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HAUSDORFF MEASURE OF p-CANTOR
SETS

Abstract

In this paper we analyze Cantor type sets constructed by the re-
moval of open intervals whose lengths are the terms of the p-sequence,
{k−p}∞k=1. We prove that these Cantor sets are s-sets, by providing
sharp estimates of their Hausdorff measure and dimension.

Sets of similar structure arise when studying the set of extremal
points of the boundaries of the so-called random stable zonotopes.

1 Introduction and Notation.

By a general Cantor set, we mean a compact, perfect, totally disconnected
subset of the real line. In this paper we will only consider Cantor sets of
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zero Lebesgue measure. Cantor sets arise in many different settings including
as examples having many surprising properties. They can be constructed in
different ways.

General Cantor sets can be constructed in a manner similar to that of the
classical middle-third Cantor set. Let λ = {λk}k∈N be a sequence of positive
numbers, such that

∑
k λk = K < +∞. We associate to such a sequence, the

Cantor set Cλ in the following way. Start with the closed interval I0 = [0,K]
of length, |I0| = K =

∑∞
k=1 λk. (Clearly by normalization we can always

achieve I0 = [0, 1].)
In what follows, we use the notation |I| for the length(I) = diam(I) of

any interval. In the first step, remove from I0 an open interval of length λ1,
obtaining the two closed intervals of step 1, I1

0 and I1
1 , and a gap of length λ1

between them. Shortly we will see that the location of the gap to be removed
is uniquely determined.

Having completed step k, we will have 2k closed intervals Ik
` , ` = 0, . . . , 2k−

1. From each of them we remove an open interval of length equal to the next
unused term of the sequence; thus, from Ik

` , we remove an open interval of
length λ2k+`. Again, we will see that the location of the gap is uniquely
determined. This forms in Ik

` , two closed sub-intervals Ik+1
2` and Ik+1

2`+1, with
respect to which

|Ik
` | = |Ik+1

2` |+ λ2k+` + |Ik+1
2`+1|.

As noted above, in order for this construction to be possible, the position
of the gaps removed at each step is not arbitrary. Since the length of the
interval I0 equals the sum of the lengths of all the intervals removed in the
construction, there is a unique way of doing this construction. That is, the
length of each of the remaining intervals at step k should be exactly the sum of
the lengths of all the gaps that will be removed from it later in the construction.
So, the two remaining intervals of step 1 will have lengths:

|I1
0 | =

∞∑
n=1

2n−1−1∑
j=0

λ2n+j , |I1
1 | =

∞∑
n=1

2n−1∑
j=2n−1

λ2n+j .

In general, for all k = 0, 1, . . . and ` = 0, 1, . . . , 2k − 1, we have

|Ik
` | =

∞∑
n=k

(`+1)2n−k−1∑
j=`2n−k

λ2n+j . (1)



Hausdorff Measure of p-Cantor Sets 415

We denote by Ck
λ the union of the closed intervals at the kth step

Ck
λ =

2k−1⋃
`=0

Ik
` .

Then

Cλ =
∞⋂

k=0

Ck
λ .

We will say that the Cantor set constructed in this way using a sequence λ, is
the Cantor set associated to the sequence λ.

Remark. This construction is quite general since in fact any Cantor set (of
zero Lebesgue measure) can be obtained in this way for an appropriate choice
of the sequence. Namely, let C be a Cantor set in R and let I0 be the smallest
interval containing C. The complement of C in I0 is a countable union of open
intervals Ui, such that

∑
i∈N |Ui| = |I0|. The following procedure will show

how to define a sequence a = {ak}, such that Ca = C.
Let Ui1 be a gap of maximal length and define a1 = |Ui1 |. Next choose Ui2

a gap of maximal length to the left of Ui1 , and Ui3 a gap of maximal length to
the right of Ui1 . Now define a2 = |Ui2 | and a3 = |Ui3 |. In the next step define
a4 through a7 by picking a gap of maximal length in each of the remaining
intervals (i.e., I0 \ (Ui1 ∪Ui2 ∪Ui3).) Continuing in this fashion, the sequence
a = {ak} satisfies Ca = C.

It is clear from the construction of the Cantor set associated to a given
sequence, that the specific order in which the gaps appear in the sequence
determines the resulting Cantor set. Of central importance in this paper is
the investigation of the effect on Hausdorff dimension (defined below) due to
rearrangements of the sequence of gaps.

Definition. Let σ : N → N be a bijective map; we say that the sequence
{λσ(k)}k∈N is a rearrangement of λ and denote it by σ(λ).

Remark. In general, a rearrangement of the original sequence yields a differ-
ent Cantor set. As we will see in this paper, the new Cantor set can have a
different Hausdorff dimension than the original. It is also possible for the new
Cantor set to be the same as the original. To see this, repeat the construction
in the Remark above, but now make a different choice of gaps at each level
other than the one with maximal diameter. The only requirement is that at
some step, each gap is eventually selected. On the other hand, if two different
sequences yield the same Cantor set, evidently one is a rearrangement of the
other.
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We recall the definitions of Hausdorff measure and dimension.

