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Abstract

In this paper we analyze Cantor type sets constructed by the re-
moval of open intervals whose lengths are the terms of the p-sequence,
{k7P}72:. We prove that these Cantor sets are s-sets, by providing
sharp estimates of their Hausdorff measure and dimension.

Sets of similar structure arise when studying the set of extremal
points of the boundaries of the so-called random stable zonotopes.

1 Introduction and Notation.

By a general Cantor set, we mean a compact, perfect, totally disconnected
subset of the real line. In this paper we will only consider Cantor sets of
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zero Lebesgue measure. Cantor sets arise in many different settings including
as examples having many surprising properties. They can be constructed in
different ways.

General Cantor sets can be constructed in a manner similar to that of the
classical middle-third Cantor set. Let A = {\;}ren be a sequence of positive
numbers, such that >, A\, = K < 4+00. We associate to such a sequence, the
Cantor set C) in the following way. Start with the closed interval Iy = [0, K]
of length, |Iy| = K = 2211 Ak. (Clearly by normalization we can always
achieve Iy = [0,1].)

In what follows, we use the notation |I| for the length(l) = diam(I) of
any interval. In the first step, remove from I, an open interval of length Ay,
obtaining the two closed intervals of step 1, I and I}, and a gap of length A\,
between them. Shortly we will see that the location of the gap to be removed
is uniquely determined.

Having completed step k, we will have 2* closed intervals Ié’c, (=0,...,2F—
1. From each of them we remove an open interval of length equal to the next
unused term of the sequence; thus, from I é“, we remove an open interval of
length Agk,,. Again, we will see that the location of the gap is uniquely
determined. This forms in [ é“, two closed sub-intervals Ig; L and 152111, with
respect to which

1Iy| = |I§z+1| + Aok e+ |I§Z+11|~

As noted above, in order for this construction to be possible, the position
of the gaps removed at each step is not arbitrary. Since the length of the
interval Iy equals the sum of the lengths of all the intervals removed in the
construction, there is a unique way of doing this construction. That is, the
length of each of the remaining intervals at step k should be exactly the sum of
the lengths of all the gaps that will be removed from it later in the construction.
So, the two remaining intervals of step 1 will have lengths:

oo 2" 11 oo 2™-1
13| = Z Z Aonyj, IHE Z Z Aonp .
n=1 75=0 n:1j=2n71

In general, for all k= 0,1,... and £ =0,1,...,2¥ — 1, we have

0o (£41)2"7F_1

17| = Z Z Agnyj. (1)
n=~k

= j:£2n—k~
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We denote by Cf\“ the union of the closed intervals at the kth step

2k 1
o= i
=0
Then -
Cy=()Ck.
k=0

We will say that the Cantor set constructed in this way using a sequence A, is
the Cantor set associated to the sequence .

Remark. This construction is quite general since in fact any Cantor set (of
zero Lebesgue measure) can be obtained in this way for an appropriate choice
of the sequence. Namely, let C' be a Cantor set in R and let I be the smallest
interval containing C'. The complement of C' in [y is a countable union of open
intervals U;, such that . |U;| = |[Io|. The following procedure will show
how to define a sequence a = {ay}, such that C, = C.

Let U;, be a gap of maximal length and define a; = |U;,|. Next choose Uy,
a gap of maximal length to the left of U;,, and U,, a gap of maximal length to
the right of U;,. Now define as = |U;,| and ag = |U;,|. In the next step define
a4 through a7 by picking a gap of maximal length in each of the remaining
intervals (i.e., Iy \ (U;, UU;, UU;,).) Continuing in this fashion, the sequence
a = {ay} satisfies C, = C.

It is clear from the construction of the Cantor set associated to a given
sequence, that the specific order in which the gaps appear in the sequence
determines the resulting Cantor set. Of central importance in this paper is
the investigation of the effect on Hausdorff dimension (defined below) due to
rearrangements of the sequence of gaps.

