of one form has to be a closed subspace of the domain of the other form.

In Section 4, we prove that

$$
\mathcal{E}^{\nu}(f, g):=\int_{a}^{b} \nabla^{\nu} f(x) \nabla^{\nu} g(x) d \nu(x)=\left\langle\nabla^{\nu} f, \nabla^{\nu} g\right\rangle_{\nu}, f, g \in \mathcal{D}_{1}^{\nu}
$$

defines a Dirichlet form on $L_{2}(K, \mu)$.
In Section 5, we show that the Dirichlet form $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ has the same eigenvalues as the measure geometric Neumann Laplacian $\Delta_{N}^{\mu, \nu}$. Moreover, we construct a second Dirichlet form, which is in the same correspondence with the Dirichlet Laplacian $\Delta_{D}^{\mu, \nu}$. Applying the techniques introduced in Section 3, we obtain estimations of the eigenvalue counting functions $N_{D}^{\mu, \nu}(\cdot)$ and $N_{N}^{\mu, \nu}(\cdot)$.

In Section 6, we restrict ourselves to the case where ν and μ are the same and, in addition, self similar measures. In this special case, we can extend the notion of a "variational fractal", which has been introduced in [13] for certain connected fractals, to generalized Cantor sets, which are disconnected fractals. In particular, we obtain that the eigenvalue counting function behaves in this case asymptotically like $x^{1 / 2}$. Using other methods, this result was also obtained in [4].

2 Definition and Fundamental Properties of the Measure Geometric Laplacian.

Let $[a, b] \subset \mathbb{R}^{1}$ be a closed interval and ν be an atomless finite Borel measure on $[a, b]$ with compact support $K:=\operatorname{supp} \nu$ and $a, b \in K$. Further, let $L_{2}:=$
$L_{2}(K, \nu)$ be the separable Hilbert space with scalar product $\langle f, g\rangle:=\int_{a}^{b} f g d \nu$. Without loss of generality we assume that $\nu(K)=1$.

Let

$$
\begin{equation*}
\mathcal{D}_{1}^{\nu}:=\left\{f: K \rightarrow \mathbb{R}: \exists f^{\prime} \in L_{2}(K, \nu): f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) d \nu(y), x \in K\right\} \tag{1}
\end{equation*}
$$

By standard measure theoretic arguments, it follows that $\mathcal{D}_{1}^{\nu} \subset \mathcal{C}(K) \subset$ $L_{2}(K, \nu)$; i.e., every function f in \mathcal{D}_{1}^{ν} is continuous on K. Moreover, the function f^{\prime} defined in (1) is unique in $L_{2}(K, \nu)$. Thus, for any $f \in \mathcal{D}_{1}^{\nu}$, we can define the ν-derivative of f by setting

$$
\nabla^{\nu} f=\frac{d f}{d \nu}:=f^{\prime}
$$

Note that in the case $K=[a, b]$ and $\nu=\lambda$, where λ denotes the normalized Lebesgue measure on $[a, b], \mathcal{D}_{1}^{\nu}$ coincides with the Sobolev space $W^{1,2}$.

In order to define the second derivative, we repeat the above construction with respect to another measure. Let K and ν be as above.

Now let μ be a second atomless, normalized Borel measure on $[a, b]$ with compact support $L:=\operatorname{supp} \mu$ and $a, b \in L$. Furthermore, we assume that $L \subset K$ and, if $K \backslash L \neq \emptyset$, we agree upon the following notation.
$L^{C}:=[a, b] \backslash L$ is open in \mathbb{R} and therefore a countable union of pairwise disjoint open intervals with endpoints in L. From $L=L \cap K=K \backslash L^{C}$ we obtain for some c_{i} and $d_{i}, i=1,2, \ldots$

$$
\begin{equation*}
L=K \backslash\left(\sum_{i=1}^{\infty}\left(c_{i}, d_{i}\right)\right) \text { with } a<c_{i}<d_{i}<b, c_{i}, d_{i} \in L, i=1,2, \ldots \ldots \tag{2}
\end{equation*}
$$

Furthermore, let $L_{2}(L, \mu)$ (and $L_{2}(K, \mu)$, resp.) denote the separable Hilbert space of all square μ-integrable functions on L (and K, resp.), both equipped with the scalar product $\langle f, g\rangle_{\mu}:=\int_{a}^{b} f g d \mu$. Setting

$$
\begin{equation*}
\mathcal{D}_{2}^{\mu, \nu}:=\left\{f \in \mathcal{D}_{1}^{\nu}: \exists f^{\prime \prime} \in L_{2}(L, \mu): \nabla^{\nu} f(x)=\nabla^{\nu} f(a)+\int_{a}^{x} f^{\prime \prime}(y) d \mu(y), x \in K\right\} \tag{3}
\end{equation*}
$$

the following properties are easy to show:
Proposition 2.1. (i) $\mathcal{D}_{2}^{\mu, \nu} \subset \mathcal{D}_{1}^{\nu} \subset \mathcal{C}(K) \subset L_{2}(K, \mu) \cap L_{2}(K, \nu)$.
(ii) If $L \neq K$, then according to the notation of (2), for any $f \in \mathcal{D}_{2}^{\mu, \nu}$

$$
\nabla^{\nu} f(x) \equiv \nabla^{\nu} f\left(c_{i}\right), x \in\left(c_{i}, d_{i}\right) \cap K, i=1,2, \ldots
$$

i.e., for any function $f \in \mathcal{D}_{2}^{\mu, \nu}$ the ν-derivative $\nabla^{\nu} f$ is uniquely determined on all of K by its values on the subset L.
(iii) Under the same assumptions as made in (ii), we have for any $f \in \mathcal{D}_{2}^{\mu, \nu}$:

$$
f(x)=f\left(c_{i}\right)+\nabla^{\nu} f\left(c_{i}\right) \cdot \nu\left(\left[c_{i}, x\right)\right), x \in\left(c_{i}, d_{i}\right) \cap K, i=1,2, \ldots ;
$$

i.e., every function $f \in \mathcal{D}_{2}^{\mu, \nu}$ itself is uniquely determined on all of K by its values on L.
(iv) The function $f^{\prime \prime}$ defined by (3) is unique in $L_{2}(L, \mu)$.