Definition. Let A ⊂ R be a Borel-measurable set and α > 0. For δ > 0 let

Hα
δ (A) = inf

{∑
(diam(Ei))α : Ei open, ∪ Ei ⊃ A,diam(Ei) ≤ δ

}
.

Then, the α-dimensional Hausdorff measure of A, Hα(A), is defined as

Hα(A) = lim
δ→0

Hα
δ (A),

and the Hausdorff dimension of A is,

dimH(A) = sup{α : Hα(A) > 0}.

It can be shown ([6]), that if in the definition of the Hausdorff measure, the el-
ements of the coverings are chosen to be closed sets, or Borel sets, the resulting
measure is the same.

If for some choice α = s, 0 < Hs(A) < ∞, then A is called an s-set. Since
we will only be using the Hausdorff dimension in this paper, henceforth we
omit the subscript H.

We will mainly consider Cantor sets constructed using the p-sequence λ =
{λk}k∈N, and its rearrangements, where λk = k−p. We call such sets p-Cantor
sets. Sets of similar structure arise in the analysis of the extremal points of
boundaries of random stable zonotopes, which were studied in [2]. However
such extremal sets are more complicated than the Cantor sets treated here
since they are random and lie in Rd with d ≥ 2.

In general, the computation of the Hausdorff dimension or the Hausdorff
measure of a set is not easy to do, see [3], [5] and references therein. Estimates
from above are usually simpler to obtain than estimates from below. In our
particular case, showing that the Hausdorff measure is finite, for an appropri-
ate choice of s, will be relatively easy. However, showing that it is positive
will require sharp estimates on the size of the intervals of the construction.

We now state our main results.

Theorem 1.1. Let λ = {λk}k∈N be defined by λk =
(

1
k

)p, p > 1. Then Cλ is
a 1

p -set; precisely,

1
8

(
2p

2p − 2

) 1
p

≤ H
1
p (Cλ) ≤

( 1
p− 1

) 1
p

and furthermore

dim Cλ =
1
p
.
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The second theorem deals with rearrangements of the original sequence λ.

Theorem 1.2. If σ(λ) is any rearrangement of the sequence λ = k−p, k ∈ N,
with p > 1, then

0 ≤ dim Cσ(λ) ≤
1
p
.

Furthermore, for each 0 < s ≤ 1
p , there exists a rearrangement σs(λ) such that

Cσs(λ) is an s-set.

We remark here that our main goal is to show that p-Cantor sets are s-
sets for an appropriate choice of s. If we were only interested in determining
the Hausdorff dimension of these sets, we could use the results in the article
of Beardon [1] about the Hausdorff dimension of what is referred to there as
general C-sets; these sets were introduced by Tsuji [7].

The result of Theorem 1.1 fits nicely into a result by Falconer [4] pg. 55,
where he computes the Box dimension for Cantor sets constructed in this
fashion. He shows that the upper and lower Box dimension coincide if and
only if the following limit

` = lim
k→∞

log λk

log k

exists, in which case the Box dimension is − 1/`. For the particular case of
the p-series, this limit is − p, yielding yet another way for obtaining an upper
bound for the Hausdorff dimension.

2 Cantor Sets Associated to Geometrical Sequences.

In this section, we will briefly leave the p-series, and analyze the behavior of
Cantor sets associated to sequences with geometric decay.

Definition We say that a sequence of positive terms a = {ak} has at least
geometrical decay, if there exist 0 < d < 1 and c > 0 such that ak ≤ cdk for
all k ∈ N.

We will show next, that a sequence which tends to zero can be decomposed
into finitely many or countably many subsequences, all of them having at least
geometrical decay.

Lemma 2.1. Let a = {an} be a sequence of positive terms such that lim an =
0. Then there exists a family of functions {γj : N → N, j = 1, 2, . . . } at most
countable such that

1. γj is one to one and increasing for all j.
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2. γj(N)
⋂

γj′(N) = ∅ if j 6= j′.

3. N =
⋃

j γj(N).

4. For all j, the subsequence a(j) = {aγj(n)}n∈N has at least geometrical
decay.

Proof. We define first γ1 by

γ1(1) =1 and if γ1(n) is already defined then

γ1(n + 1) =min{m ∈ N : m > γ1(n) and am ≤ 1/2n+1};

this being possible since an → 0. This defines γ1 inductively. Now we assume
that γ1, . . . , γk are already defined, then if N \

⋃k
j=1 γj(N) is finite, we stop,

and redefine γ1 in such a way that γ1(N) = N \
⋃k

j=2 γj(N). Otherwise, we
define γk+1 by

γk+1(1) = min(N \
k⋃

j=1

γj(N)) and if γk+1(n) is already defined then

γk+1(n + 1) = min{m ∈ N \ (
k⋃

j=1

γj(N)) : m > γk+1(n) and am ≤ 1/2n+1}.

