Jan Kališ, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75, Praha 8, Czech Republic. email: kalis@karlin.mff.cuni.cz

ON WHITNEY SETS AND THEIR **GENERALIZATION**

Abstract

Using results and methods of G. Choquet (1944) and M. Laczkovich and G. Petruska (1984), we slightly generalize their results on "Whitney sets".

Introduction. 1

Let H be a connected subset of \mathbb{R}^n . Following Laczkovich and Petruska [3], we say that H is a Whitney set (a W-set) if there is a non-constant function $f: H \to \mathbb{R}$ such that

$$\lim_{x \to x_0, x \in H} \frac{|f(x) - f(x_0)|}{\|x - x_0\|} = 0$$
(1)

holds for every $x_0 \in H$.

The existence of a W-set (with even stronger properties) follows from the well-known example by H. Whitney [1]. G. Choquet [2] constructed a similar example. Moreover, he gave two simple sufficient conditions for a C-set (a connected set that is not a W-set). Namely, he proved that every connected $H \subset \mathbb{R}^n$ with σ -finite 1-dimensional Hausdorff measure is a C-set and the following deeper result.

Theorem 1. Let f be a continuous real function defined on an interval $I \subset \mathbb{R}$. Then its graph $\{[x, y]; y = f(x), x \in I\}$ is a C-set.

Key Words: Whitney curves, bounded variation. Mathematical Reviews subject classification: Primary: 26A24, 26A45. Secondary: 54C30. Received by the editors May 4, 2004

Communicated by: B. S. Thomson

^{*}Research supported by the Czech Science Foundation, Grant No. 201/03/0931

Laczkovich and Petruska [3] proved a sufficient condition (based on an easier technique than the Choquet's one) for a curve in \mathbb{R}^n to be a *C*-set, from which Theorem 1 follows.

Theorem 2. Let $\varphi : [a, b] \to \mathbb{R}^n$ be continuous and let

$$E = \left\{\varphi(x); \ x \in [a, b), \ \lim_{y \to x+} \frac{\|\varphi(y) - \varphi(x)\|}{|y - x|} = \infty\right\}.$$

If E has σ -finite 1-dimensional Hausdorff measure, then $\varphi([a, b])$ is a C-set.

We will show (Theorem 3) that an easy consequence can be immediately inferred from Theorem 1: if a curve in \mathbb{R}^{n+1} has *n* components of bounded variations, then the image of the curve is a *C*-set.

We investigate also more general notions of $W^{(h)}$ -sets and $C^{(h)}$ -sets in \mathbb{R}^n (see Definition 1), which were already examined (without using our terminology) by Choquet ([2], see Theorem 4 below).

Definition 1. Let $h: [0, \infty) \to [0, \infty)$ be an increasing function with h(0) = 0. A connected set $H \subset \mathbb{R}^n$ is said to be a $W^{(h)}$ -set, if there is a function $f: H \to \mathbb{R}$ with the following properties

(i) f is not constant,

(ii)

$$\lim_{x \to x_0, x \in H} \frac{f(x) - f(x_0)}{h(\|x - x_0\|)} = 0$$
(2)

holds for every $x_0 \in H$.

A connected subset of \mathbb{R}^n is called a $C^{(h)}$ -set if it is not a $W^{(h)}$ -set.

If $k \in \mathbb{N}$, we write W^k -set and C^k -set instead of $W^{(h)}$ -set and $C^{(h)}$ -set, respectively, for $h(t) = t^k$. Thus, W-set and C-set are W^1 -set and C^1 -set, respectively.

Using methods from [3] we will prove a generalization of our Theorem 3 (see Corollary 3). We will also prove a more general sufficient condition for curves in \mathbb{R}^n to be C^k -sets ($k \in \mathbb{N}$). This condition follows from Proposition 1 which is a natural generalization of Theorem 2 and can be proved analogously.

2 Results.

At first we present the following easy consequence of Theorem 1.

