ON WHITNEY SETS AND THEIR GENERALIZATION

Abstract

Using results and methods of G. Choquet (1944) and M. Laczkovich and G. Petruska (1984), we slightly generalize their results on "Whitney sets".

1 Introduction.

Let H be a connected subset of \mathbb{R}^{n}. Following Laczkovich and Petruska [3], we say that H is a Whitney set (a W-set) if there is a non-constant function $f: H \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}, x \in H} \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left\|x-x_{0}\right\|}=0 \tag{1}
\end{equation*}
$$

holds for every $x_{0} \in H$.
The existence of a W-set (with even stronger properties) follows from the well-known example by H . Whitney [1]. G. Choquet [2] constructed a similar example. Moreover, he gave two simple sufficient conditions for a C-set (a connected set that is not a W-set). Namely, he proved that every connected $H \subset \mathbb{R}^{n}$ with σ-finite 1-dimensional Hausdorff measure is a C-set and the following deeper result.

Theorem 1. Let f be a continuous real function defined on an interval $I \subset \mathbb{R}$. Then its graph $\{[x, y] ; y=f(x), x \in I\}$ is a C-set.

[^0]Laczkovich and Petruska [3] proved a sufficient condition (based on an easier technique than the Choquet's one) for a curve in \mathbb{R}^{n} to be a C-set, from which Theorem 1 follows.

Theorem 2. Let $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ be continuous and let

$$
E=\left\{\varphi(x) ; x \in[a, b), \lim _{y \rightarrow x+} \frac{\|\varphi(y)-\varphi(x)\|}{|y-x|}=\infty\right\} .
$$

If E has σ-finite 1-dimensional Hausdorff measure, then $\varphi([a, b])$ is a C-set.
We will show (Theorem 3) that an easy consequence can be immediately inferred from Theorem 1: if a curve in \mathbb{R}^{n+1} has n components of bounded variations, then the image of the curve is a C-set.

We investigate also more general notions of $W^{(h)}$-sets and $C^{(h)}$-sets in \mathbb{R}^{n} (see Definition 1), which were already examined (without using our terminology) by Choquet ([2], see Theorem 4 below).

Definition 1. Let $h:[0, \infty) \rightarrow[0, \infty)$ be an increasing function with $h(0)=0$. A connected set $H \subset \mathbb{R}^{n}$ is said to be a $W^{(h)}$-set, if there is a function $f: H \rightarrow \mathbb{R}$ with the following properties
(i) f is not constant,
(ii)

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}, x \in H} \frac{f(x)-f\left(x_{0}\right)}{h\left(\left\|x-x_{0}\right\|\right)}=0 \tag{2}
\end{equation*}
$$

holds for every $x_{0} \in H$.
A connected subset of \mathbb{R}^{n} is called a $C^{(h)}$-set if it is not a $W^{(h)}$-set.
If $k \in \mathbb{N}$, we write W^{k}-set and C^{k}-set instead of $W^{(h)}$-set and $C^{(h)}$-set, respectively, for $h(t)=t^{k}$. Thus, W-set and C-set are W^{1}-set and C^{1}-set, respectively.

Using methods from [3] we will prove a generalization of our Theorem 3 (see Corollary 3). We will also prove a more general sufficient condition for curves in \mathbb{R}^{n} to be C^{k}-sets $(k \in \mathbb{N})$. This condition follows from Proposition 1 which is a natural generalization of Theorem 2 and can be proved analogously.

2 Results.

At first we present the following easy consequence of Theorem 1.
Theorem 3. Let $\varphi:[\alpha, \beta] \rightarrow \mathbb{R}^{n+1}(n \geqq 1,-\infty<\alpha<\beta<\infty)$ be a curve with n components having bounded variations. Then $\varphi([\alpha, \beta])$ is a C-set.

Proof. For simplicity we can assume that the first n components have bounded variations and denote $\psi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. It is well-known that by changing the variable of φ we may assume that ψ is Lipschitz.