If the process does not end in a finite number of steps, then N =
⋃

j γj(N)
since every number n must be selected at most at step n.

Let us now prove, that a Cantor set associated to a sequence with at least
geometric decay, has Hausdorff dimension 0.

Proposition 2.2. Let a = {ak}k∈N be any sequence such that 0 < ak ≤ rk

for r < 1. Then, the Cantor set Ca has Hausdorff dimension 0.

Proof. We will show, that for each ε > 0, dim Ca ≤ ε. Suppose that n is
sufficiently large and such that

∑∞
j=n+1 rj ≤ δ. Suppose that we removed

from I0 = [0,
∑

ak], n open intervals of lengths a1, a2, . . . , an. What remains
can be written as the union of closed intervals E

(n)
j , j = 1, 2, . . . , n + 1. Since∑n+1

j=1 |E
(n)
j | =

∑∞
j=n+1 aj ≤

∑∞
j=n+1 rj ≤ δ, then {E(n)

j : j = 1, 2, . . . , n+1}
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is a δ-covering of Ca. Using the Hölder inequality, we have for each ε > 0,

n+1∑
j=1

|E(n)
j |ε ≤

n+1∑
j=1

|E(n)
j |

ε

(n + 1)1−ε

≤

 ∞∑
j=n+1

rj

ε

(n + 1)1−ε =
( rn+1

1− r

)ε

(n + 1)1−ε.

But then

lim sup
n→∞

n+1∑
j=1

|E(n)
j |ε < ∞,

which proves that dim Ca ≤ ε. Since this is true for every ε > 0, we conclude
that dim Ca = 0.

Using this Proposition, together with Lemma 2.1, we are able to prove the
following interesting property.

Proposition 2.3. Let a = {an} such that an > 0 and
∑

an < ∞. Then there
exists a rearrangement σ(a) of a such that dim Cσ(a) = 0.

Proof. Using Lemma 2.1, we can decompose the sequence a into at most
countably many subsequences, all of them having at least geometrical decay.
Let {γj} be the family of functions given by Lemma 2.1 and let Cγj be the
Cantor set associated to the subsequence {aγj(n)}. Note that, since the se-
quence {aγj(n)} has at least geometric decay, dim Cγj

= 0 by Proposition 2.2.
Define now

t0 = 0 and tj =
∑

n

aγj(n), j = 1, 2, . . . .

Then we have Cγj
⊂ [0, tj ]. Define C to be the union of translates

C =
⋃
j

(
Cγj + (

j−1∑
k=1

tk)

)
.

The set C is a Cantor set and dim C = 0. (Since it is the at most count-
able union of Cantor sets of dimension zero.) The lengths of the gaps of C
correspond to the terms of the original sequence a. Then, there is a rearrange-
ment σ(a) of the sequence, that is associated to the Cantor set C; that is,
C = Cσ(a).
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3 p-Cantor Sets.

From this point on, we will again concentrate on the sequence λ = {k−p}. First
we will show that, for any rearrangement of this sequence, the 1

p -Hausdorff
measure is finite, immediately providing an upper bound for the Hausdorff
dimension.

Proposition 3.1. Let Cλ be the Cantor set associated to the sequence λk =
k−p, k ∈ N, with p > 1. Then

H
1
p (Cλ) ≤

( 1
p− 1

) 1
p

;

in particular,

dim Cλ ≤
1
p
.

Moreover, if σ(λ) is any rearrangement of this sequence, then

dim Cσ(λ) ≤
1
p
.

Proof. The proof is analogous to the one of Proposition 2.2. Consider n
large enough such that

∑∞
j=n+1 λj ≤ δ, so that after removing from I0 open

intervals of lengths λ1, λ2, . . . , λn, we have the closed intervals {E(n)
j , j =

1, 2, . . . , n + 1}, which is a δ-covering of C. Using the Hölder inequality and
the Integral Comparison Test for sequences, we have for 0 < s < 1,

n+1∑
j=1

|E(n)
j |s ≤

n+1∑
j=1

|E(n)
j |

s

(n + 1)1−s =

 ∞∑
j=n+1

j−p

s

(n + 1)1−s

≤
(

n1−p

p− 1

)s

(n + 1)1−s =
(

1
p− 1

)s (n + 1)1−s

nsp−s
.

Hence, if s ≥ 1
p ,

lim sup
n→∞

n+1∑
j=1

|E(n)
j |s ≤

(
1

p− 1

)s

< ∞,

and therefore, for any s ≥ 1
p , Hs

δ(Cλ) < ∞. In particular, dim Cλ ≤ 1
p .