Theorem 3. Let $\varphi : [\alpha, \beta] \to \mathbb{R}^{n+1}$ $(n \ge 1, -\infty < \alpha < \beta < \infty)$ be a curve with n components having bounded variations. Then $\varphi([\alpha, \beta])$ is a C-set.

386

~

PROOF. For simplicity we can assume that the first *n* components have bounded variations and denote $\psi = (\varphi_1, \ldots, \varphi_n)$. It is well-known that by changing the variable of φ we may assume that ψ is Lipschitz.

Define the function $g : [\alpha, \beta] \to \mathbb{R}$ by $g(t) = \varphi_{n+1}(t)$. Now if f is a function with the property (1) for $H = \varphi([\alpha, \beta])$ we define the function $\tilde{f} : \operatorname{graph}(g) \to \mathbb{R}$ as

$$f(t,g(t)) = f(\varphi(t)).$$

Since the following inequality (x = (t, g(t)), y = (s, g(s))), we use the l_1 -norm)

$$\left| \frac{f(x) - f(y)}{\|x - y\|} \right| = \left| \frac{f(t, g(t)) - f(s, g(s))}{|t - s| + |g(t) - g(s)|} \right|$$
$$\leq \left| \frac{f(\varphi(t)) - f(\varphi(s))}{|\psi(t) - \psi(s)| + |\varphi_{n+1}(t) - \varphi_{n+1}(s)|} \right| = \left| \frac{f(\varphi(t)) - f(\varphi(s))}{\|\varphi(t) - \varphi(s)\|} \right|$$

holds, it is not difficult to verify that \tilde{f} satisfies property (1) for $H = \operatorname{graph}(g)$. Using Theorem 1 we can conclude that \tilde{f} is constant and thus f is constant. \Box

The following theorem is contained in [2] with the proof for the case h(t) = t. It was also noted that the proof for the general case is quite similar so we will just recapitulate the basic steps of the proof for a general function h. (For the notion of the Hausdorff h measure see [7].)

Theorem 4. Let h be an increasing function with h(0) = 0. If $E \subset \mathbb{R}^n$ has σ -finite Hausdorff h measure, then f(E) is a Lebesgue null set if

$$\lim_{x \to x_0, x \in E} \frac{f(x) - f(x_0)}{h(\|x - x_0\|)} = 0$$

holds for every $x_0 \in E$.

PROOF. Denote by \mathcal{H}^h the Hausdorff *h* measure. We may clearly assume that there is $\alpha > 0$ such that $\mathcal{H}^h(E) < \alpha < \infty$. Let $\varepsilon > 0$ and define

$$H_n = \Big\{ x \in E; \ \Big(y \in E \& \ 0 < \|y - x\| < \frac{1}{n} \Big) \Rightarrow \frac{|f(y) - f(x)|}{h(\|y - x\|)} < \varepsilon \Big\}.$$

We have that $H_n \subset H_{n+1}$ for all $n \in \mathbb{N}$.

There is a cover $\{U_{n,i}\}_{i=1}^{\infty}$ of H_n such that $\operatorname{diam}(U_{n,i}) < 1/n$ holds for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} h(\operatorname{diam}(U_{n,i})) \leq \alpha$. Since for all $x, y \in U_{n,i} \cap H_n$ $|f(x) - f(y)| < \varepsilon h(||x - y||)$ holds we get $\operatorname{diam}(f(U_{n,i} \cap H_n)) \leq \varepsilon h(\operatorname{diam}(U_{n,i} \cap H_n))$. Hence we obtain

$$\lambda^*(f(H_n)) \leq \sum_{i=1}^{\infty} \lambda^*(f(U_{n,i} \cap H_n)) \leq \sum_{i=1}^{\infty} \varepsilon h(\operatorname{diam}(U_{n,i} \cap H_n)) \leq \varepsilon \alpha$$

Using the regularity of λ^* and $f(H_n) \nearrow f(E)$ we arrive at

$$\lambda^*(f(E)) \leq \varepsilon \alpha$$

for all $\varepsilon > 0$ which implies $\lambda^*(f(E)) = 0$.