Definition. Let 0 : N — N be a bijective map; we say that the sequence
{Ao (k) Jren is a rearrangement of A and denote it by o'(A).

Remark. In general, a rearrangement of the original sequence yields a differ-
ent Cantor set. As we will see in this paper, the new Cantor set can have a
different Hausdorff dimension than the original. It is also possible for the new
Cantor set to be the same as the original. To see this, repeat the construction
in the Remark above, but now make a different choice of gaps at each level
other than the one with maximal diameter. The only requirement is that at
some step, each gap is eventually selected. On the other hand, if two different
sequences yield the same Cantor set, evidently one is a rearrangement of the
other.
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We recall the definitions of Hausdorfl measure and dimension.

Definition. Let A C R be a Borel-measurable set and o > 0. For § > 0 let
Hs(A) = inf{Z(diam(Ei))o‘ : E; open, UE; D A, diam(E;) < 6}.
Then, the a-dimensional Hausdorff measure of A, H*(A), is defined as
M (4) = lim M (4),
and the Hausdorff dimension of A is,
dimpy(A) = sup{a : H*(A) > 0}.

It can be shown ([6]), that if in the definition of the Hausdorff measure, the el-
ements of the coverings are chosen to be closed sets, or Borel sets, the resulting
measure is the same.

If for some choice a = s, 0 < H*(A) < oo, then A is called an s-set. Since
we will only be using the Hausdorff dimension in this paper, henceforth we
omit the subscript H.

We will mainly consider Cantor sets constructed using the p-sequence A =
{ Ak }ren, and its rearrangements, where A\, = k~P. We call such sets p-Cantor
sets. Sets of similar structure arise in the analysis of the extremal points of
boundaries of random stable zonotopes, which were studied in [2]. However
such extremal sets are more complicated than the Cantor sets treated here
since they are random and lie in R? with d > 2.

In general, the computation of the Hausdorff dimension or the Hausdorff
measure of a set is not easy to do, see [3], [5] and references therein. Estimates
from above are usually simpler to obtain than estimates from below. In our
particular case, showing that the Hausdorff measure is finite, for an appropri-
ate choice of s, will be relatively easy. However, showing that it is positive
will require sharp estimates on the size of the intervals of the construction.

We now state our main results.

Theorem 1.1. Let A = { A\, }ren be defined by A\, = (%)p, p>1. Then C) is
a %—set; precisely,

and furthermore



HAUSDORFF MEASURE OF p-CANTOR SETS 417

The second theorem deals with rearrangements of the original sequence A.

Theorem 1.2. If o()\) is any rearrangement of the sequence A = k=P, k € N,
with p > 1, then

0 < dim Ca()\) <

"=

Furthermore, for each 0 < s < %, there exists a rearrangement os(\) such that
Coy.(n) 18 an s-set.

We remark here that our main goal is to show that p-Cantor sets are s-
sets for an appropriate choice of s. If we were only interested in determining
the Hausdorff dimension of these sets, we could use the results in the article
of Beardon [1] about the Hausdorff dimension of what is referred to there as
general C-sets; these sets were introduced by Tsuji [7].

The result of Theorem 1.1 fits nicely into a result by Falconer [4] pg. 55,
where he computes the Box dimension for Cantor sets constructed in this
fashion. He shows that the upper and lower Box dimension coincide if and

only if the following limit
log A\j,

! =
el log k

exists, in which case the Box dimension is — 1/¢. For the particular case of

the p-series, this limit is — p, yielding yet another way for obtaining an upper

bound for the Hausdorff dimension.

2 Cantor Sets Associated to Geometrical Sequences.

In this section, we will briefly leave the p-series, and analyze the behavior of
Cantor sets associated to sequences with geometric decay.

Definition We say that a sequence of positive terms a = {ax} has at least
geometrical decay, if there exist 0 < d < 1 and ¢ > 0 such that ap < cd* for
all k € N.

We will show next, that a sequence which tends to zero can be decomposed
into finitely many or countably many subsequences, all of them having at least
geometrical decay.