To prove the more general case, we can argue as follows. Let σ(λ) be
any rearrangement of λ = {λk}. Regardless in what order we remove open
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intervals from I0, there will be a step m at which the first n intervals of length
λ1, λ2, . . . , λn will be removed (m ≥ n). We consider the n+1 closed intervals
E

(n)
j which are complementary (in I0) to these removed n-intervals. Clearly

E
(n)
j , j = 1, . . . , n + 1 again forms a δ-covering of Cσ(λ) and therefore, the

same bounds as before hold. Thus Proposition 3.1 and the upper bounds for
Theorems 1.1 and 1.2 are proved.

3.1 The Proof of Theorem 1.1.

Since the bounds from above are proved in Proposition 3.1, in order to com-
plete the proof of Theorem 1.1, we need to show that the Cantor set Cλ has
positive 1

p -Hausdorff measure.
The following lemma is the main ingredient in the proof of the theorem.

We remind the reader that Ik
` stands for the `th interval obtained in the kth

step of construction, which was described in the Introduction. The length of
the interval Ik

` is given by equation (1), from which we make the observation
that, if the gaps form a monotone non-increasing sequence, then so do the
diameters of these intervals; that is, for `′ ≥ `, |Ik

` | ≥ |Ik
`′ |.

Lemma 3.2. For all k = 1, 2, . . . and ` = 0, 1, . . . , 2k − 1,

λ2k+`+1

2p

2p − 2
≤ |Ik

` | ≤
2p

2p − 2
λ2k+`,

and therefore for `′ ≥ `,

1 ≤ |Ik
` |

|Ik
`′ |
≤ 2p. (2)

Proof. We can rewrite the expression for |Ik
` | in (1) as follows

|Ik
` | =

∞∑
h=0

2h−1∑
j=0

λ2k+h+`2h+j .

Then

|Ik
` | ≤

∞∑
h=0

2h

(2h(2k + `))p =
1

(2k + `)p

∞∑
h=0

(
1

2p−1

)h

=λ2k+`

2p−1

2p−1 − 1
= λ2k+`

2p

2p − 2
.
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The bound from below is obtained in a similar way

|Ik
` | =

∞∑
h=0

2h−1∑
j=0

λ2k+h+`2h+j ≥
∞∑

h=0

2h

2hp
(
2k + ` + 1− 1

2h

)p
≥ 1

(2k + ` + 1)p

∞∑
h=0

(
1

2(p−1)

)h

= λ2k+`+1

2p

2p − 2
.

For the inequality (2), since

|Ik
` |

|Ik
`′ |
≤ |Ik

0 |
|Ik

2k−1
|
,

the result follows.

The next lemma is a simple algebraic property of numbers which we will
use repeatedly.

Lemma 3.3. Let a, b, c be arbitrary positive numbers, let p > 1 and set x =
a + b + c. Then

x ≤ 2p

2p − 2
c =⇒ x

1
p ≥ a

1
p + b

1
p .

Proof. If x ≤ 2p

2p − 2
c, then

x− c

2
≤ x

2p
. Equivalently,

(
a + b

2

) 1
p

≤ x
1
p

2
,

and, by convexity of the function x
1
p ,

a
1
p + b

1
p

2
≤
(

a + b

2

) 1
p

, from which the

result follows.
Combining the previous lemmas, we obtain the main relation between the

intervals of step k and those of step k + 1.

Lemma 3.4. For all k ≥ 1 and ` = 0, 1, . . . , 2k − 1,

|Ik
` |

1
p ≥ |Ik+1

2` |
1
p + |Ik+1

2`+1|
1
p .

Proof. By construction and from Lemma 3.2 we have

|Ik
` | = |Ik+1

2` |+ |Ik+1
2`+1|+ λ2k+` and |Ik

` | ≤
2p

2p − 2
λ2k+`.

Hence, by Lemma 3.3 the result is obtained.
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Lemma 3.5. Let J be an arbitrary open interval in I0. Let k1 ∈ N be fixed.
Then

4|J |
1
p ≥

∑
` : I

k1
` ⊂J

|Ik1
` |

1
p .

Proof. If J ∩Cλ = ∅, the result is trivial. Now, if J ∩Cλ 6= ∅, and J is open,
then there exists some Cantor interval Ik

` ⊂ J .
Next observe that if Ik

` and Ik
`+1 are consecutive intervals from step k and

obtained from one interval in step k−1, (We shall say that these two intervals
have a common “father”.), then ` is even. If we consider two consecutive
intervals of step k not having a common father; i.e., Ik

` and Ik
`+1 with ` odd, let

I be the minimal closed interval containing Ik
` and Ik

`+1. Then I−
(
Ik
` ∪ Ik

`+1

)
is a gap of a previous step; i.e.,

|I| = |Ik
` |+ λ2s+r + |Ik

`+1|

with s ≤ k − 2 and r = [ `
2k−s ] < `

2k−s . We want to prove that |I|
1
p ≥

|Ik
` |

1
p + |Ik

`+1|
1
p . By Lemma 3.2 we have

|Ik
` | ≤

2p

2p − 2
λ2k+`,

and since
λ2k+` =

1
(2k + `)p

≤ 1
(2k−s)p (2s + r)p ,

we conclude that
|Ik

` | ≤
1

(2k−s)p

2p

2p − 2
λ2s+r.