We define the $\mu-\nu$-Laplacian of $f \in \mathcal{D}_{2}^{\mu, \nu}$ by

$$
\Delta^{\mu, \nu} f=\nabla^{\mu}\left(\nabla^{\nu} f\right)=\frac{d}{d \mu}\left(\frac{d f}{d \nu}\right):= \begin{cases}f^{\prime \prime} & \text { on } L \\ 0 & \text { on } K \backslash L\end{cases}
$$

where $f^{\prime \prime}$ is given by (3). Note that for $f \in \mathcal{D}_{2}^{\mu, \nu}$ the function $\nabla^{\nu} f$ is ν-unique and continuous on K and therefore unique on K. From Proposition 2.1, (iv) it follows that

$$
\Delta^{\mu, \nu}: \mathcal{D}_{2}^{\mu, \nu} \subseteq L_{2}(K, \mu) \rightarrow L_{2}(K, \mu)
$$

is well defined.
Remark 2.2. As $\mathcal{D}_{2}^{\mu, \nu}$ is the set of all functions $f: K \rightarrow \mathbb{R}$ such there exist functions $f^{\prime} \in L_{2}(K, \nu)$ and $f^{\prime \prime} \in L_{2}(L, \mu)$ with $f(x)=f(a)+\int_{a}^{x} f^{\prime}(y) d \nu(y)$, $x \in K$, and $f^{\prime}(y)=f^{\prime}(a)+\int_{a}^{y} f^{\prime \prime}(z) d \mu(z), y \in K$, we infer by Fubini's theorem the following representation of $f \in \mathcal{D}_{2}^{\mu, \nu}$.

$$
f(x)=f(a)+\nabla^{\nu} f(a) \cdot \nu([a, x))+\int_{a}^{x} \nu([y, x)) \Delta^{\mu, \nu} f(y) d \mu(y), x \in K
$$

We now introduce Dirichlet and Neumann boundary conditions, respectively:

$$
\begin{equation*}
\mathcal{D}_{2, D}^{\mu, \nu}:=\left\{f \in \mathcal{D}_{2}^{\mu, \nu}: f(a)=f(b)=0\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{D}_{2, N}^{\mu, \nu}:=\left\{f \in \mathcal{D}_{2}^{\mu, \nu}: \nabla^{\nu} f(a)=\nabla^{\nu} f(b)=0\right\} \tag{5}
\end{equation*}
$$

The restriction of $\Delta^{\mu, \nu}$ on $\mathcal{D}_{2, D}^{\mu, \nu}$ (or $\mathcal{D}_{2, N}^{\mu, \nu}$, resp.) is called Dirichlet- $\mu-\nu-$ Laplacian (or Neumann- $\mu-\nu$-Laplacian, resp.) and we denote it by $\Delta_{D}^{\mu, \nu}$ (or $\Delta_{N}^{\mu, \nu}$, resp.). In [2] is shown that $\Delta_{D}^{\mu, \nu}$ and $\Delta_{N}^{\mu, \nu}$ are negative symmetric operators on $L_{2}(K, \mu)$. Moreover, the eigenvalues of $\Delta_{D}^{\mu, \nu}$ (or $\Delta_{N}^{\mu, \nu}$, resp.) have finite multiplicities. They form a countable sequence which has no accumulation point except $-\infty$. Thus, we are allowed to define the eigenvalue counting function of $-\Delta_{D / N}^{\mu, \nu}$ given by

$$
\begin{equation*}
N_{D / N}^{\mu, \nu}(x):=\#\left\{\kappa_{k} \leq x: \kappa_{k} \text { is eigenvalue of }-\Delta_{D / N}^{\mu, \nu}\right\} \tag{6}
\end{equation*}
$$

- counting according to multiplicities. Further, in [2] is obtained that the domains $\mathcal{D}_{1}^{\nu}, \mathcal{D}_{2}^{\mu, \nu}, \mathcal{D}_{2 / D}^{\mu, \nu}$ and $\mathcal{D}_{2 / N}^{\mu, \nu}$ defined by (1), (3), (4) and (5) are dense subspaces of $L_{2}(K, \mu)$.
Remark 2.3. By $\mathcal{H}^{\mu, \nu}$, we denote the space of the $\Delta^{\mu, \nu}$-harmonic functions; i.e.,

$$
\mathcal{H}^{\mu, \nu}:=\left\{f \in \mathcal{D}_{2}^{\mu, \nu}: \Delta^{\mu, \nu} f \equiv 0\right\} .
$$