To prove Theorem 5 we need the following lemma that was inspired by Lemma 1 in [4].

Lemma 1. Let $\varphi : [\alpha, \beta] \to \mathbb{R}^n$ $(-\infty < \alpha < \beta < \infty)$ be a curve, $L \subset \subset \mathbb{R}^d$, $L \neq \{0\}, Z = L^{\perp}$ and Π_L, Π_Z orthogonal projections onto L, Z. Denote by M the set

$$\Big\{t_0 \in [\alpha,\beta); \exists_{\delta \in (0,\beta-t_0)} \forall_{t \in (t_0,t_0+\delta)} \|\Pi_Z(\varphi(t)-\varphi(t_0))\| \ge \|\Pi_L(\varphi(t)-\varphi(t_0))\|\Big\}.$$

Then $\varphi(M)$ has σ -finite dim Z-dimensional Hausdorff measure.

PROOF. Denote

$$M_n = \{t_0 \in M; \ \forall_{t \in (t_0, t_0 + \frac{1}{n}) \cap [\alpha, \beta)} \ \|\Pi_Z(\varphi(t) - \varphi(t_0)\| \ge \|\Pi_L(\varphi(t) - \varphi(t_0))\|\}$$

and split every M_n into $\{M_{n,m}\}_{m=1}^{\infty}$ such that diam $(M_{n,m}) < 1/n$. Then $M = \bigcup_{n=1}^{\infty} M_n = \bigcup_{n=1}^{\infty} M_{n,m}$ and for every $s, t \in M_{n,m}$ the inequality

$$\|\Pi_Z(\varphi(s) - \varphi(t))\| \ge \|\Pi_L(\varphi(s) - \varphi(t))\|$$

holds.

Now we can define the function $f_{n,m}$ on the set $\Pi_Z(\varphi(M_{n,m}))$. If $p \in \Pi_Z(\varphi(M_{n,m}))$ then there is precisely one point $x_p \in \varphi(M_{n,m})$ such that $\Pi_Z(x_p) = p$. We define $f_{n,m}(p) = x_p$. If $q \in \Pi_Z(\varphi(M_{n,m}))$ and $x_q \in \varphi(M_{n,m})$ such that $\Pi_Z(x_q) = q$ and $\varphi(s) = x_p$ and $\varphi(t) = x_q$ ($s, t \in M_{n,m}$) then

$$\begin{aligned} \|x_p - x_q\| &= \|\Pi_Z(x_p - x_q) + \Pi_L(x_p - x_q)\| \\ &\leq \|\Pi_Z(\varphi(s) - \varphi(t))\| + \|\Pi_L(\varphi(s) - \varphi(t))\| \leq 2\|\Pi_Z(\varphi(s)) - \Pi_Z(\varphi(t))\|. \end{aligned}$$

Hence $f_{n,m}$ is Lipschitz. The countable union of $\{f_{n,m}(\Pi_Z(\varphi(M_{n,m})))\}_{n,m=1}^{\infty}$ (which has σ -finite dim Z-dimensional Hausdorff measure) covers $\varphi(M)$. \Box

As we already noted, Proposition 1 was stated in [3, Theorem 4] for h(t) = t. To prove the proposition, we need to use the following preparatory statements from [3].

Lemma 2. Let f be continuous on [a, b] and put

$$L = \{ x \in [a, b); \ f'_+(x) > 0 \}.$$

Then $\lambda^*(f(L)) \ge f(b) - f(a)$.

.

Corollary 1. If $\lambda(f(L)) = 0$, then f is decreasing on [a, b].

Corollary 2. Let g be continuous and

$$N = \Big\{ x \in [a,b); \ \liminf_{y \to x+} \frac{g(y) - g(x)}{y - x} > 0 \ \text{or} \ \limsup_{y \to x+} \frac{g(y) - g(x)}{y - x} < 0 \Big\}.$$

If $\lambda(f(N)) = 0$, then f is constant on [a, b].