Lemma 2.1. Let a = {a,} be a sequence of positive terms such that lima,, =
0. Then there exists a family of functions {v; : N —=N, j=1,2,...} at most
countable such that

1. ~y; is one to one and increasing for all j.
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2. v(N) vy (N) =0 if 5 # 5.
3. N:Uj'Yj(N)-

4. For all j, the subsequence a9 = {a%(n)}neN has at least geometrical
decay.

PrOOF. We define first v; by

71(1) =1 and if 7 (n) is already defined then
m(n+1) Zmin{m eN:m> ’yl(n) and a,, < 1/2n+1};

this being possible since a,, — 0. This defines v; inductively. Now we assume
that ~1,...,v are already defined, then if N\ U?:l 7;(N) is finite, we stop,

and redefine 77 in such a way that v, (N) = N'\ U?:Q 7v;(N). Otherwise, we
define yx41 by

k
Yi+1(1) = min(N'\ U v;(N)) and if y441(n) is already defined then

Jj=1

k
Vi+1(n + 1) = min{m € N'\ (U 7 (N)) : m > y41(n) and a,,, <1727}

If the process does not end in a finite number of steps, then N = J; v;(N)
since every number n must be selected at most at step n. O

Let us now prove, that a Cantor set associated to a sequence with at least
geometric decay, has Hausdorff dimension 0.

Proposition 2.2. Let a = {a}}ren be any sequence such that 0 < ap < r*
forr < 1. Then, the Cantor set C, has Hausdorff dimension 0.

Proor. We will show, that for each € > 0, dim C, < e. Suppose that n is
sufficiently large and such that Z;’in 4177 < 0. Suppose that we removed
from Iy = [0, ax], n open intervals of lengths a1, ag, ..., a,. What remains

can be written as the union of closed intervals Ej(-n)7 j=1,2,...,n+ 1. Since

SUHEM = ey <07 <6, then {B i =1,2,...,n+1}
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is a d-covering of C,. Using the Holder inequality, we have for each € > 0,

€

n+1 n+1
DOIEI < (2B (e
j=1 j=1

oo ) ‘ n+l. e

S| X ) s () e
Jj=n+1
But then
n+1
hmsupz |Ej(-n)|6 < o0,

which proves that dim C, < e. Since this is true for every ¢ > 0, we conclude
that dim C, = 0. O

Using this Proposition, together with Lemma 2.1, we are able to prove the
following interesting property.

Proposition 2.3. Let a = {ay} such that a, >0 and > a, < co. Then there
exists a rearrangement o(a) of a such that dim Cgyq) = 0.

Proor. Using Lemma 2.1, we can decompose the sequence a into at most
countably many subsequences, all of them having at least geometrical decay.
Let {v;} be the family of functions given by Lemma 2.1 and let C,, be the
Cantor set associated to the subsequence {a%(n)}. Note that, since the se-
quence {a,yj(n)} has at least geometric decay, dim C,, = 0 by Proposition 2.2.
Define now

tO:Oand tj:Za'yj(n)7 j=1,2,....

Then we have C,, C [0,%;]. Define C' to be the union of translates

c=U (cw + (it@) .
j k=1

The set C is a Cantor set and dim C = 0. (Since it is the at most count-
able union of Cantor sets of dimension zero.) The lengths of the gaps of C
correspond to the terms of the original sequence a. Then, there is a rearrange-
ment o(a) of the sequence, that is associated to the Cantor set C; that is,
C = Csa)- O
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3 p-Cantor Sets.

From this point on, we will again concentrate on the sequence A = {k~?}. First
we will show that, for any rearrangement of this sequence, the %—Hausdorff
measure is finite, immediately providing an upper bound for the Hausdorff
dimension.