It is easy to see that $\operatorname{dim}_{\mathbb{R}} \mathcal{H}^{\mu, \nu}=2$ and $\mathcal{D}_{2}^{\mu, \nu}=\mathcal{D}_{2, D}^{\mu, \nu} \oplus \mathcal{H}^{\mu, \nu}$.
In the following theorem, we state that every boundary value problem has a unique solution. This solution is given with respect to a kernel, which is given in terms of the measure ν.
Theorem 2.4 (see [2]). For any function $f \in L_{2}(K, \mu)$ and for any boundary values $u(a)$ and $u(b)$, the equation

$$
\Delta^{\mu, \nu} u=f
$$

has a solution $u \in \mathcal{D}_{2}^{\mu, \nu}$. Further, u is unique in $L_{2}(K, \mu)$ and has the representation

$$
u(x)=u(a) \nu([x, b))+u(b) \nu([a, x))-\int_{a}^{b} g^{\nu}(x, y) f(y) d \mu(y), x \in K,
$$

where $g^{\nu}(.,$.$) denotes the \nu$-Green function, which is given on $K \times K$ by

$$
g^{\nu}(y, x)=g^{\nu}(x, y):= \begin{cases}\nu([a, x)) \nu([y, b)) & \text { for } x \leq y \\ \nu([a, y)) \nu([x, b)) & \text { for } x>y\end{cases}
$$

3 Dirichlet Forms and Dirichlet-Neumann-Bracketing.

In this section, we recall the definition of a Dirichlet form and present the technique of the so-called Dirichlet-Neumann-bracketing which goes back to Métivier [12] and Lapidus [10]. A general survey on Dirichlet forms can be found, for example, in [5] or [11].

Let X be a compact set, and let τ be a Borel measure on X.
Definition 3.1. Let \mathcal{F} be a dense subspace of the Hilbert space $L_{2}(X, \tau)$ equipped with the scalar product

$$
\langle u, v\rangle_{L_{2}(X, \tau)}:=\int_{X} u v d \tau,
$$

and let \mathcal{E} be a positive definite symmetric bilinear form on \mathcal{F}.
Then we call the pair $(\mathcal{E}, \mathcal{F})$ a Dirichlet form on $L_{2}(X, \tau)$ if the following properties hold:
(i) For any $\alpha>0$, we define

$$
\mathcal{E}_{\alpha}(u, v):=\mathcal{E}(u, v)+\alpha\langle u, v\rangle_{L_{2}(X, \tau)}
$$

Then $\left(\mathcal{F}, \mathcal{E}_{\alpha}\right)$ has to be a Hilbert space for any $\alpha>0$.
(ii) (Markov property:) For any $u \in \mathcal{F}$ we define the function \bar{u} by

$$
\bar{u}(x):= \begin{cases}1 & \text { if } u(x)>1 \\ 0 & \text { if } u(x)<0 \\ u(x) & \text { otherwise }\end{cases}
$$

Then \bar{u} has to be in \mathcal{F} and $\mathcal{E}(\bar{u}, \bar{u}) \leq \mathcal{E}(u, u)$.
Remark 3.2. If $\left(\mathcal{F}, \mathcal{E}_{1}\right)$ is a Hilbert space, it is every $\left(\mathcal{F}, \mathcal{E}_{\alpha}\right), \alpha>0$ (see, for example, [11]).

Now we formulate the eigenvalue problem associated with a Dirichlet form.
Definition 3.3. Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on $L_{2}(X, \tau)$. If for a function $u \in \mathcal{F}$

$$
\mathcal{E}(u, v)=\lambda\langle u, v\rangle_{L_{2}(X, \tau)}, \forall v \in \mathcal{F}
$$

then we call λ an eigenvalue of the form $(\mathcal{E}, \mathcal{F})$, and u is a corresponding eigenfunction.

Following [8], we introduce the technique of of the Dirichlet-Neumannbracketing.

Let $(\mathcal{E}, \mathcal{F})$ be a Dirichlet form on $L_{2}(X, \tau)$ such that the eigenvalues of $(\mathcal{E}, \mathcal{F})$ form a sequence of real, nonnegative numbers with finite multiplicities which have no accumulation point except $+\infty$. (For example, it is sufficient that for some fixed $\alpha>0$ the natural inclusion $\left(\mathcal{F}, \mathcal{E}_{\alpha}\right) \hookrightarrow L_{2}(X, \tau)$ is a compact operator, see [8].) Then, the eigenvalue counting function $N(x ; \mathcal{E}, \mathcal{F})$ of $(\mathcal{E}, \mathcal{F})$

$$
N(x ; \mathcal{E}, \mathcal{F}):=\#\left\{i \geq 1: \lambda_{i} \leq x\right\}
$$

is well defined, where $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ denotes the increasing sequence of the eigenvalues of $(\mathcal{E}, \mathcal{F})$, according to multiplicities. These eigenvalues are given by the following Maximum-Minimum-principle (see Reed and Simon, [15]).

Proposition 3.4. Let $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ denote the sequence of the eigenvalues of $(\mathcal{E}, \mathcal{F})$ as introduced above and fix $\alpha>0$. Then

$$
\left(\lambda_{i}+\alpha\right)^{-1 / 2}=d_{i-1}\left(S_{\alpha}(\mathcal{F})\right)
$$

where $S_{\alpha}(\mathcal{B})$ is defined by

$$
S_{\alpha}(\mathcal{B}):=\left\{u \in \mathcal{B} \cap \mathcal{F}: \mathcal{E}_{\alpha}(u, u) \leq 1\right\}, \mathcal{B} \subset L_{2}(X, \tau)
$$

and $d_{i}=d_{i}\left(S_{\alpha}(\mathcal{B})\right), i \geq 0$ is given by

$$
\begin{aligned}
d_{i}:=\inf \left\{\sup _{x \in S_{\alpha}(\mathcal{B})} \inf _{y \in \mathcal{Y}}\|x-y\|_{L_{2}(X, \tau)} / \mathcal{Y} \subseteq L_{2}(X, \tau)\right. \text { is a subspace } \\
\text { with } \operatorname{dim} \mathcal{Y}=i\}
\end{aligned}
$$

Remark 3.5. If $\mathcal{B} \subseteq \mathcal{Y}$, where \mathcal{Y} is a n-dimensional subspace of $L_{2}(X, \tau)$, then it follows that $d_{i}\left(S_{\alpha}(\mathcal{B})\right)=0$ for $i \geq n$.