In the following proof we will recall some basic steps of the proof of Theorem 2 adapted to the more general setting of the Hausdorff h measure.

Proposition 1. Let $h : [0, \infty) \to [0, \infty)$ be an increasing function with h(0) = 0, let $\varphi : [a, b] \to \mathbb{R}^n$ be a curve and

$$E = \Big\{\varphi(x); \ x \in [a,b), \ \lim_{y \to x+} \frac{h(\|\varphi(y) - \varphi(x)\|)}{|y - x|} = \infty \Big\}.$$

If E has σ -finite Hausdorff h measure, then $\varphi([a,b])$ is a $C^{(h)}$ -set.

PROOF. Denote $H = \varphi([\alpha, \beta])$. Let $g: H \to \mathbb{R}$ satisfy property (2).

Define $f(x) = g(\varphi(x))$ for $x \in [\alpha, \beta]$ and set N as in Corollary 2. If $x \in [\alpha, \beta)$ and $\varphi(x) \notin E$, then $\lim_{y \to x+} \frac{h(\|\varphi(y) - \varphi(x)\|)}{|y-x|} = \infty$ does not hold. Thus there is K > 0 and a sequence $\{x_n\}_{n=1}^{\infty}$, $x_n > x$, $x_n \to x$ such that $\frac{h(\|\varphi(x_n) - \varphi(x)\|)}{|x_n - x|} < K$. If $\varphi(x_n) \neq \varphi(x)$, then

$$\frac{|f(x_n) - f(x)|}{|x_n - x|} = \frac{|g(\varphi(x_n)) - g(\varphi(x))|}{h(||\varphi(x_n) - \varphi(x)||)} \frac{h(||\varphi(x_n) - \varphi(x)||)}{|x_n - x|}.$$

Hence $\frac{|f(x_n)-f(x)|}{|x_n-x|}$ tends to zero as $n \to \infty$ which easily implies $x \notin N$. We obtained $\varphi(N) \subset E$, hence $\lambda^*(f(N)) = \lambda^*(g(\varphi(N))) \leq \lambda^*(g(E)) = 0$, where the last equality follows from Theorem 4. Corollary 2 gives us the conclusion.

Now we are ready to prove our main theorem.

Theorem 5. Let $\varphi : [\alpha, \beta] \to \mathbb{R}^{n+k} \ (-\infty < \alpha < \beta < \infty, n, k \ge 1)$ be a curve. Denote

$$E = \left\{ t \in [\alpha, \beta); \lim_{s \to t+} \frac{\|\varphi(s) - \varphi(t)\|^k}{|s - t|} = \infty \right\}$$

and suppose that for all $t_0 \in E$ there are $\delta > 0$ $(t_0 + \delta < \beta)$, M > 0 and n natural numbers $1 \leq i_1 < \cdots < i_n \leq n+k$ such that the inequality $|\varphi_{i_l}(t) - \varphi_{i_l}(t_0)| \leq M |t-t_0|^{1/k}$ $(l = 1, \ldots, n)$ holds for all $t \in (t_0, t_0+\delta)$. Then $\varphi([\alpha, \beta])$ is a C^k -set.

PROOF. As the limit in the set described in the theorem does not depend on the norm in \mathbb{R}^{n+k} (as well as in Theorem 2), we will (without loss of generality) use the l_1 -norm.

Let $t_0 \in [\alpha, \beta)$ such that

$$\lim_{t \to t_0+} \frac{\|\varphi(t) - \varphi(t_0)\|^k}{|t - t_0|} = \infty.$$

Due to the assumptions and continuity of φ there are $\delta(t_0) > 0$, $M(t_0) > 0$ and *n* natural numbers $1 \leq i_1(t_0) < \cdots < i_n(t_0) \leq n+k$ such that

- $t_0 + \delta(t_0) < \beta$ and
- for all $t \in (t_0, t_0 + \delta(t_0))$ the inequality

$$|\varphi_{i_l(t_0)}(t) - \varphi_{i_l(t_0)}(t_0)| \le M(t_0)|t - t_0|^{1/k}, l = 1, \dots, n$$

holds. (Denote the elements of $\{1, \ldots, n+k\} \setminus \{i_1(t_0), \ldots, i_n(t_0)\}$ by $1 \leq j_1(t_0) < \cdots < j_k(t_0) \leq n+k$.)

