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ON WHITNEY SETS AND THEIR
GENERALIZATION

Abstract

Using results and methods of G. Choquet (1944) and M. Laczkovich
and G. Petruska (1984), we slightly generalize their results on “Whitney
sets”.

1 Introduction.

Let H be a connected subset of Rn. Following Laczkovich and Petruska [3],
we say that H is a Whitney set (a W -set) if there is a non-constant function
f : H → R such that

lim
x→x0,x∈H

|f(x)− f(x0)|
‖x− x0‖

= 0 (1)

holds for every x0 ∈ H.
The existence of a W -set (with even stronger properties) follows from the

well-known example by H. Whitney [1]. G. Choquet [2] constructed a similar
example. Moreover, he gave two simple sufficient conditions for a C-set (a
connected set that is not a W -set). Namely, he proved that every connected
H ⊂ Rn with σ-finite 1-dimensional Hausdorff measure is a C-set and the
following deeper result.

Theorem 1. Let f be a continuous real function defined on an interval I ⊂ R.
Then its graph {[x, y]; y = f(x), x ∈ I} is a C-set.
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Laczkovich and Petruska [3] proved a sufficient condition (based on an
easier technique than the Choquet’s one) for a curve in Rn to be a C-set, from
which Theorem 1 follows.

Theorem 2. Let ϕ : [a, b] → Rn be continuous and let

E =
{
ϕ(x); x ∈ [a, b), lim

y→x+

‖ϕ(y)− ϕ(x)‖
|y − x|

= ∞
}
.

If E has σ-finite 1-dimensional Hausdorff measure, then ϕ([a, b]) is a C-set.

We will show (Theorem 3) that an easy consequence can be immediately
inferred from Theorem 1: if a curve in Rn+1 has n components of bounded
variations, then the image of the curve is a C-set.

We investigate also more general notions of W (h)-sets and C(h)-sets in Rn

(see Definition 1), which were already examined (without using our terminol-
ogy) by Choquet ([2], see Theorem 4 below).

Definition 1. Let h : [0,∞) → [0,∞) be an increasing function with h(0) = 0.
A connected set H ⊂ Rn is said to be a W (h)-set, if there is a function
f : H → R with the following properties

(i) f is not constant,

(ii)

lim
x→x0,x∈H

f(x)− f(x0)
h(‖x− x0‖)

= 0 (2)

holds for every x0 ∈ H.

A connected subset of Rn is called a C(h)-set if it is not a W (h)-set.
If k ∈ N, we write W k-set and Ck-set instead of W (h)-set and C(h)-set,

respectively, for h(t) = tk. Thus, W -set and C-set are W 1-set and C1-set,
respectively.

Using methods from [3] we will prove a generalization of our Theorem 3
(see Corollary 3). We will also prove a more general sufficient condition for
curves in Rn to be Ck-sets (k ∈ N). This condition follows from Proposition 1
which is a natural generalization of Theorem 2 and can be proved analogously.

2 Results.

At first we present the following easy consequence of Theorem 1.

Theorem 3. Let ϕ : [α, β] → Rn+1 (n = 1, −∞ < α < β < ∞) be a curve
with n components having bounded variations. Then ϕ([α, β]) is a C-set.
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Proof. For simplicity we can assume that the first n components have bounded
variations and denote ψ = (ϕ1, . . . , ϕn). It is well-known that by changing the
variable of ϕ we may assume that ψ is Lipschitz.

Define the function g : [α, β] → R by g(t) = ϕn+1(t). Now if f is a function
with the property (1) for H = ϕ([α, β]) we define the function f̃ : graph(g) →
R as

f̃(t, g(t)) = f(ϕ(t)).

Since the following inequality (x = (t, g(t)), y = (s, g(s)), we use the l1-norm)∣∣∣∣ f̃(x)− f̃(y)
‖x− y‖

∣∣∣∣ =
∣∣∣∣ f̃(t, g(t))− f̃(s, g(s))
|t− s|+ |g(t)− g(s)|

∣∣∣∣
5

∣∣∣∣ f(ϕ(t))− f(ϕ(s))
|ψ(t)− ψ(s)|+ |ϕn+1(t)− ϕn+1(s)|

∣∣∣∣ =
∣∣∣∣f(ϕ(t))− f(ϕ(s))

‖ϕ(t)− ϕ(s)‖

∣∣∣∣
holds, it is not difficult to verify that f̃ satisfies property (1) for H = graph(g).
Using Theorem 1 we can conclude that f̃ is constant and thus f is constant.