From Proposition 3.4 we conclude that

$$
N(x ; \mathcal{E}, \mathcal{F})=\#\left\{i \geq 0: d_{i}\left(S_{\alpha}(\mathcal{F})\right) \geq(x+\alpha)^{-1 / 2}\right\}
$$

Now we introduce the technique of the Dirichlet-Neumann-bracketing. Let $\left(\mathcal{E}^{\prime}, \mathcal{F}^{\prime}\right)$ be another Dirichlet form on $L_{2}(X, \tau)$ such that $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ is a closed subspace, and \mathcal{E}^{\prime} is given by $\mathcal{E}^{\prime}:=\mathcal{E}_{\mid \mathcal{F}^{\prime} \times \mathcal{F}^{\prime}}$. The following property gives a relation between the eigenvalue counting functions $N(x ; \mathcal{E}, \mathcal{F})$ and $N\left(x ; \mathcal{E}^{\prime}, \mathcal{F}^{\prime}\right)$ (for the proof we refer to [8]):
Proposition 3.6. If $\operatorname{dim}\left(\mathcal{F} / \mathcal{F}^{\prime}\right)<\infty$, then for any $x \geq 0$.

$$
N\left(x ; \mathcal{E}^{\prime}, \mathcal{F}^{\prime}\right) \leq N(x ; \mathcal{E}, \mathcal{F}) \leq N\left(x ; \mathcal{E}^{\prime}, \mathcal{F}^{\prime}\right)+\operatorname{dim} \mathcal{F} / \mathcal{F}^{\prime}
$$

4 The ν-Dirichlet Form.

Suppose we are given two measures ν and μ with supp $\mu=L \subset K=\operatorname{supp} \nu$ as in Section 2. Furthermore, as above, \mathcal{D}_{1}^{ν} denotes the space of all functions possessing a ν-derivative in $L_{2}(K, \nu)$. We define the following nonnegative symmetric bilinear form \mathcal{E}^{ν} on \mathcal{D}_{1}^{ν}.

$$
\mathcal{E}^{\nu}(f, g):=\int_{a}^{b} \nabla^{\nu} f(x) \nabla^{\nu} g(x) d \nu(x)=\left\langle\nabla^{\nu} f, \nabla^{\nu} g\right\rangle_{\nu}, f, g \in \mathcal{D}_{1}^{\nu}
$$

Then the following holds.

Theorem 4.1. $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ is a Dirichlet form on $L_{2}(K, \mu)$.
Proof. We have to show:
(i) $\mathcal{D}_{1}^{\nu} \subset L_{2}(K, \mu)$ is a dense subspace.
(ii) $\left(\mathcal{D}_{1}^{\nu}, \mathcal{E}_{1}^{\nu}\right)$ is a Hilbert space.
(iii) The Markov property holds.
(i) The density of \mathcal{D}_{1}^{ν} in $L_{2}(K, \mu)$ is proved in [2], Corollary 6.4.
(ii) Obviously, \mathcal{E}_{1}^{ν} defines a scalar product on \mathcal{D}_{1}^{ν}, therefore $\left(\mathcal{D}_{1}^{\nu}, \mathcal{E}_{1}^{\nu}\right)$ is a pre-Hilbert space. It remains to show that \mathcal{D}_{1}^{ν} is complete w.r.t. to the norm $\sqrt{\mathcal{E}_{1}^{\nu}}$. Let $\left(u_{n}\right) \subset \mathcal{D}_{1}^{\nu}$ be a Cauchy sequence w.r.t. $\sqrt{\mathcal{E}_{1}^{\nu}}$; i.e.,

$$
\left\|\nabla^{\nu} u_{n}-\nabla^{\nu} u_{m}\right\|_{\mid L_{2}(K, \nu)}^{2}+\left\|u_{n}-u_{m}\right\|_{\mid L_{2}(K, \mu)}^{2} \rightarrow 0, \quad n, m \rightarrow \infty
$$

As $L_{2}(K, \nu)$ and $L_{2}(K, \mu)$ are Hilbert spaces, there exist functions $f \in L_{2}(K, \nu)$ and $u \in L_{2}(K, \mu)$ such that

$$
\left\|\nabla^{\nu} u_{n}-f\right\|_{\mid L_{2}(K, \nu)}^{2} \rightarrow 0, \quad n \rightarrow \infty
$$

and

$$
\left\|u_{n}-u\right\|_{\mid L_{2}(K, \mu)}^{2} \rightarrow 0, n \rightarrow \infty
$$