Define the function $g:[\alpha, \beta] \rightarrow \mathbb{R}$ by $g(t)=\varphi_{n+1}(t)$. Now if f is a function with the property (1) for $H=\varphi([\alpha, \beta])$ we define the function $\widetilde{f}: \operatorname{graph}(g) \rightarrow$ \mathbb{R} as

$$
\widetilde{f}(t, g(t))=f(\varphi(t))
$$

Since the following inequality $\left(x=(t, g(t)), y=(s, g(s))\right.$, we use the l_{1}-norm)

$$
\begin{array}{r}
\left|\frac{\widetilde{f}(x)-\widetilde{f}(y)}{\|x-y\|}\right|=\left|\frac{\tilde{f}(t, g(t))-\widetilde{f}(s, g(s))}{|t-s|+|g(t)-g(s)|}\right| \\
\leqq\left|\frac{f(\varphi(t))-f(\varphi(s))}{|\psi(t)-\psi(s)|+\left|\varphi_{n+1}(t)-\varphi_{n+1}(s)\right|}\right|=\left|\frac{f(\varphi(t))-f(\varphi(s))}{\|\varphi(t)-\varphi(s)\|}\right|
\end{array}
$$

holds, it is not difficult to verify that \tilde{f} satisfies property (1) for $H=\operatorname{graph}(g)$. Using Theorem 1 we can conclude that \widetilde{f} is constant and thus f is constant.

The following theorem is contained in [2] with the proof for the case $h(t)=$ t. It was also noted that the proof for the general case is quite similar so we will just recapitulate the basic steps of the proof for a general function h. (For the notion of the Hausdorff h measure see [7].)

Theorem 4. Let h be an increasing function with $h(0)=0$. If $E \subset \mathbb{R}^{n}$ has σ-finite Hausdorff h measure, then $f(E)$ is a Lebesgue null set if

$$
\lim _{x \rightarrow x_{0}, x \in E} \frac{f(x)-f\left(x_{0}\right)}{h\left(\left\|x-x_{0}\right\|\right)}=0
$$

holds for every $x_{0} \in E$.
Proof. Denote by \mathcal{H}^{h} the Hausdorff h measure. We may clearly assume that there is $\alpha>0$ such that $\mathcal{H}^{h}(E)<\alpha<\infty$. Let $\varepsilon>0$ and define

$$
H_{n}=\left\{x \in E ; \quad\left(y \in E \& 0<\|y-x\|<\frac{1}{n}\right) \Rightarrow \frac{|f(y)-f(x)|}{h(\|y-x\|)}<\varepsilon\right\}
$$

We have that $H_{n} \subset H_{n+1}$ for all $n \in \mathbb{N}$.
There is a cover $\left\{U_{n, i}\right\}_{i=1}^{\infty}$ of H_{n} such that $\operatorname{diam}\left(U_{n, i}\right)<1 / n$ holds for all $i \in \mathbb{N}$ and $\sum_{i=1}^{\infty} h\left(\operatorname{diam}\left(U_{n, i}\right)\right) \leqq \alpha$. Since for all $x, y \in U_{n, i} \cap H_{n}$ $|f(x)-f(y)|<\varepsilon h(\|x-y\|)$ holds we get $\operatorname{diam}\left(f\left(U_{n, i} \cap H_{n}\right)\right) \leqq \varepsilon h\left(\operatorname{diam}\left(U_{n, i} \cap\right.\right.$ $\left.H_{n}\right)$). Hence we obtain

$$
\lambda^{*}\left(f\left(H_{n}\right)\right) \leqq \sum_{i=1}^{\infty} \lambda^{*}\left(f\left(U_{n, i} \cap H_{n}\right)\right) \leqq \sum_{i=1}^{\infty} \varepsilon h\left(\operatorname{diam}\left(U_{n, i} \cap H_{n}\right)\right) \leqq \varepsilon \alpha
$$

Using the regularity of λ^{*} and $f\left(H_{n}\right) \nearrow f(E)$ we arrive at

$$
\lambda^{*}(f(E)) \leqq \varepsilon \alpha
$$

for all $\varepsilon>0$ which implies $\lambda^{*}(f(E))=0$.
To prove Theorem 5 we need the following lemma that was inspired by Lemma 1 in [4].
Lemma 1. Let $\varphi:[\alpha, \beta] \rightarrow \mathbb{R}^{n}(-\infty<\alpha<\beta<\infty)$ be a curve, $L \subset \subset \mathbb{R}^{d}$, $L \neq\{0\}, Z=L^{\perp}$ and Π_{L}, Π_{Z} orthogonal projections onto L, Z. Denote by M the set
$\left\{t_{0} \in[\alpha, \beta) ; \exists_{\delta \in\left(0, \beta-t_{0}\right)} \forall_{t \in\left(t_{0}, t_{0}+\delta\right)}\left\|\Pi_{Z}\left(\varphi(t)-\varphi\left(t_{0}\right)\right)\right\| \geqq\left\|\Pi_{L}\left(\varphi(t)-\varphi\left(t_{0}\right)\right)\right\|\right\}$.
Then $\varphi(M)$ has σ-finite $\operatorname{dim} Z$-dimensional Hausdorff measure.
Proof. Denote