Since |Ik
`+1| < |Ik

` | and k − s ≥ 2, we have

|I| ≤
(

2
(2k−s)p

2p

2p − 2
+ 1
)

λ2s+r ≤
2p

2p − 2
λ2s+r.

Thus we can apply Lemma 3.3 to obtain

|I|
1
p ≥ |Ik

` |
1
p + |Ik

`+1|
1
p .

Define now k0 := min{k ∈ N : Ik
` ⊂ J for some 0 ≤ ` < 2k − 1}. First we

observe that the interval J can contain at most two intervals of step k0. We
will prove the case in which J contains exactly two, the other case can be
proved similarly. (Note that by definition of k0, J must contain at least one
interval of step k0.)
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Let Ik0
` and Ik0

`+1 be the intervals in J . Then ` is odd and only four Cantor
intervals of step k0 can intersect J . These are Ik0

`−1, Ik0
` , Ik0

`+1, and Ik0
`+2. Let Ĩ

be the smallest interval containing Ik0
` and Ik0

`+1. Using (3.1) and since J ⊃ Ĩ,
we have

|J |
1
p ≥ |Ĩ|

1
p ≥ |Ik0

` |
1
p + |Ik0

`+1|
1
p . (3)

Now using Lemma 3.2 we know that 2p|Ik0
` | ≥ |Ik0

`−1|; that is,

2|J |
1
p ≥ 2|Ik0

` |
1
p ≥ |Ik0

`−1|
1
p . (4)

Finally, since |Ik0
`+1| ≥ |Ik0

`+2| and Ik0
`+1 ⊂ J ,

|J |
1
p ≥ |Ik0

`+1|
1
p ≥ |Ik0

`+2|
1
p . (5)

From (3), (4), and (5) we get

4|J |
1
p ≥ |Ik0

`−1|
1
p + |Ik0

` |
1
p + |Ik0

`+1|
1
p + |Ik0

`+2|
1
p .

Now, if k1 ≥ k0, using Lemma 3.4 inductively, we have

4|J |
1
p ≥

∑
`:I

k1
` ⊂J

|Ik1
` |

1
p

and if k1 < k0 there are no intervals Ik1
` ⊂ J , ` = 0, . . . , 2k1 − 1 and the

inequality is obvious. This completes the proof.

We are now ready to prove Theorem 1.1. Let F = {Fi}i∈N be a covering
of Cλ with open intervals of length less than δ,⋃

Fi ⊃ Cλ and diam(Fi) < δ, ∀ i.

Since Cλ is compact, let {Fhj
= (αj , βj)}m

j=1 be a finite subcovering of Cλ,
Fhj

∈ F , j = 1, . . . ,m.
Let ε > 0. Since R \ Cλ is dense in R , we can construct open intervals,

Ej = (aj , bj), j = 1, . . . ,m such that

Fhj
⊂ Ej , |Ej |

1
p < |Fhj

|
1
p +

ε

m
and aj , bj 6∈ Cλ.

Therefore,
m∑

j=1

|Ej |
1
p <

m∑
j=1

|Fhj |
1
p + ε.
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Since ε is arbitrary, if
m∑

i=1

|Ei|
1
p ≥ 1

4
1

(2p − 2)
1
p

, (6)

we obtain the desired lower bound for the Hausdorff measure. But since
ak, bk 6∈ Cλ, for k large enough, we can make |Ik

` | so small that, for all
0 ≤ ` < 2k, Ik

` ⊂ Ei for some i.
Therefore, using Lemma 3.5,

m∑
i=1

|Ei|
1
p ≥

m∑
i=1

1
4

 ∑
` : Ik

` ⊂Ei

|Ik
` |

1
p

 ≥ 1
4

2k−1∑
`=0

|Ik
` |

1
p .

Since |Ik
` | ≥ |Ik

`+1|, we get

1
4

2k−1∑
`=0

|Ik
` |

1
p ≥ 2k

4
|Ik

2k−1|
1
p ,

and, using the estimate of Lemma 3.2, we get (6).

3.2 The Cantor Sets Cλ̃.

In this section we are going to prove the following Proposition.

Proposition 3.6. Let λ = {λk = k−p}. For each 0 ≤ s ≤ 1
p there exists a

rearrangement σs(λ) of λ such that

Hs(Cσs(λ)) > 0.

To prove this, we first find the Hausdorff dimension of the Cantor set Cλ̃

where λ̃ is a particular subsequence of the original p-sequence. This result
together with the following lemma will complete the proof.

Lemma 3.7. If λ̃ is a subsequence of λ = {λk = k−p} such that dim Cλ̃ = s,
then there exists a rearrangement σ(λ) = σs(λ) of λ, such that

dim Cσs(λ) = dim Cλ̃ = s.