Because of

$$
\begin{aligned}
& \int_{K}\left|\int_{c}^{x}\left(f(z)-\nabla^{\nu} u_{n}(z)\right) d \nu(z)\right| d \mu(x) \\
\leq & \int_{K} \int_{K}\left|f(z)-\nabla^{\nu} u_{n}(z)\right| d \mu(x) d \nu(z) \rightarrow 0, n \rightarrow \infty
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \int_{K}\left|u(x)-u(c)-\int_{c}^{x} f(z) d \nu(z)\right| d \mu(x) \\
= & \lim _{k \rightarrow \infty} \int_{K}\left|u_{n_{k}}(x)-u_{n_{k}}(c)-\int_{c}^{x} \nabla^{\nu} u_{n_{k}}(z) d \nu(z)\right| d \mu(x)=0 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
u(x)=u(c)+\int_{c}^{x} f(z) d \nu(z) \tag{7}
\end{equation*}
$$

holds for μ-almost every x and for μ-almost every c in K; i.e., (7) holds in $L_{2}(K, \mu)$. Thus, we conclude that u is in \mathcal{D}_{1}^{ν} with $\nabla^{\nu} u=f$ and therefore
$\mathcal{E}_{1}^{\nu}\left(u_{n}, u\right) \rightarrow 0$ as $n \rightarrow \infty$.
(iii) Choose $u \in \mathcal{D}_{1}^{\nu}$; i.e., there exists a function $\nabla^{\nu} u \in L_{2}(K, \nu)$ with

$$
u(x)=u(a)+\int_{a}^{x} \nabla^{\nu} u(y) d \nu(y), \quad x \in K
$$

Setting $\bar{u}=0 \vee u \wedge 1$, we define the function $\nabla^{\nu} \bar{u}$ in $L_{2}(K, \nu)$ by

$$
\nabla^{\nu} \bar{u}(y):= \begin{cases}\nabla^{\nu} u(y) & y \in A:=K \cap\{0 \leq u(y) \leq 1\} \\ 0 & y \in B:=K \backslash A\end{cases}
$$

Obviously,

$$
\bar{u}(x)=\bar{u}(a)+\int_{a}^{x} \nabla^{\nu} \bar{u}(y) d \nu(y), x \in K
$$

and therefore we infer $\bar{u} \in \mathcal{D}_{1}^{\nu}$. The definition of $\nabla^{\nu} \bar{u}$ yields immediately $\mathcal{E}^{\nu}(\bar{u}, \bar{u}) \leq \mathcal{E}^{\nu}(u, u)$.

Remark 4.2. As in the classical Lebesgue case we have the Gauß-Greenformula (see [2], Proposition 3.1.):

$$
\begin{equation*}
\int_{a}^{b}\left(\Delta^{\mu, \nu} f, g\right) d \mu=\left.\left(\nabla^{\nu} f\right) g\right|_{a} ^{b}-\mathcal{E}^{\nu}(f, g) \quad f \in \mathcal{D}_{2}^{\mu, \nu}, g \in \mathcal{D}_{1}^{\nu} \tag{8}
\end{equation*}
$$

Remark 4.3. From $\mathcal{D}_{1}^{\nu} \subseteq \mathcal{C}(K)$ we obtain that $\mathcal{C}_{0}(K) \cap \mathcal{D}_{1}^{\nu}$ is dense in \mathcal{D}_{1}^{ν} w.r.t. the norm $\sqrt{\mathcal{E}_{1}^{\nu}}$ and dense in $\mathcal{C}_{0}(K)$ w.r.t. the norm $\|\cdot\|_{\infty}$. Hence, the form $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ is a regular Dirichlet form on $L_{2}(K, \mu)$. Moreover, it is easy to see that $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ is local. From the theory of Dirichlet forms it follows (see, for example, [11]) that there exists an associated strong Markovian process with almost surely continuous paths on L. In the special case of the operator $\frac{d}{d \mu} \frac{d}{d x}$; i.e., ν is just given by Lebesgue measure, these operators have already been studied. The corresponding stochastic processes are the so-called quasi-, or gap-diffusions (see, for exp, [7], [9]).

Remark 4.4. Obviously, the functions $\phi_{C}^{\nu}, C \in \mathbb{R}$, defined by $\phi_{C}^{\nu}(x):=$ $C \cdot \nu([a, x)), x \in K$, are in \mathcal{D}_{1}^{ν}, their ν-derivative is given by $\nabla^{\nu} \phi_{C}^{\nu} \equiv C$. Hence, $\mathcal{E}^{\nu}\left(\phi_{C}^{\nu}, \phi_{C}^{\nu}\right)=C^{2}$; i.e., the form $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ is non vanishing.

5 Application of the Dirichlet-Neumann-Bracketing.

In the present section, we show that the eigenvalue problem for the ν-Dirichlet form $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ and the eigenvalue problem for the negative Neumann- $\mu-\nu-$ Laplacian $-\Delta_{N}^{\mu, \nu}$ are equivalent. Moreover, we define another Dirichlet form
which is in the same correspondence with the Dirichlet- $\mu-\nu$-Laplacian $\Delta_{D}^{\mu, \nu}$. The aim of this construction is to get from Proposition 3.6 estimations for the eigenvalue counting functions of the Laplacian $N_{N}^{\mu, \nu}(\cdot)$ and $N_{D}^{\mu, \nu}(\cdot)$ introduced in (6).
Let $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ be the ν-Dirichlet form defined in Section 4.

Proposition 5.1. For any $\lambda \in \mathbb{R}$ and any function $u \in \mathcal{D}_{1}^{\nu}$

$$
\mathcal{E}^{\nu}(u, v)=\lambda\langle u, v\rangle_{\mu}, \text { for every } v \in \mathcal{D}_{1}^{\nu}
$$

(i.e., u is an eigenfunction of $\left(\mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right)$ to the eigenvalue λ) if and only if

$$
u \in \mathcal{D}_{2, N}^{\mu, \nu} \text { and } \Delta^{\mu, \nu} u=-\lambda u
$$

(i.e., u is a Neumann-eigenfunction of $\Delta^{\mu, \nu}$ to the eigenvalue $-\lambda$).

In order to prove this proposition we make use of the following lemma.