Proposition 3.1. Let C) be the Cantor set associated to the sequence A\ =
k7P, ke N, withp > 1. Then

Sl

1 1
H?» < (7) ;
(Cy) < P
in particular,

1
dim C,\ S —.
p

Moreover, if o(\) is any rearrangement of this sequence, then

dim CU(,\) <

D=

PRrROOF. The proof is analogous to the one of Proposition 2.2. Consider n
large enough such that Z;‘;n 11 <0, so that after removing from Iy open
intervals of lengths A1, Ao, ..., A,, we have the closed intervals {E](n'), j =
1,2,...,n+ 1}, which is a é-covering of C. Using the Hélder inequality and
the Integral Comparison Test for sequences, we have for 0 < s < 1,

S S

n+1 n+1 [e%)
STEME <[ STIEM | )= 3 5] 1)
j=1 i=1 j=ntl1

IA

ni=P\?* 1 S(n+1)t-s
1 1—s — .
(22) = (1) 2

Hence, if s > 1,
P

n+1 1 s
e < (1) <

n—oo =1

and therefore, for any s > %, H3(Cy) < co. In particular, dim C) < 11;.
To prove the more general case, we can argue as follows. Let o(\) be
any rearrangement of A = {\;}. Regardless in what order we remove open
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intervals from I, there will be a step m at which the first n intervals of length
AL, A2, ..., Ay will be removed (m > n). We consider the n+1 closed intervals

Ej(.”) which are complementary (in Ip) to these removed n-intervals. Clearly

EJ("), J=1,...,n+ 1 again forms a d-covering of Cy(y) and therefore, the
same bounds as before hold. Thus Proposition 3.1 and the upper bounds for
Theorems 1.1 and 1.2 are proved. O

3.1 The Proof of Theorem 1.1.

Since the bounds from above are proved in Proposition 3.1, in order to com-
plete the proof of Theorem 1.1, we need to show that the Cantor set C) has
positive %—Hausdorff measure.

The following lemma is the main ingredient in the proof of the theorem.
We remind the reader that I} stands for the (th interval obtained in the kth
step of construction, which was described in the Introduction. The length of
the interval [ é“ is given by equation (1), from which we make the observation
that, if the gaps form a monotone non-increasing sequence, then so do the
diameters of these intervals; that is, for ¢ > ¢, |IF| > |Ik|.

Lemma 3.2. Forallk=1,2,... and £ =0,1,...,2F -1,

2P 2P
/\2k+é+1m <7l < m/\zkw,

and therefore for ' > ¢,
|17

1<
1751

< or, 2)

PROOF. We can rewrite the expression for |I}| in (1) as follows

co 2h—1
|Ié€| = Z Z )\2k+h,+[2h,+j.
h=0 j=0
Then
s} Qh 1 0 1 h
IF| < =
61<3. ey ~ @y ()
opr—1 2P

=>\2k+eﬁ = /\2k+éﬁ-
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The bound from below is obtained in a similar way

o 2h-1 S oh
7| = Agk-+h g poh g j =
h

1 = 1 2P
>7 —_— fr— >\ _
T@F 4L+ 1) hz::() <2(p1)) T D)

For the inequality (2), since

k k
Ll
|Ie’| |Izk71|

the result follows. O

The next lemma is a simple algebraic property of numbers which we will
use repeatedly.

Lemma 3.3. Let a,b, c be arbitrary positive numbers, let p > 1 and set x =
a+b+c. Then

1 1 1
c = x? >ar +br.

S
8=

2P — b
PrOOF. If z < mc, then z 5 ¢ < 2%. Equivalently, <a—21- ) < %,

a+b
2

1 1 1
Il L
and, by convexity of the function .7}%7 ar ;— ! < ( ) , from which the

result follows.
Combining the previous lemmas, we obtain the main relation between the
intervals of step k and those of step k + 1.

Lemma 3.4. Forallk>1and £ =0,1,...,2%F — 1,

k 1
v Iy |

2> = |
PROOF. By construction and from Lemma 3.2 we have

op
[TE] = 11+ [I554 | + Agw g and |17 < m)@ub

Hence, by Lemma 3.3 the result is obtained. O
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Lemma 3.5. Let J be an arbitrary open interval in Iy. Let k1 € N be fized.