Proof. Let γ = {γk} be the subsequence obtained from λ after deleting the
terms of the subsequence λ̃. By Proposition 2.3 there exists a rearrangement
σ(γ) of γ, such that dim Cσ(γ) = 0. Let now t1 =

∑
k γk. Then we have

Cσ(γ) ⊂ [0, t1]. Define

C = Cσ(γ) ∪ (Cλ̃ + {t1}).
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The set C is a Cantor set and dim C = s (since it is the union of one
Cantor set of dimension s and one of dimension 0). The lengths of the gaps
of C correspond to the terms of the original sequence λ. Then, there is a
rearrangement σ of the sequence, that is associated to the Cantor set C; that
is, C = Cσ(λ).

It is now clear that, in order to obtain Proposition 3.6, it suffices for each
s to find a particular subsequence λ̃, such that dim Cλ̃ = s.

Let x ≥ 2 be a fixed real number. We define a subsequence λ̃m by the
following relation: using the fact that m can be decomposed uniquely into
m = 2k + j with k ≥ 0 and j = 0, 1, . . . , 2k−1, and using the notation [x] to
denote the greatest integer in x, we set

λ̃m = λ̃2k+j = λ[xk]+j =
( 1

[xk] + j

)p

.

Since this subsequence is completely determined by x, and in order to avoid
cumbersome notation, we denote by Cx the Cantor set Cλ̃.

Theorem 3.8. With notation as above and with α(p, x) := log 2
p log x , we have

c
( xp

xp − 2

)α

≤ Hα(Cx) ≤
( 4p

2p − 2

)α

,

for some positive constant c depending only on x and p. Hence, Cx is an α-set.

Proof. The proof of this theorem has the same flavor as that of Theorem 1.1.
However, since we are dealing with subsequences of the original p-series, the
estimates need some more careful consideration. Again we will split the proof
of the theorem into two separate statements – one for the upper bound and one
for the lower bound. We use the following notation: all quantities introduced
in the proofs of Theorem 1.1 and Proposition 3.6 corresponding to the sequence
{λj} will be used with the sign ˜ to denote quantities corresponding to {λ̃j}.

Proposition 3.9. Let Cx be the Cantor set associated to the sequence λ̃ =
{λ̃2k+j = λ[xk]+j , k ∈ N, j = 0, 1, . . . , 2k − 1}. Then

Hα(Cx) ≤
(

4p

2p − 2

)α

;

hence dim Cx ≤ α.

Proof. The proof goes along the lines of the proof of Proposition 3.1, only
instead of λj , we now have λ̃j . Suppose that n = 2k − 1 is sufficiently large
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such that
∑∞

j=n+1 λ̃j ≤ δ. The remaining intervals in Ĩ0 = [0,
∑

j λ̃j ], after
removing the open intervals of lengths λ̃1, λ̃2, . . . , λ̃n, are contained in the
union of intervals of the collection {Ẽ(n)

j : j = 1, 2, . . . , n+1} which is therefore
a δ-covering of Cx. Using again the Hölder inequality, we have

n+1∑
j=1

|Ẽ(n)
j |s ≤

n+1∑
j=1

|Ẽ(n)
j |

s

(n + 1)1−s =

 ∞∑
j=n+1

λ̃j

s

(n + 1)1−s.

We now estimate the quantity

∞∑
j=n+1

λ̃j =
∞∑

m=k

2m−1∑
j=0

λ̃2m+j .

We have

∞∑
m=k

2m−1∑
j=0

λ̃2m+j =
∞∑

m=k

2m−1∑
j=0

λ[xm]+j =
∞∑

m=k

2m−1∑
j=0

1
([xm] + j)p

≤
∞∑

m=k

2m

[xm]p
≤

∞∑
m=k

(
1

xm − 1

)p

2m

≤
∞∑

m=k

2p

(
2
xp

)m

=
(

2
xp

)k

2p xp

xp − 2

≤K(p)
(

2
xp

)k

,

where K(p) = 4p/(2p− 2) is a bound for (2x)p/(xp− 2). Since 2k = n+1 and
α = log 2

p log x , we have that xpk = (n + 1)1/α, and

n+1∑
j=1

|Ẽ(n)
j |s ≤ Ks(p)

(n + 1)s

xpks
(n + 1)1−s = Ks(p)(n + 1)1−s/α,

which again, if s ≥ α, yield,

lim sup
n→∞

n+1∑
j=1

|Ẽ(n)
j |s <

(
4p

2p − 2

)s

< +∞.

In particular, dim Cx ≤ α.
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To complete the proof that our Cantor set is an α-set, we must show that
the Hausdorff measure of Cx, Hα(Cx), is positive. The idea is to repeat the
proofs used for the set Cλ. However, it is immediately seen that the same
estimate will not work in this case and in fact, this estimate is much harder
to obtain.