$$
M_{n}=\left\{t_{0} \in M ; \forall_{t \in\left(t_{0}, t_{0}+\frac{1}{n}\right) \cap[\alpha, \beta)} \| \Pi_{Z}\left(\varphi(t)-\varphi\left(t_{0}\right)\|\geqq\| \Pi_{L}\left(\varphi(t)-\varphi\left(t_{0}\right)\right) \|\right\}\right.
$$

and split every M_{n} into $\left\{M_{n, m}\right\}_{m=1}^{\infty}$ such that $\operatorname{diam}\left(M_{n, m}\right)<1 / n$. Then $M=\bigcup_{n=1}^{\infty} M_{n}=\bigcup_{n, m=1}^{\infty} M_{n, m}$ and for every $s, t \in M_{n, m}$ the inequality

$$
\| \Pi_{Z}\left(\varphi(s)-\varphi(t)\|\geqq\| \Pi_{L}(\varphi(s)-\varphi(t)) \|\right.
$$

holds.
Now we can define the function $f_{n, m}$ on the set $\Pi_{Z}\left(\varphi\left(M_{n, m}\right)\right)$. If $p \in$ $\Pi_{Z}\left(\varphi\left(M_{n, m}\right)\right)$ then there is precisely one point $x_{p} \in \varphi\left(M_{n, m}\right)$ such that $\Pi_{Z}\left(x_{p}\right)=p$. We define $f_{n, m}(p)=x_{p}$. If $q \in \Pi_{Z}\left(\varphi\left(M_{n, m}\right)\right)$ and $x_{q} \in \varphi\left(M_{n, m}\right)$ such that $\Pi_{Z}\left(x_{q}\right)=q$ and $\varphi(s)=x_{p}$ and $\varphi(t)=x_{q}\left(s, t \in M_{n, m}\right)$ then

$$
\begin{aligned}
& \left\|x_{p}-x_{q}\right\|=\| \Pi_{Z}\left(x_{p}-x_{q}\right)+\Pi_{L}\left(x_{p}-x_{q}\right) \mid \\
& \quad \leqq\left\|\Pi_{Z}(\varphi(s)-\varphi(t))\right\|+\left\|\Pi_{L}(\varphi(s)-\varphi(t))\right\| \leqq 2\left\|\Pi_{Z}(\varphi(s))-\Pi_{Z}(\varphi(t))\right\|
\end{aligned}
$$

Hence $f_{n, m}$ is Lipschitz. The countable union of $\left\{f_{n, m}\left(\Pi_{Z}\left(\varphi\left(M_{n, m}\right)\right)\right)\right\}_{n, m=1}^{\infty}$ (which has σ-finite $\operatorname{dim} Z$-dimensional Hausdorff measure) covers $\varphi(M)$.

As we already noted, Proposition 1 was stated in [3, Theorem 4] for $h(t)=t$. To prove the proposition, we need to use the following preparatory statements from [3].

Lemma 2. Let f be continuous on $[a, b]$ and put

$$
L=\left\{x \in[a, b) ; f_{+}^{\prime}(x)>0\right\} .
$$

Then $\lambda^{*}(f(L)) \geqq f(b)-f(a)$.

Corollary 1. If $\lambda(f(L))=0$, then f is decreasing on $[a, b]$.
Corollary 2. Let g be continuous and

$$
N=\left\{x \in[a, b) ; \liminf _{y \rightarrow x+} \frac{g(y)-g(x)}{y-x}>0 \text { or } \limsup _{y \rightarrow x+} \frac{g(y)-g(x)}{y-x}<0\right\}
$$

If $\lambda(f(N))=0$, then f is constant on $[a, b]$.
In the following proof we will recall some basic steps of the proof of Theorem 2 adapted to the more general setting of the Hausdorff h measure.