Then ) .
Age = > |1

eI e

Proor. If JNCy = 0, the result is trivial. Now, if JNC) # 0, and J is open,
then there exists some Cantor interval [, éf CJ.

Next observe that if I} and T, f’H are consecutive intervals from step k and
obtained from one interval in step k — 1, (We shall say that these two intervals
have a common “father”.), then ¢ is even. If we consider two consecutive
intervals of step k not having a common father; i.e., I, f and [ é“ 1 with £ odd, let
I be the minimal closed interval containing I} and Iﬁ_l. Then I — (Ié€ U If_H)
is a gap of a previous step; i.e.,

11| = [If| + Agogr + |Izlc+1|

with s < k—2 and r = [5] < 5. We want to prove that |I|%
[IF|7 +|IF,|7. By Lemma 3.2 we have

Y

217
1Iy| < mA2k+£v

and since
1 1

A = <
2k 40 (2k_|_€)p = (2/€_s)p (23 +,,,)Pa

we conclude that
1 2P

k
|I£ | S Wm)\25+r.

Since |If,| < |If| and k — s > 2, we have

2 2p 2p
‘I‘ < (WH + 1) >\25+r < m)\%ﬂrw

Thus we can apply Lemma 3.3 to obtain
115 2 |If |7 + |Ifal.

Define now ko := min{k € N : I} C J for some 0 < ¢ < 2% — 1}. First we
observe that the interval J can contain at most two intervals of step kg. We
will prove the case in which J contains exactly two, the other case can be
proved similarly. (Note that by definition of kg, J must contain at least one
interval of step ko.)
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Let Ifo and I¥ . be the intervals in J. Then ¢ is odd and only four Cantor

241
intervals of step kg can intersect J. These are Iffl, Ié““, Iﬁl, and Iﬁ? Let I

be the smallest interval containing I, fo and [ fjl Using (3.1) and since J D I,
we have ) ) ) )
= Fi & k. 4 k =

[Je 2 17 2 (107 + [ ] 3)

Now using Lemma 3.2 we know that 2p|If0| > |Ié€31|; that is,
1 koL k. 1
20J|» = 2/L,° P = 1,247 (4)
Finally, since [I}2,| > [I}2,| and I}2, C J,

1 k
|J]? > |Iei1

1 1
|7 > |I73s]7 (5)
From (3), (4), and (5) we get
1 1 1 1 1
417 2 T2 % + 107 + |15 |7 + 1|7
Now, if k1 > kg, using Lemma 3.4 inductively, we have
A= Y0 i

eIty

and if ky < ko there are no intervals Ifl cJ,£=0,...,2" —1 and the
inequality is obvious. This completes the proof. O

We are now ready to prove Theorem 1.1. Let F' = {F;};en be a covering
of C with open intervals of length less than §,

JF: > Cx and diam(F;) <6, V i.
Since Cy is compact, let {F},; = (a;,3;)}7; be a finite subcovering of Cy,
FpeF,j=1,...,m.
Let £ > 0. Since R\ C), is dense in R , we can construct open intervals,
E; = (aj,b;), j =1,...,m such that
1 1€
th C Ej, |Ej|P <|th"’—|—% and aj,b; € Ch.

Therefore,

m N m

1 1
SIBF < 30 1By [ e
i=1 j

<
Il
i
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Since ¢ is arbitrary, if

"=

- 1
Z |Ei|p > ———,

i=1 (2p —2)»

we obtain the desired lower bound for the Hausdorff measure. But since
ar,by & C, for k large enough, we can make |I}| so small that, for all

0< <2k Ié“ C E; for some 1.
Therefore, using Lemma 3.5,

(6)

= =

m m 1 1 2k _1
1 1 1
Z|E1|PZZZ Z IHE 2i2|fflp-
i=1 i=1 0:IFCE; £=0
Since |I}| > |Ié“+1|, we get
2k 1
1 el 28
1 PN Z'IQk 17
£=0
and, using the estimate of Lemma 3.2, we get (6). O

3.2 The Cantor Sets C5.
In this section we are going to prove the following Proposition.
Proposition 3.6. Let A = {\y = k™P}. For each 0 < s < % there exists a
rearrangement os(\) of A such that
H*(Co,(n)) > 0.