The following theorem is contained in [2] with the proof for the case h(t) =
t. It was also noted that the proof for the general case is quite similar so we
will just recapitulate the basic steps of the proof for a general function h. (For
the notion of the Hausdorff h measure see [7].)

Theorem 4. Let h be an increasing function with h(0) = 0. If E ⊂ Rn has
σ-finite Hausdorff h measure, then f(E) is a Lebesgue null set if

lim
x→x0,x∈E

f(x)− f(x0)
h(‖x− x0‖)

= 0

holds for every x0 ∈ E.

Proof. Denote by Hh the Hausdorff h measure. We may clearly assume that
there is α > 0 such that Hh(E) < α <∞. Let ε > 0 and define

Hn =
{
x ∈ E;

(
y ∈ E & 0 < ‖y − x‖ < 1

n

)
⇒ |f(y)− f(x)|

h(‖y − x‖)
< ε

}
.

We have that Hn ⊂ Hn+1 for all n ∈ N.
There is a cover {Un,i}∞i=1 of Hn such that diam(Un,i) < 1/n holds for

all i ∈ N and
∑∞

i=1 h(diam(Un,i)) 5 α. Since for all x, y ∈ Un,i ∩ Hn

|f(x)− f(y)| < εh(‖x− y‖) holds we get diam(f(Un,i∩Hn)) 5 εh(diam(Un,i∩
Hn)). Hence we obtain

λ∗(f(Hn)) 5
∞∑

i=1

λ∗(f(Un,i ∩Hn)) 5
∞∑

i=1

εh(diam(Un,i ∩Hn)) 5 εα.
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Using the regularity of λ∗ and f(Hn) ↗ f(E) we arrive at

λ∗(f(E)) 5 εα

for all ε > 0 which implies λ∗(f(E)) = 0.

To prove Theorem 5 we need the following lemma that was inspired by
Lemma 1 in [4].

Lemma 1. Let ϕ : [α, β] → Rn ( −∞ < α < β <∞) be a curve, L ⊂⊂ Rd,
L 6= {0}, Z = L⊥ and ΠL, ΠZ orthogonal projections onto L, Z. Denote by
M the set{
t0 ∈ [α, β); ∃δ∈(0,β−t0) ∀t∈(t0,t0+δ) ‖ΠZ(ϕ(t)−ϕ(t0))‖ = ‖ΠL(ϕ(t)−ϕ(t0))‖

}
.

Then ϕ(M) has σ-finite dimZ-dimensional Hausdorff measure.

Proof. Denote

Mn = {t0 ∈M ; ∀t∈(t0,t0+
1
n )∩[α,β) ‖ΠZ(ϕ(t)− ϕ(t0)‖ = ‖ΠL(ϕ(t)− ϕ(t0))‖}

and split every Mn into {Mn,m}∞m=1 such that diam(Mn,m) < 1/n. Then
M =

⋃∞
n=1Mn =

⋃∞
n,m=1Mn,m and for every s, t ∈Mn,m the inequality

‖ΠZ(ϕ(s)− ϕ(t)‖ = ‖ΠL(ϕ(s)− ϕ(t))‖

holds.
Now we can define the function fn,m on the set ΠZ(ϕ(Mn,m)). If p ∈

ΠZ(ϕ(Mn,m)) then there is precisely one point xp ∈ ϕ(Mn,m) such that
ΠZ(xp) = p. We define fn,m(p) = xp. If q ∈ ΠZ(ϕ(Mn,m)) and xq ∈ ϕ(Mn,m)
such that ΠZ(xq) = q and ϕ(s) = xp and ϕ(t) = xq (s, t ∈Mn,m) then

‖xp − xq‖ = ‖ΠZ(xp − xq) + ΠL(xp − xq)|
5 ‖ΠZ(ϕ(s)− ϕ(t))‖+ ‖ΠL(ϕ(s)− ϕ(t))‖ 5 2‖ΠZ(ϕ(s))−ΠZ(ϕ(t))‖.

Hence fn,m is Lipschitz. The countable union of {fn,m(ΠZ(ϕ(Mn,m)))}∞n,m=1

(which has σ-finite dimZ-dimensional Hausdorff measure) covers ϕ(M).

As we already noted, Proposition 1 was stated in [3, Theorem 4] for
h(t) = t. To prove the proposition, we need to use the following prepara-
tory statements from [3].

Lemma 2. Let f be continuous on [a, b] and put

L = {x ∈ [a, b); f ′+(x) > 0}.