• for all $t \in (t_0, t_0 + \delta(t_0))$ the inequality $K|t - t_0| \leq ||\varphi(t) - \varphi(t_0)||^k$ holds, with $K = M(t_0)^k C^k(n^k + n)$ (C is a positive number such that $(|x_1| + \dots + |x_{n+1}|)^k \leq C^k(|x_1|^k + \dots + |x_{n+1}|^k)$ holds for all $x \in \mathbb{R}^{n+1}$).

Then for $t \in (t_0, t_0 + \delta(t_0))$ we obtain

$$\begin{aligned} K|t-t_{0}| &\leq (|\varphi_{1}(t)-\varphi_{1}(t_{0})|+\dots+|\varphi_{n+k}(t)-\varphi_{n+k}(t_{0})|)^{k} \\ &\leq C^{k}(|\varphi_{i_{1}(t_{0})}(t)-\varphi_{i_{1}(t_{0})}(t_{0})|^{k}+\dots+|\varphi_{i_{n}(t_{0})}(t)-\varphi_{i_{n}(t_{0})}(t_{0})|^{k}+ \\ &+ (|\varphi_{j_{1}(t_{0})}(t)-\varphi_{j_{1}(t_{0})}(t_{0})|+\dots+|\varphi_{j_{k}(t_{0})}(t)-\varphi_{j_{k}(t_{0})}(t_{0})|)^{k}) \\ &\leq C^{k}nM(t_{0})^{k}|t-t_{0}|+C^{k}(|\varphi_{j_{1}(t_{0})}(t)-\varphi_{j_{1}(t_{0})}(t_{0})|+\dots+|\varphi_{j_{k}(t_{0})}(t)-\varphi_{j_{k}(t_{0})}(t_{0})|)^{k} \end{aligned}$$

Thus

$$\begin{aligned} |\varphi_{j_1(t_0)}(t) - \varphi_{j_1(t_0)}(t_0)| + \dots + |\varphi_{j_k(t_0)}(t) - \varphi_{j_k(t_0)}(t_0)| \\ \ge |t - t_0|^{1/k} M(t_0)n \ge |\varphi_{i_1(t_0)}(t) - \varphi_{i_1(t_0)}(t_0)| + \dots + |\varphi_{i_n(t_0)}(t) - \varphi_{i_n(t_0)}(t_0)|. \end{aligned}$$
(3)

Denote the linear subspace of \mathbb{R}^{n+k} generated by vectors $\{e_{i_1(t_0)}, \ldots, e_{i_n(t_0)}\}$ by L and set $Z = L^{\perp}$. Then for $t \in (t_0, t_0 + \delta(t_0))$ (with Π_L, Π_Z orthogonal projections onto L, Z) (3) can be rewritten as

$$\|\Pi_Z(\varphi(t) - \varphi(t_0))\| \ge \|\Pi_L(\varphi(t) - \varphi(t_0))\|.$$

The union of the sets

$$A_{p_1,\dots,p_n} := \{ t_0 \in E; \ p_1 = i_1(t_0),\dots,p_n = i_n(t_0) \}$$

over all combinations of natural numbers $1 \leq p_1 < \cdots < p_n \leq n+k$ covers the set E.

By Lemma 1 the set $\varphi(A_{n_1,\dots,n_n})$ has σ -finite k-dimensional Hausdorff measure and so has the set E. Now we can conclude by employing Proposition 1 with $h(t) = t^k$.

To rewrite a "nonlocal version" of the previous theorem, we need some results on " α -variations" (cf. e.g. [5], [6]).