To prove this, we first find the Hausdorff dimension of the Cantor set C§

where ) is a particular subsequence of the original p-sequence. This result
together with the following lemma will complete the proof.

Lemma 3.7. If ) is a subsequence of A\ = {AM = k7P} such that dim C5 = s,
then there exists a rearrangement o(\) = o5(A) of A\, such that

dim Cgs()\) = dim C;\ = S.

PROOF. Let v = {~x} be the subsequence obtained from X\ after deleting the

terms of the subsequence A By Proposition 2.3 there exists a rearrangement
o(7) of , such that dim C,(,) = 0. Let now t; = ), . Then we have
Co(y) C [0,t1]. Define

C= CU(A/) U (C}\ +{t:1}).
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The set C is a Cantor set and dim C = s (since it is the union of one
Cantor set of dimension s and one of dimension 0). The lengths of the gaps
of C correspond to the terms of the original sequence A\. Then, there is a
rearrangement o of the sequence, that is associated to the Cantor set C'; that
iS, C= Cg()\). O

It is now clear that, in order to obtain Proposition 3.6, it suffices for each
s to find a particular subsequence A, such that dim C5 =s.

Let x > 2 be a fixed real number. We define a subsequence Ao by the
following relation: using the fact that m can be decomposed uniquely into
m =24 j withk>0and j =0, 1, ..., 2571, and using the notation [z] to
denote the greatest integer in z, we set

~ ~ 1 P
A =Rars = Ny = (1 57)

Since this subsequence is completely determined by x, and in order to avoid
cumbersome notation, we denote by C, the Cantor set C.

Theorem 3.8. With notation as above and with a(p,x) = 1082 "0 have

~ plogx’
P a 4P a
< H® <
C(:cp—2) =M (Cz)—<2p—2> ’

for some positive constant ¢ depending only on x and p. Hence, C, is an «-set.

PROOF. The proof of this theorem has the same flavor as that of Theorem 1.1.
However, since we are dealing with subsequences of the original p-series, the
estimates need some more careful consideration. Again we will split the proof
of the theorem into two separate statements — one for the upper bound and one
for the lower bound. We use the following notation: all quantities introduced
in the proofs of Theorem 1.1 and Proposition 3.6 corresponding to the sequence
{A;} will be used with the sign ~ to denote quantities corresponding to {S\J}

Proposition 3.9. Let C, be the Cantor set associated to the sequence A=
{Aorij = Aprpgs KEN,j=0,1,...,2" =1}, Then

H*(C oy
a < .
( “)—(217—2) ’

hence dim C) < a.

PRrROOF. The proof goes along the lines of the proof of Proposition 3.1, only
instead of \;, we now have \;. Suppose that n = 2% — 1 is sufficiently large
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such that 77 ., \; < 8. The remaining intervals in Iy = [0, > 2], after

removing the open intervals of lengths 5\1, 5\2, ..., Ap, are contained in the
union of intervals of the collection {E~](”) :j=1,2,...,n+1} which is therefore
a d-covering of C,. Using again the Hélder inequality, we have
n+1 ~ n+1 B s o) _ s
SAEP < XIEM) )= 3T A ] (D)
j=1 j=1 Jj=n+1
We now estimate the quantity
o oo 2M-—1 _
)DETED D PRI
j=n+1 m=k j=0
We have
oo 2M—-1 _ oo 2M—1 co 2M—-1 1
Z )\2m+] = Z Z >\[x77I]+J - Z Z ([xm] + )P
m=k j=0 m=k j=0 m=k j7=0 J
oo om oo 1 p
< < 2m
<> 2> ()
m=k m=k
> 2\"™ 2\" _ ap
p [ 2 B D
27(x) -(5) 755
k