Then λ∗(f(L)) = f(b)− f(a).
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Corollary 1. If λ(f(L)) = 0, then f is decreasing on [a, b].

Corollary 2. Let g be continuous and

N =
{
x ∈ [a, b); lim inf

y→x+

g(y)− g(x)
y − x

> 0 or lim sup
y→x+

g(y)− g(x)
y − x

< 0
}
.

If λ(f(N)) = 0, then f is constant on [a, b].

In the following proof we will recall some basic steps of the proof of Theo-
rem 2 adapted to the more general setting of the Hausdorff h measure.

Proposition 1. Let h : [0,∞) → [0,∞) be an increasing function with
h(0) = 0, let ϕ : [a, b] → Rn be a curve and

E =
{
ϕ(x); x ∈ [a, b), lim

y→x+

h(‖ϕ(y)− ϕ(x)‖)
|y − x|

= ∞
}
.

If E has σ-finite Hausdorff h measure, then ϕ([a, b]) is a C(h)-set.

Proof. Denote H = ϕ([α, β]). Let g : H → R satisfy property (2).
Define f(x) = g(ϕ(x)) for x ∈ [α, β] and set N as in Corollary 2. If

x ∈ [α, β) and ϕ(x) /∈ E, then limy→x+
h(‖ϕ(y)−ϕ(x)‖)

|y−x| = ∞ does not hold.
Thus there is K > 0 and a sequence {xn}∞n=1, xn > x, xn → x such that
h(‖ϕ(xn)−ϕ(x)‖)

|xn−x| < K. If ϕ(xn) 6= ϕ(x), then

|f(xn)− f(x)|
|xn − x|

=
|g(ϕ(xn))− g(ϕ(x))|
h(‖ϕ(xn)− ϕ(x)‖)

h(‖ϕ(xn)− ϕ(x)‖)
|xn − x|

.

Hence |f(xn)−f(x)|
|xn−x| tends to zero as n → ∞ which easily implies x /∈ N .

We obtained ϕ(N) ⊂ E, hence λ∗(f(N)) = λ∗(g(ϕ(N))) 5 λ∗(g(E)) = 0,
where the last equality follows from Theorem 4. Corollary 2 gives us the
conclusion.

Now we are ready to prove our main theorem.

Theorem 5. Let ϕ : [α, β] → Rn+k (−∞ < α < β <∞, n, k = 1) be a curve.
Denote

E =
{
t ∈ [α, β); lim

s→t+

‖ϕ(s)− ϕ(t)‖k

|s− t|
= ∞

}
and suppose that for all t0 ∈ E there are δ > 0 (t0 + δ < β), M > 0 and n
natural numbers 1 5 i1 < · · · < in 5 n + k such that the inequality |ϕil

(t) −
ϕil

(t0)| 5 M |t−t0|1/k (l = 1, . . . , n) holds for all t ∈ (t0, t0+δ). Then ϕ([α, β])
is a Ck-set.
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Proof. As the limit in the set described in the theorem does not depend on
the norm in Rn+k (as well as in Theorem 2), we will (without loss of generality)
use the l1-norm.

Let t0 ∈ [α, β) such that

lim
t→t0+

‖ϕ(t)− ϕ(t0)‖k

|t− t0|
= ∞.

Due to the assumptions and continuity of ϕ there are δ(t0) > 0, M(t0) > 0
and n natural numbers 1 5 i1(t0) < · · · < in(t0) 5 n+ k such that

• t0 + δ(t0) < β and

• for all t ∈ (t0, t0 + δ(t0)) the inequality

|ϕil(t0)(t)− ϕil(t0)(t0)| 5 M(t0)|t− t0|1/k, l = 1, . . . , n

holds. (Denote the elements of {1, . . . , n + k} \ {i1(t0), . . . , in(t0)} by
1 5 j1(t0) < · · · < jk(t0) 5 n+ k.)

• for all t ∈ (t0, t0 + δ(t0)) the inequality K|t − t0| 5 ‖ϕ(t) − ϕ(t0)‖k

holds, with K = M(t0)kCk(nk + n) (C is a positive number such that
(|x1|+ · · ·+ |xn+1|)k 5 Ck(|x1|k + · · ·+ |xn+1|k) holds for all x ∈ Rn+1).