Proposition 3.10. Let p > 1, x > 2 and let λ̃ = {λ̃k}k∈N be the sequence de-

fined by λ̃2k+j =
(

1
[xk]+j

)p

. If Cx is the Cantor set associated to the sequence

λ̃, and α = log 2
p log x , then there exists a positive constant c, which depends only

on x and p, such that

Hα(Cx) ≥ c

(
xp

xp − 2

)α

.

This Proposition is the analogue of Proposition 3.6, which was proved by
combining Lemmas 3.2, 3.3, 3.4 and 3.5. We will need to provide the analogues
of these lemmas for this new sequence. Note that Lemma 3.3 is independent
of the sequence.

Since

Ĩk
` =

∞∑
h=0

2h−1∑
j=0

λ̃2k+h+`2h+j ,

using the same arguments as in Lemma 3.2 we immediately have the following.

Lemma 3.11. For every fixed x > 2 and all k ≥ 1 and ` = 0, . . . , 2k − 1,

xp

xp − 2
· 1
x(k+1)p

≤ |λ̃k`| ≤ xp

xp − 2

(
1

xk − 1

)p

and therefore, for `′ ≥ `,

1 ≤ |Ĩk
` |

|Ĩk
`′ |
≤ (2x)p.

Since Lemma 3.11 provides an estimate which is not as precise as that of
Lemma 3.2, we have now a weaker version of Lemma 3.4. This is probably
the essence of the lower bound estimate for the Hausdorff measure. Once we
have a relation between the sizes of the intervals of one step with those of the
next step, we are able to proceed with the bounds for the Hausdorff measure.

Lemma 3.12. For all k ∈ N and all ` = 0, 1, . . . , 2k − 1

|Ĩk
` |α ≥ B−α

k

(
|Ĩk+1

2` |α + |Ĩk+1
2`+1|

α
)
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where the sequence Bk satisfies, Bk > 1 and
∏∞

k=1 B−α
k = ζ, with ζ =

ζ(p, x) > 0.

Proof. From Lemma 3.11 we get the following estimate

|Ĩk
` | ≤

xp

xp − 2

(
[xk] + `

xk − 1

)p

λ̃2k+`,

and since ` ≤ 2k − 1,

|Ĩk
` | ≤

xp

xp − 2

(
xk + 2k − 1

xk − 1

)p

λ̃2k+`.

Since |Ĩk
` | = |Ĩk+1

2` |+ λ̃2k+` + |Ĩk+1
2`+1|, this gives the estimate

|Ĩk
` |
(

1− xp − 2
xp

(
xk − 1

xk + 2k − 1

)p)
≥ |Ĩk+1

2` |+ |Ĩk+1
2`+1|. (7)

Now put

Bk = 1 +
(

xp

2
− 1
)(

1−
(

xk − 1
xk + 2k − 1

)p)
.

By simple algebra

2
xp

Bk = 1− xp − 2
xp

(
xk − 1

xk + 2k − 1

)p

.

Since xpα = 2, raising both sides of (7) to the power α, and applying convexity
arguments as in Lemma 3.3, we get

|Ĩk
` |α

2
Bα

k ≥

(
|Ĩk+1

2` |α + |Ĩk+1
2`+1|α

)
2

.

Therefore
|Ĩk

` |α ≥ B−α
k

(
|Ĩk+1

2` |α + |Ĩk+1
2`+1|

α
)

.

Since Bk > 1, to see that
∏∞

k=1 B−α
k > 0 it is enough to see that

∏∞
k=1 Bk <

+∞. But x > 2 and p > 1 and so we can write

1−
(

xk − 1
xk + 2k − 1

)p

=1− 1(
1 + 2k

xk−1

)p ≤ 1− 1(
1 + 2( 2

x )k
)p

=

(
1 + 2( 2

x )k
)p − 1p(

1 + 2( 2
x )k
)p ≤

p
(
1 + 2( 2

x )k
)p−1 2( 2

x )k(
1 + 2( 2

x )k
)p ≤ 2p(

2
x

)k.
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The second inequality follows by an application of the Mean Value Theorem.
Using this, we have that the following series converges

∞∑
k=1

(
xp

2
− 1
)(

1−
(

xk − 1
xk + 2k − 1

)p)
≤ 2p

(
xp

2
− 1
) ∞∑

k

(
2
x

)k

< +∞,

and therefore
∏∞

k=1 Bk < +∞.

Note that the preceding proof fails for the case x = 2 because the estimate
in Lemma 3.11 is too imprecise. We now prove the analogue of Lemma 3.5.

Lemma 3.13. Let J̃ be an arbitrary open interval in Ĩ0. Let k ∈ N be fixed
and again let α = log 2/(p log x). Then there exists c, independent of k, such
that

c|J̃ |α ≥
∑

`:Ĩk
` ⊂J̃

|Ĩk
` |α.