Proposition 1. Let $h:[0, \infty) \rightarrow[0, \infty)$ be an increasing function with $h(0)=0$, let $\varphi:[a, b] \rightarrow \mathbb{R}^{n}$ be a curve and

$$
E=\left\{\varphi(x) ; x \in[a, b), \lim _{y \rightarrow x+} \frac{h(\|\varphi(y)-\varphi(x)\|)}{|y-x|}=\infty\right\}
$$

If E has σ-finite Hausdorff h measure, then $\varphi([a, b])$ is a $C^{(h)}$-set.
Proof. Denote $H=\varphi([\alpha, \beta])$. Let $g: H \rightarrow \mathbb{R}$ satisfy property (2).
Define $f(x)=g(\varphi(x))$ for $x \in[\alpha, \beta]$ and set N as in Corollary 2. If $x \in[\alpha, \beta)$ and $\varphi(x) \notin E$, then $\lim _{y \rightarrow x+} \frac{h(\|\varphi(y)-\varphi(x)\|)}{|y-x|}=\infty$ does not hold. Thus there is $K>0$ and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}, x_{n}>x, x_{n} \rightarrow x$ such that $\frac{h\left(\left\|\varphi\left(x_{n}\right)-\varphi(x)\right\|\right)}{\left|x_{n}-x\right|}<K$. If $\varphi\left(x_{n}\right) \neq \varphi(x)$, then

$$
\frac{\left|f\left(x_{n}\right)-f(x)\right|}{\left|x_{n}-x\right|}=\frac{\left|g\left(\varphi\left(x_{n}\right)\right)-g(\varphi(x))\right|}{h\left(\left\|\varphi\left(x_{n}\right)-\varphi(x)\right\|\right)} \frac{h\left(\left\|\varphi\left(x_{n}\right)-\varphi(x)\right\|\right)}{\left|x_{n}-x\right|} .
$$

Hence $\frac{\left|f\left(x_{n}\right)-f(x)\right|}{\left|x_{n}-x\right|}$ tends to zero as $n \rightarrow \infty$ which easily implies $x \notin N$. We obtained $\varphi(N) \subset E$, hence $\lambda^{*}(f(N))=\lambda^{*}(g(\varphi(N))) \leqq \lambda^{*}(g(E))=0$, where the last equality follows from Theorem 4 . Corollary 2 gives us the conclusion.

Now we are ready to prove our main theorem.
Theorem 5. Let $\varphi:[\alpha, \beta] \rightarrow \mathbb{R}^{n+k}(-\infty<\alpha<\beta<\infty, n, k \geqq 1)$ be a curve. Denote

$$
E=\left\{t \in[\alpha, \beta) ; \lim _{s \rightarrow t+} \frac{\|\varphi(s)-\varphi(t)\|^{k}}{|s-t|}=\infty\right\}
$$

and suppose that for all $t_{0} \in E$ there are $\delta>0\left(t_{0}+\delta<\beta\right), M>0$ and n natural numbers $1 \leqq i_{1}<\cdots<i_{n} \leqq n+k$ such that the inequality $\mid \varphi_{i_{l}}(t)-$ $\varphi_{i_{l}}\left(t_{0}\right)|\leqq M| t-\left.t_{0}\right|^{1 / k}(l=1, \ldots, n)$ holds for all $t \in\left(t_{0}, t_{0}+\delta\right)$. Then $\varphi([\alpha, \beta])$ is a C^{k}-set.

Proof. As the limit in the set described in the theorem does not depend on the norm in \mathbb{R}^{n+k} (as well as in Theorem 2), we will (without loss of generality) use the l_{1}-norm.