Lemma 5.2. For any $x \in K$ let $g^{\nu, x}(y):=g^{\nu}(x, y)$, where $g^{\nu}(x, y)$ is the ν-Green function given in Theorem 2.4. Then:
(i) $g^{\nu, a} \equiv g^{\nu, b} \equiv 0$
(ii) For any $x \in K, g^{\nu, x}$ is in \mathcal{D}_{1}^{ν} and

$$
\mathcal{E}^{\nu}\left(g^{\nu, x}, f\right)=f(x)-f(a) \phi_{a}^{\nu}(x)-f(b) \phi_{b}^{\nu}(x), f \in \mathcal{D}_{1}^{\nu}
$$

where ϕ_{a}^{ν} and ϕ_{b}^{ν} are special μ - ν-harmonic functions given by

$$
\phi_{a}^{\nu}(x):=\nu([x, b)) \text { and } \phi_{b}^{\nu}(x):=\nu([a, x)) .
$$

(iii) $\mathcal{E}^{\nu}\left(g^{\nu, x}, g^{\nu, x}\right)=g^{\nu}(x, x), x \in K$.

Proof. (i) This assertion follows immediately from the definition of $g^{\nu}(x, y)$.
(ii) Obviously, it holds that $\nabla^{\nu} \nu([a, \cdot)) \equiv 1$ and $\nabla^{\nu} \nu([\cdot, b)) \equiv-1$, therefore
we have for fixed $x \in K: g^{\nu, x} \in \mathcal{D}_{1}^{\nu}$ and

$$
\begin{aligned}
\mathcal{E}^{\nu}\left(g^{\nu, x}, f\right)= & \int_{a}^{b} \nabla^{\nu} g^{\nu, x}(y) \nabla^{\nu} f(y) d \nu(y) \\
= & \int_{a}^{x} \nabla^{\nu}[\nu([a, y)) \nu([x, b))] \nabla^{\nu} f(y) d \nu(y) \\
& +\int_{x}^{b} \nabla^{\nu}[\nu([a, x)) \nu([y, b))] \nabla^{\nu} f(y) d \nu(y) \\
= & \nu([x, b)) \int_{a}^{x} \nabla^{\nu} f(y) d \nu(y)-\nu([a, x)) \int_{x}^{b} \nabla^{\nu} f(y) d \nu(y) \\
= & \nu([x, b))[f(x)-f(a)]-\nu([a, x))[f(b)-f(x)] \\
= & f(x)-f(a) \phi_{a}^{\nu}(x)-f(b) \phi_{b}^{\nu}(x)
\end{aligned}
$$

(iii) From (i), (ii) and the symmetry of $g^{\nu}(x, y)$ we obtain

$$
\begin{aligned}
\mathcal{E}^{\nu}\left(g^{\nu, x}, g^{\nu, x}\right) & =g^{\nu, x}(x)-g^{\nu, x}(a) \phi_{a}^{\nu}(x)-g^{\nu, x}(b) \phi_{b}^{\nu}(x) \\
& =g^{\nu, x}(x)-g^{\nu, a}(x) \phi_{a}^{\nu}(x)-g^{\nu, b}(x) \phi_{b}^{\nu}(x) \\
& =g^{\nu, x}(x)=g^{\nu}(x, x) .
\end{aligned}
$$

Proof of Proposition 5.1. First, we assume that $\mathcal{E}^{\nu}(u, v)=\lambda\langle u, v\rangle_{\mu}$ for every $v \in \mathcal{D}_{1}^{\nu}$, and we choose $v=g^{\nu, x}, x \in K$ fixed. According to Lemma 5.2 (ii) the function $g^{\nu, x}$ is in \mathcal{D}_{1}^{ν}, and

$$
\begin{aligned}
u(x)-u(a) \nu([x, b))-u(b) \nu([a, x)) & =\mathcal{E}^{\nu}\left(g^{\nu, x}, u\right)=\lambda\left\langle u, g^{\nu, x}\right\rangle_{\mu} \\
& =\lambda \int_{a}^{b} u(y) g^{\nu}(x, y) d \mu(y)
\end{aligned}
$$

This is true for any $x \in K$. Hence we infer from Theorem 2.4 that u is in $\mathcal{D}_{2}^{\mu, \nu}$ and $\Delta^{\mu, \nu} u=-\lambda u$ on $L_{2}(K, \mu)$. Moreover, (8) yields

$$
\begin{aligned}
\lambda\langle u, v\rangle_{\mu}=\mathcal{E}^{\nu}(u, v) & =\left.\left(\nabla^{\nu} u\right) v\right|_{a} ^{b}-\left\langle\Delta^{\mu, \nu} u, v\right\rangle_{\mu} \\
& =\left.\left(\nabla^{\nu} u\right) v\right|_{a} ^{b}+\lambda\langle u, v\rangle_{\mu}, \quad \forall v \in \mathcal{D}_{1}^{\nu} .
\end{aligned}
$$

From this we obtain $\nabla^{\nu} u(a)=\nabla^{\nu} u(b)=0$; i.e., $u \in \mathcal{D}_{2, N}^{\mu, \nu}$.
The converse is an immediate consequence of formula (8).
Now we define the closed subspace of \mathcal{D}_{1}^{ν} by

$$
\mathcal{D}_{1, D}^{\nu}:=\left\{f \in \mathcal{D}_{1}^{\nu}: f(a)=f(b)=0\right\}
$$

and we consider the restriction of \mathcal{E}^{ν} to this subspace $\mathcal{E}_{0}^{\nu}:=\mathcal{E}_{\mid \mathcal{D}_{1, D}^{\nu} \times \mathcal{D}_{1, D}^{\nu}}^{\nu}$. Analogous to Proposition 5.1, we have the following.