Definition 2. Let f be defined on $A \subset \mathbb{R}$. For $\alpha \geq 0$ we denote by $V_{\alpha}(f, A)$ the least upper bound of the sums

$$\sum_{i=1}^{n} |f(b_i) - f(a_i)|^{\alpha},$$

where $\{[a_i, b_i]\}_{i=1}^n$ is an arbitrary finite system of non-overlapping intervals with $a_i, b_i \in A$ (i = 1, ..., n). We call $V_{\alpha}(f, A)$ α -variation.

We will need a property that was proved by L. C. Young in Theorem (4.2) of [5]. Without explicitly stating it, he showed that if f is a real function (defined on a compact interval I) of bounded α -th power variation (for $\alpha > 1$), then there is a continuous increasing function h (from I onto itself) such that $f \circ h$ is $1/\alpha$ -Hölder.

Now we can state the corollary of Theorem 5.

Corollary 3. Let $f : [\alpha, \beta] \to \mathbb{R}^{n+k}$ $(n, k \ge 1)$ be a curve with n components of bounded k-variations. Then $\varphi([\alpha, \beta])$ is a C^k -set.

PROOF. The case of k = 1 is handled by Theorem 3 so let k > 1. For simplicity (without loss of generality) we can assume that the first n components have bounded k-variations and denote $\psi = (\varphi_1, \dots, \varphi_n)$. We will prove that there is a homeomorphism h of $[\alpha, \beta]$ such that $\psi \circ h$ is 1/k-Hölder. As remarked above, due to [5] there are continuous increasing functions h_1, \ldots, h_n from $[\alpha, \beta]$ onto itself and positive constants K_j such that $|\psi_j(h_j(s)) - \psi_j(h_j(t))| \leq K_j |s-t|^{1/k}$ holds for all $\alpha \leq s, t \leq \beta$ (j = 1, ..., n). Define $h := (h_1^{-1} + \dots + h_n^{-1})^{-1}$. Let $\alpha \leq s < t \leq \beta$ and $j \in \{1, \dots, n\}$.

Then

$$\begin{aligned} |\psi_j(h(s)) - \psi_j(h(t))| &\leq K_j |h_j^{-1}(h(s)) - h_j^{-1}(h(t))|^{1/k} = \\ K_j |((h_1^{-1} + \dots + h_n^{-1}) \circ h_j)^{-1}(s) - ((h_1^{-1} + \dots + h_n^{-1}) \circ h_j)^{-1}(t)|^{1/k} = \\ K_j |((h_1^{-1} + \dots + h_{j-1}^{-1} + h_{j+1}^{-1} + \dots + h_n^{-1}) \circ h_j + \mathrm{id})^{-1}(s) - \\ ((h_1^{-1} + \dots + h_{j-1}^{-1} + h_{j+1}^{-1} + \dots + h_n^{-1}) \circ h_j + \mathrm{id})^{-1}(t)|^{1/k} &\leq K_j |s - t|^{1/k}. \end{aligned}$$

Using Theorem 5 for the curve $\varphi \circ h$ we conclude that $\varphi([\alpha, \beta]) = \varphi(h([\alpha, \beta]))$ is a C^k -set. \Box

References

- H. Whitney, A function not constant on a connected set of critical points, Duke Math. J., 1 (1935), 514–517.
- [2] G. Choquet, L'isometrie des ensembles dans ses rapports avec la théorie du contact et la théorie de la mesure, Mathematica, XX (1944), 29–64.
- [3] M. Laczkovich and G. Petruska, Whitney sets and sets of constancy. On a problem of Whitney, Real Anal. Exchange, 10 (1984-85), 313–323.
- [4] L. Zajíček, On the points of multivauledness of metric projections on separable Banach spaces, Comment. Math. Univ. Carolin., 19 (1978), 513–523.
- [5] L. C. Young, Inequalities connected with bounded p-variation in the Wiener sense and with integrated Lipschitz conditions, Proc. London Math. Soc., 43 (1937), 449–467.
- [6] M. Laczkovich and D. Preiss, α -Variation and transformation into C^n functions, Indiana Univ. Math. J., **34(2)** (1985), 405–424.
- [7] P. Matilla, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.