Proof. If J̃ ∩ Cλ̃ = ∅, the result is trivial. Otherwise, define k0 := min{k ∈
N : J̃ contains an interval of step k}. As before, J̃ can contain at most two
intervals of step k0. Again we will only prove the case in which J̃ contains
exactly two.

Let Ĩk0
` and Ĩk0

`+1 be the intervals in J̃ . Then ` is odd and only four Cantor
intervals of step k0 can intersect J̃ . These are Ĩk0

`−1, Ĩk0
` , Ĩk0

`+1, and Ĩk0
`+2. Since

J̃ ⊃ Ĩk0
` and |Ĩk0

` | ≥ |Ĩk0
`+1| ≥ |Ĩk0

`+2|, we have

3 |J̃ |α ≥ |Ĩk0
` |α + |Ĩk0

`+1|
α + |Ĩk0

`+2|
α

Now using Lemma 3.11, (2x)p|Ĩk0
` | ≥ |Ĩk0

`−1|; that is,

(2x)pα|J̃ |α ≥ (2x)pα|Ĩk0
` |α ≥ |Ĩk0

`−1|
α.

Hence
(3 + (2x)pα)|J̃ |α ≥ |Ĩk0

`−1|
α + |Ĩk0

` |α + |Ĩk0
`+1|

α + |Ĩk0
`+2|

α.

Now inductively we apply Lemma 3.12 and get,

(3 + (2x)pα)|J̃ |α ≥ (Bk0Bk0+1 . . . Bk−1)
−α

∑
`:Ĩk

` ⊂J̃

|Ĩk
` |α.

Since

(Bk0Bk0+1 . . . Bk−1)
−α ≥

∞∏
k=1

B−α
k ≡ ζ > 0,
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we have
3 + (2x)pα

ζ
|J̃ |α ≥

∑
`:Ĩk

` ⊂J̃

|Ĩk
` |α.

We are now ready to prove Proposition 3.10.
Proof of Proposition 3.10 (and hence Theorem 1.2). As in the proof of
Theorem 1.1, we choose a finite δ-covering consisting of intervals as close as we
wish to an arbitrary covering of Cx. We must bound the Hausdorff α measure
of this covering.

Let F = {Fi}i∈N be a covering of Cx with open intervals of length less
than δ, ⋃

Fi ⊃ Cx and diam(Fi) < δ, ∀ i.

Again, let {Fhj
= (αj , βj)}m

j=1 be a finite subcovering of Cx, Fhj
∈ F, j =

1, . . . ,m and for ε > 0 choose open intervals, Ẽj = (aj , bj), j = 1, . . . ,m such
that

Fhj
⊂ Ẽj , |Ẽj |

1
p < |Fhj

|
1
p +

ε

m
and aj , bj 6∈ Cx.

Therefore,
m∑

j=1

|Ẽj |α <
m∑

j=1

|Fhj
|α + ε.

Hence, the proof is completed by showing that
∑m

i=1 |Ẽi|α ≥ c
(

xp

xp−2

)α

for

some constant c. But again, for k large enough, |Ĩk
` | is so small that, for

all `, Ĩk
` ⊂ Ẽi for some i. Therefore using Lemma 3.13, and defining 2c =

ζ/(3 + (2x)pα), we have

m∑
i=1

|Ẽi|α ≥
m∑

i=1

ζ

3 + (2x)pα

 ∑
` : Ĩk

` ⊂Ẽi

|Ĩk
` |α
 ≥ 2c

2k−1∑
`=0

|Ĩk
` |α.

Since |Ĩk
` | ≥ |Ĩk

`+1|, we get

2k−1∑
`=0

|Ĩk
` |α ≥ 2k|Ĩk

2k−1|
α,

and using the estimate of Lemma 3.11 and the fact that xpα = 2, we get

m∑
i=1

|Ẽi|α ≥ c2k+1

(
xp

xp − 2

)α 1
x(k+1)pα

= c

(
xp

xp − 2

)α

.
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4 A Generalization.

In this section we generalize to the case in which r − 1 intervals are removed
at each step, r ≥ 2; the case r = 2 was considered above. Thus from I0 r − 1
open intervals are removed leaving the r closed intervals I1

0 , . . . , I1
r−1. From

each of these, r − 1 open intervals are removed and so at end of the second
step of the construction there remains the r2 closed intervals I2

0 , . . . , I2
r2−1.

Now continue the construction in this fashion. We will denote the associated
Cantor set by Cr.

Surprisingly, the results of the previous sections remain true. Since the
proofs can be obtained by the same methodology as presented in the previous
sections, we will only state one of the generalized results in this direction.

Note that when carrying out the proofs, the role played by 2k is now played
by rk since before we had 2k intervals at a given step k, and now we have rk

intervals at that same step.

Theorem 4.1. Let λ = {λk}k∈N be defined by λk =
(

1
k

)p, p > 1. Then for
r ≥ 2,

dim Cr =
1
p
.

Moreover
0 < H

1
p (Cr) < +∞.
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