Proposition 5.3. (i) $\left(\mathcal{E}_{0}^{\nu}, \mathcal{D}_{1, D}^{\nu}\right)$ is a Dirichlet form on $L_{2}(K, \mu)$.
(ii) For any $\lambda \in \mathbb{R}, u \in \mathcal{D}_{1, D}^{\nu}$

$$
\mathcal{E}_{0}^{\nu}(u, v)=\lambda\langle u, v\rangle_{\mu}, \text { for every } v \in \mathcal{D}_{1, D}^{\nu}
$$

(i.e., u is an eigenfunction of $\left(\mathcal{E}_{0}^{\nu}, \mathcal{D}_{1, D}^{\nu}\right)$ to the eigenvalue λ) if and only if

$$
u \in \mathcal{D}_{2, D}^{\mu, \nu} \text { and } \Delta^{\mu, \nu} u=-\lambda u
$$

(i.e., u is a Dirichlet-eigenfunction of $\Delta^{\mu, \nu}$ to the eigenvalue $-\lambda$).

Proof. Note that $\mathcal{D}_{1}^{\nu}=\mathcal{D}_{1, D}^{\nu} \oplus \mathcal{H}^{\mu, \nu}$, where $\mathcal{H}^{\mu, \nu}$ is the space of μ - ν-harmonic functions introduced in Remark 2.3. From $\operatorname{dim} \mathcal{H}^{\mu, \nu}=2$ we obtain that $\mathcal{D}_{1, D}^{\nu}$ is dense in $L_{2}(K, \mu)$ because \mathcal{D}_{1}^{ν} is dense in $L_{2}(K, \mu)$. The rest of the proof is a simple modification of the proofs of Theorem 4.1 and Proposition 5.1.

From Proposition 5.1 and Proposition 5.3, we obtain for any $x \geq 0$:

$$
\begin{equation*}
N_{N}^{\mu, \nu}(x)=N\left(x ; \mathcal{E}^{\nu}, \mathcal{D}_{1}^{\nu}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{D}^{\mu, \nu}(x)=N\left(x ; \mathcal{E}_{0}^{\nu}, \mathcal{D}_{1, D}^{\nu}\right) \tag{10}
\end{equation*}
$$

where $N(x ; \mathcal{E}, \mathcal{F})$ denotes the eigenvalue counting function of the Dirichlet form $(\mathcal{E}, \mathcal{F})$. In particular, we conclude the following.

Corollar 5.4. The eigenvalues of $-\Delta_{N}^{\mu, \nu}$ (or $-\Delta_{D}^{\mu, \nu}$, respectively) are given by the Maximum-Minimum-principle stated in Proposition 3.4 where one has to set $\mathcal{F}=\mathcal{D}_{1}^{\nu} \quad\left(\right.$ or $\mathcal{F}=\mathcal{D}_{1, D}^{\nu}$, respectively) and $\mathcal{E}_{\alpha}=\mathcal{E}_{\alpha}^{\nu}$.

Finally, we get from Proposition 3.6, Remark 2.3 and the equalities (9) and (10) the following estimation.

Proposition 5.5. For any real number $x \geq 0$

$$
N_{D}^{\mu, \nu}(x) \leq N_{N}^{\mu, \nu}(x) \leq N_{D}^{\mu, \nu}(x)+2 .
$$

Remark 5.6. The last proposition is a crucial tool in determining the spectral asymptotics of the Dirichlet-and Neumann-Laplacians in the case of self similar measures (see [3]).

6 Self-Similar Measures and Variational Fractals.

In this section we restrict ourselves to the case where ν and μ are the same and, in addition, self similar measures. This makes it possible to extend the notion of a "variational fractal" to a certain class of disconnected fractal subsets of the real line. For the definition of self-similar sets and self-similar measures, we refer the reader to [1] and [6].

Let K be the unique self similar set with respect to a finite family of affine contractions $S=\left\{S_{1}, \ldots, S_{N}\right\}$ from $[a, b]$ to $[a, b]$ with contraction ratios r_{1}, \ldots, r_{N} such that the images $S_{i}[a, b]$ and $S_{j}[a, b]$ intersect in at most one point for $i \neq j$. Without loss of generality, we assume that $a, b \in K$. Furthermore, we are given a vector of weights $\rho=\left(\rho_{1}, \ldots, \rho_{N}\right)$; i.e., $\rho_{i} \in$ $(0,1), i=1 \ldots N, \sum_{i=1}^{N} \rho_{i}=1$. Then there exists a unique self similar measure $\mu=\mu(S, \rho)$ with respect to S and ρ; i.e.,

$$
\mu(A)=\sum_{i=1}^{N} \rho_{i} \mu\left(S_{i}^{-1} A\right)
$$

for any Borel set A in $[a, b]$.
Now we assume that $\nu=\mu=\mu(S, \rho)$; i.e, the measures are equal and given as a self similar measure w.r.t. a family of contractions S and weights ρ as described above. In this case, the eigenvalue counting function behaves asymptotically under both, Dirichlet and Neumann boundary conditions, as follows (see [4] for the proof):

$$
\begin{equation*}
N_{D / N}^{\mu, \mu}(x) \asymp x^{1 / 2}, x \rightarrow \infty \tag{11}
\end{equation*}
$$

i.e., there exist positive constants C_{1}, C_{2} and x_{0}, such that

$$
C_{1} x^{1 / 2} \leq N_{D / N}^{\mu, \mu}(x) \leq C_{2} x^{1 / 2}, x \geq x_{0}
$$