where K (p) = 4P /(2P — 2) is a bound for (2z)P/(x? —2). Since 28 =n+ 1 and

a= pllooggzg;) we haVe that .’L‘pk = (n+ 1)1/Oz’ al’ld
n+1 ,
el 3 nt L —-S s —s/a
STIEMPE <K (p)(sz)(nH)l K ) 4 1)

j=1
which again, if s > «, yield,

n+1

In particular, dim C, < a. O
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To complete the proof that our Cantor set is an a-set, we must show that
the Hausdorff measure of C,, H*(C;), is positive. The idea is to repeat the
proofs used for the set C). However, it is immediately seen that the same
estimate will not work in this case and in fact, this estimate is much harder
to obtain.

Proposition 3.10. Letp > 1, z > 2 and let A= {S\k}keN be the sequence de-
- P
Jined by Aoxy; = (ﬁ) . If C is the Cantor set associated to the sequence

A, and o = pl(l)oggzx’ then there exists a positive constant c, which depends only

on x and p, such that
P “
(e} > .
HY(Cy) > ¢ (xp_2>

This Proposition is the analogue of Proposition 3.6, which was proved by
combining Lemmas 3.2, 3.3, 3.4 and 3.5. We will need to provide the analogues
of these lemmas for this new sequence. Note that Lemma 3.3 is independent
of the sequence.

Since
0o 2h—1

~L ~
Ie == E E )\2k+h+£2h+j7

h=0 j=0

using the same arguments as in Lemma 3.2 we immediately have the following.
Lemma 3.11. For every fized x > 2 and allk > 1 and £ =0,...,2F — 1,

xP 1 < Bt < zP 1 P
xP—Q.x(’“H)P_‘ F |_x1’—2 k-1

and therefore, for ¢! > {,

-~

E

1< el

25|

Since Lemma 3.11 provides an estimate which is not as precise as that of
Lemma 3.2, we have now a weaker version of Lemma 3.4. This is probably
the essence of the lower bound estimate for the Hausdorff measure. Once we
have a relation between the sizes of the intervals of one step with those of the
next step, we are able to proceed with the bounds for the Hausdorff measure.

< (2z)P.

1

e

Lemma 3.12. For allk €N and all ¢ =0,1,...,2F — 1

Tk — 7k Tk
T = B (151" + 115
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where the sequence By satisfies, By > 1 and [[,—, By = ¢, with ¢ =
¢(p,z) > 0.

PrROOF. From Lemma 3.11 we get the following estimate

7k P [F] + £\ " 5
|IZ|<Z‘P—2(xk—1 Azt

and since £ < 2F — 1,
~ P b 42k —1\" <
|Il{€| S + )\2k+£'
P —2 k-1
Since |I}| = |15 + Aokyg + |f§;g_11|, this gives the estimate

~ P —2 zF —1 r ~ ~
(- 52 D))z L@

xk 4+ 2k —

xP k-1 P
Bk1+<2—1) <1_<xk+2k_1> >

By simple algebra

Now put

Since xP* = 2, raising both sides of (7) to the power «, and applying convexity
arguments as in Lemma 3.3, we get

- 7k+1 7k+1
B o (1B 1B )
2 Tk = 2 '

Therefore ~ _ _
1 > B (115 + 141 -

Since By > 1, to see that [[;-, By ® > 0 it is enough to see that [[,—, Bx <
+o00. But z > 2 and p > 1 and so we can write

b -1\ 1 1
(1+2(2)%)7 =17 p(1+2(2)k)" 22

_ 2 2.,
TR S (2 <)
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The second inequality follows by an application of the Mean Value Theorem.
Using this, we have that the following series converges

= [P ok —1 P P < /2\"
o) (- () V<o (B ‘
2 (3 )0 ) ) =2 (3 )2 (0) <
k=1 2
and therefore [[p-; By < +oo. O

Note that the preceding proof fails for the case x = 2 because the estimate
in Lemma 3.11 is too imprecise. We now prove the analogue of Lemma 3.5.