Then for t ∈ (t0, t0 + δ(t0)) we obtain

K|t− t0| 5 (|ϕ1(t)− ϕ1(t0)|+ · · ·+ |ϕn+k(t)− ϕn+k(t0)|)k

5 Ck(|ϕi1(t0)(t)− ϕi1(t0)(t0)|
k + · · ·+ |ϕin(t0)(t)− ϕin(t0)(t0)|

k+

+ (|ϕj1(t0)(t)− ϕj1(t0)(t0)|+ · · ·+ |ϕjk(t0)(t)− ϕjk(t0)(t0)|)
k)

5 CknM(t0)k|t−t0|+Ck(|ϕj1(t0)(t)−ϕj1(t0)(t0)|+· · ·+|ϕjk(t0)(t)−ϕjk(t0)(t0)|)
k.

Thus

|ϕj1(t0)(t)− ϕj1(t0)(t0)|+ · · ·+ |ϕjk(t0)(t)− ϕjk(t0)(t0)|
= |t−t0|1/kM(t0)n = |ϕi1(t0)(t)−ϕi1(t0)(t0)|+ · · ·+ |ϕin(t0)(t)−ϕin(t0)(t0)|.

(3)

Denote the linear subspace of Rn+k generated by vectors {ei1(t0), . . . , ein(t0)}
by L and set Z = L⊥. Then for t ∈ (t0, t0 + δ(t0)) (with ΠL,ΠZ orthogonal
projections onto L,Z) (3) can be rewritten as

‖ΠZ(ϕ(t)− ϕ(t0))‖ = ‖ΠL(ϕ(t)− ϕ(t0))‖.
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The union of the sets

Ap1,...,pn := {t0 ∈ E; p1 = i1(t0), . . . , pn = in(t0)}

over all combinations of natural numbers 1 5 p1 < · · · < pn 5 n + k covers
the set E.

By Lemma 1 the set ϕ(An1,...,nn) has σ-finite k-dimensional Hausdorff mea-
sure and so has the set E. Now we can conclude by employing Proposition 1
with h(t) = tk.

To rewrite a “nonlocal version” of the previous theorem, we need some
results on “α-variations” (cf. e.g. [5], [6]).

Definition 2. Let f be defined on A ⊂ R. For α = 0 we denote by Vα(f,A)
the least upper bound of the sums

n∑
i=1

|f(bi)− f(ai)|α,

where {[ai, bi]}n
i=1 is an arbitrary finite system of non-overlapping intervals

with ai, bi ∈ A (i = 1, . . . , n). We call Vα(f,A) α-variation.

We will need a property that was proved by L. C. Young in Theorem
(4.2) of [5]. Without explicitly stating it, he showed that if f is a real function
(defined on a compact interval I) of bounded α-th power variation (for α > 1),
then there is a continuous increasing function h (from I onto itself) such that
f ◦ h is 1/α-Hölder.

Now we can state the corollary of Theorem 5.

Corollary 3. Let f : [α, β] → Rn+k (n, k = 1) be a curve with n components
of bounded k-variations. Then ϕ([α, β]) is a Ck-set.

Proof. The case of k = 1 is handled by Theorem 3 so let k > 1. For simplicity
(without loss of generality) we can assume that the first n components have
bounded k-variations and denote ψ = (ϕ1, . . . , ϕn). We will prove that there is
a homeomorphism h of [α, β] such that ψ◦h is 1/k-Hölder. As remarked above,
due to [5] there are continuous increasing functions h1, . . . , hn from [α, β] onto
itself and positive constants Kj such that |ψj(hj(s))−ψj(hj(t))| 5 Kj |s−t|1/k

holds for all α 5 s, t 5 β (j = 1, . . . , n).
Define h := (h1

−1 + · · ·+ hn
−1)−1. Let α 5 s < t 5 β and j ∈ {1, . . . , n}.
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Then

|ψj(h(s))− ψj(h(t))| 5 Kj |hj
−1(h(s))− hj

−1(h(t))|1/k =

Kj |((h1
−1 + · · ·+ hn

−1) ◦ hj)−1(s)− ((h1
−1 + · · ·+ hn

−1) ◦ hj)−1(t)|1/k =

Kj |((h1
−1 + · · ·+ hj−1

−1 + hj+1
−1 + · · ·+ hn

−1) ◦ hj + id)−1(s)−
((h1

−1+· · ·+hj−1
−1+hj+1

−1+· · ·+hn
−1)◦hj +id)−1(t)|1/k 5 Kj |s−t|1/k.

Using Theorem 5 for the curve ϕ◦h we conclude that ϕ([α, β]) = ϕ(h([α, β]))
is a Ck-set.
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