Now we introduce the notion of a variational fractal which goes back to Mosco (see [13]).
Definition 6.1. A triple (K, μ, \mathcal{E}) is called a variational fractal if the following is satisfied.
(i) \mathcal{E} is a strongly local, regular, non vanishing Dirichlet form on $L_{2}(K, \mu)$ with domain \mathcal{F}.
(ii) \mathcal{E} satisfies the scaling property; i.e., there exists a constant $\sigma<1$, s.t.

$$
\begin{equation*}
\mathcal{E}(u, u)=\sum_{i=1}^{N}\left[\mu\left(S_{i} K\right)\right]^{\sigma} \mathcal{E}\left(u \circ S_{i}, u \circ S_{i}\right), u \in \mathcal{F} \tag{12}
\end{equation*}
$$

Proposition 6.2. $\left(K, \mu, \mathcal{E}^{\mu}\right)$ with the previous properties is a variational fractal with $\sigma=-1$.

Proof. According to Theorem 4.1, Remark 4.3 and Remark 4.4 we only have to show the scaling property. By the self similarity of the measure μ we have $\mu\left\llcorner S_{i}[a, b]=\rho_{i} \mu \circ S_{i}^{-1}\left\llcorner S_{i}[a, b], i=1 \ldots N\right.\right.$, and therefore we obtain

$$
\begin{aligned}
\mathcal{E}^{\mu}(f, g) & =\int_{a}^{b}\left(\nabla^{\mu} f\right)\left(\nabla^{\mu} g\right) d \mu=\sum_{i=1}^{N} \int_{S_{i} a}^{S_{i} b}\left(\nabla^{\mu} f\right)\left(\nabla^{\mu} g\right) d \mu \\
& =\sum_{i=1}^{N} \rho_{i} \int_{S_{i} a}^{S_{i} b}\left(\nabla^{\mu} f\right)(y)\left(\nabla^{\mu} g\right)(y) d S_{i} \mu(y) \\
& =\sum_{i=1}^{N} \rho_{i} \int_{a}^{b}\left(\nabla^{\mu} f\right)\left(S_{i} y\right)\left(\nabla^{\mu} g\right)\left(S_{i} y\right) d \mu(y) .
\end{aligned}
$$

Note that $\nabla^{\mu} f\left(S_{i}(y)\right)=\rho_{i}^{-1} \nabla^{\mu}\left(f \circ S_{i}\right)(y), i=1 \ldots N$. Hence, we obtain

$$
\mathcal{E}^{\mu}(f, g)=\sum_{i=1}^{N} \rho_{i}^{-1} \int_{a}^{b} \nabla^{\mu}\left(f \circ S_{i}\right)(y) \nabla^{\mu}\left(g \circ S_{i}\right)(y) d \mu(y),
$$

which yields the assertion.
Remark 6.3. In [14], Posta proved that the eigenvalue counting function of the Laplacian which is associated with the Dirichlet form of a variational fractal behaves asymptotically like $x^{\nu / 2}$, where $\nu=\frac{2}{1-\sigma}$ and σ is the exponent in the scaling property (12). This coincides with our result (11).

Remark 6.4. Obviously, the notion of a variational fractal does not make sense if μ and ν are different measures, even not if supp $\mu=\operatorname{supp} \nu$.

References

[1] K. J. Falconer, The geometry of fractal sets, Cambridge Univ. Press., Cambridge, 1985.
[2] U. Freiberg, Analytic properties of measure geometric Krein-Felleroperators on the real line, Math. Nach., 260 (2003), 34-47.
[3] U. Freiberg, Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets, Forum Math., 17 (2005), 87-104.
[4] U. Freiberg and M. Zähle, Harmonic calculus on fractals-A measure geometric approach I, Potential Anal., 16 (2002), 265-277.
[5] M. Fukushima, Dirichlet forms and Markov processes, North Holland, Amsterdam, 1980.
[6] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[7] K. Itô and H. P. McKean, Diffusion processes and their sample paths, 2 nd edition, Springer, Berlin, Heidelberg, New York, 1974.
[8] J. Kigami and M. L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Commun. Math. Phys., 158 (1993), 93-125.
[9] U. Küchler, Some asymptotic properties of the transition densities of onedimensional quasidiffusions, Publ. RIMS, Kyoto Univ., 16, No. 1 (1980), 245-268.
[10] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325, No. 2 (1991), 465-529.
[11] Z.-M. Ma and M. Röckner, Introduction to the theory of (non-symmetric) Dirichlet forms, Springer, Berlin, Heidelberg, New York, 1992.
[12] G. Métivier, Valeurs propres de problèmes aux limites elliptiques irréguliers, Bull. Soc. Math. France, Mém., 51-52 (1977), 125-219.
[13] U. Mosco, Variational metrics on self-similar fractals, C. R. Acad. Sci. Paris, 321, Série I (1995), 715-720.
[14] G. Posta, Spectral asymptotics for variational fractals, Zeit. Anal. Anw., 17, No. 2 (1998), 417-430.
[15] M. Reed and B. Simon, Methods of modern mathematical physics, IV, Analysis of operators, Academic press, New York, 1978.

[^0]: Key Words: Dirichlet form, Dirichlet-Neumann-bracketing, eigenvalue counting function, self similar measure, variational fractal

 Mathematical Reviews subject classification: Primary 28A80, 28A25; Secondary 31C25, 35 P 20

 Received by the editors June 10, 2004
 Communicated by: Zoltán Buczolich

 * This work was supported by a fellowship within the Postdoc Programme of the German Academic Exchange Service (DAAD)