Lemma 3.13. Let J be an arbitrary open interval in jo- Let k € N be fized
and again let « = log2/(plogx). Then there exists ¢, independent of k, such

that R R
o™= Y|
Z:ffcj

Proor. If J N C5 = 0, the result is trivial. Otherwise, define ko := min{k €

N : J contains an interval of step k}. As before, J can contain at most two
intervals of step kg. Again we will only prove the case in which J contains
exactly two.

Let INéCO and ffj;l

intervals of step ko can intersect J. These are [;°,, I}, I}

= = - - 041
J DI} and [I}°] > |If2,| > |I}?,], we have

be the intervals in J. Then £ is odd and only four Cantor
and fé“ji? Since

Tl 7ko | 7k « 7ko |
ST > [0 + [ ™ + [,
Now using Lemma 3.11, (2z)?|I;°| > |I}°,|; that is,
al Tlo o Tko |a 7k o
(22)P* [T = (22)PYL,°|* = [1,°,]*
Hence

a\| Flo 7ko | 7ko | 7ko | 7ko |
(3 + 2z)P)[J|* = [120 [ + 10 + 241" + Lo

Now inductively we apply Lemma 3.12 and get,
(34 (22)P*)|J|* = (Big Bro41--- Bi1) ™" Y IF|™
E:ffcj
Since

(BroBros1---Bro) “ > [[ By*=¢ >0,
k=1
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we have 34 (20)
+ (2z ~ =L
—— "z 27| O
¢ 2
eI;CJ
We are now ready to prove Proposition 3.10.
PROOF OF PROPOSITION 3.10 (and hence Theorem 1.2). As in the proof of
Theorem 1.1, we choose a finite §-covering consisting of intervals as close as we
wish to an arbitrary covering of C,. We must bound the Hausdorff & measure
of this covering.
Let F = {F;};cn be a covering of C, with open intervals of length less
than 6,

JF: > C. and diam(F;) <6, Vi.
Again, let {F),, = (aj,5;)}jL; be a finite subcovering of Cy, Iy, € F,j =
1,...,m and for € > 0 choose open intervals, Ej = (a;,b;),j =1,...,m such

that R . ) .
th C Ej, ‘Ej|; < |th|; + E and aj,bj ¢ C,.

Therefore,

S <Y |Fn, " + e
j=1 j=1

Hence, the proof is completed by showing that > ", |E;|* > ¢ (L> for

xP—2
some constant c¢. But again, for k large enough, |f f| is so small that, for

all ¢, ff C E; for some i. Therefore using Lemma 3.13, and defining 2¢ =
¢/(3 + (2z)P%), we have

2k 1

SIEP Y g | X | 22 T T

0 IFCE, =0
: ik ik

Since |1/ > |1}, ], we get

2k —1

D = 28Iy,

£=0

and using the estimate of Lemma 3.11 and the fact that P* = 2, we get

m ~va i1 l'p « 1 B l'p «
Z\El\ > 2 <xp_2> a;(k+1>mc<xp—2 . O
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4 A Generalization.

In this section we generalize to the case in which » — 1 intervals are removed
at each step, r > 2; the case r = 2 was considered above. Thus from Iy r — 1
open intervals are removed leaving the r closed intervals I, ..., I'_,. From
each of these, r — 1 open intervals are removed and so at end of the second
step of the construction there remains the r? closed intervals I2, ..., IT22_1.
Now continue the construction in this fashion. We will denote the associated
Cantor set by C,.

Surprisingly, the results of the previous sections remain true. Since the
proofs can be obtained by the same methodology as presented in the previous
sections, we will only state one of the generalized results in this direction.

Note that when carrying out the proofs, the role played by 2¥ is now played
by r* since before we had 2F intervals at a given step k, and now we have r*

intervals at that same step.

9

Theorem 4.1. Let A = {A\;}ren be defined by A\, = (%)p, p > 1. Then for
r>2,

1
dim C, = —.
p
Moreover

0< H%(OT) < 400.
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