Let $t_{0} \in[\alpha, \beta)$ such that

$$
\lim _{t \rightarrow t_{0}+} \frac{\left\|\varphi(t)-\varphi\left(t_{0}\right)\right\|^{k}}{\left|t-t_{0}\right|}=\infty .
$$

Due to the assumptions and continuity of φ there are $\delta\left(t_{0}\right)>0, M\left(t_{0}\right)>0$ and n natural numbers $1 \leqq i_{1}\left(t_{0}\right)<\cdots<i_{n}\left(t_{0}\right) \leqq n+k$ such that

- $t_{0}+\delta\left(t_{0}\right)<\beta$ and
- for all $t \in\left(t_{0}, t_{0}+\delta\left(t_{0}\right)\right)$ the inequality

$$
\left|\varphi_{i_{l}\left(t_{0}\right)}(t)-\varphi_{i_{l}\left(t_{0}\right)}\left(t_{0}\right)\right| \leqq M\left(t_{0}\right)\left|t-t_{0}\right|^{1 / k}, l=1, \ldots, n
$$

holds. (Denote the elements of $\{1, \ldots, n+k\} \backslash\left\{i_{1}\left(t_{0}\right), \ldots, i_{n}\left(t_{0}\right)\right\}$ by $1 \leqq j_{1}\left(t_{0}\right)<\cdots<j_{k}\left(t_{0}\right) \leqq n+k$.

- for all $t \in\left(t_{0}, t_{0}+\delta\left(t_{0}\right)\right)$ the inequality $K\left|t-t_{0}\right| \leqq\left\|\varphi(t)-\varphi\left(t_{0}\right)\right\|^{k}$ holds, with $K=M\left(t_{0}\right)^{k} C^{k}\left(n^{k}+n\right)(C$ is a positive number such that $\left(\left|x_{1}\right|+\cdots+\left|x_{n+1}\right|\right)^{k} \leqq C^{k}\left(\left|x_{1}\right|^{k}+\cdots+\left|x_{n+1}\right|^{k}\right)$ holds for all $\left.x \in \mathbb{R}^{n+1}\right)$.
Then for $t \in\left(t_{0}, t_{0}+\delta\left(t_{0}\right)\right)$ we obtain

$$
\begin{aligned}
& K\left|t-t_{0}\right| \leqq\left(\left|\varphi_{1}(t)-\varphi_{1}\left(t_{0}\right)\right|+\cdots+\left|\varphi_{n+k}(t)-\varphi_{n+k}\left(t_{0}\right)\right|\right)^{k} \\
& \leqq C^{k}\left(\left|\varphi_{i_{1}\left(t_{0}\right)}(t)-\varphi_{i_{1}\left(t_{0}\right)}\left(t_{0}\right)\right|^{k}+\cdots+\left|\varphi_{i_{n}\left(t_{0}\right)}(t)-\varphi_{i_{n}\left(t_{0}\right)}\left(t_{0}\right)\right|^{k}+\right. \\
& \left.\quad+\left(\left|\varphi_{j_{1}\left(t_{0}\right)}(t)-\varphi_{j_{1}\left(t_{0}\right)}\left(t_{0}\right)\right|+\cdots+\left|\varphi_{j_{k}\left(t_{0}\right)}(t)-\varphi_{j_{k}\left(t_{0}\right)}\left(t_{0}\right)\right|\right)^{k}\right) \\
& \leqq C^{k} n M\left(t_{0}\right)^{k}\left|t-t_{0}\right|+C^{k}\left(\left|\varphi_{j_{1}\left(t_{0}\right)}(t)-\varphi_{j_{1}\left(t_{0}\right)}\left(t_{0}\right)\right|+\cdots+\left|\varphi_{j_{k}\left(t_{0}\right)}(t)-\varphi_{j_{k}\left(t_{0}\right)}\left(t_{0}\right)\right|\right)^{k} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& \left|\varphi_{j_{1}\left(t_{0}\right)}(t)-\varphi_{j_{1}\left(t_{0}\right)}\left(t_{0}\right)\right|+\cdots+\left|\varphi_{j_{k}\left(t_{0}\right)}(t)-\varphi_{j_{k}\left(t_{0}\right)}\left(t_{0}\right)\right| \\
\geqq & \left|t-t_{0}\right|^{1 / k} M\left(t_{0}\right) n \geqq\left|\varphi_{i_{1}\left(t_{0}\right)}(t)-\varphi_{i_{1}\left(t_{0}\right)}\left(t_{0}\right)\right|+\cdots+\left|\varphi_{i_{n}\left(t_{0}\right)}(t)-\varphi_{i_{n}\left(t_{0}\right)}\left(t_{0}\right)\right| . \tag{3}
\end{align*}
$$

Denote the linear subspace of \mathbb{R}^{n+k} generated by vectors $\left\{e_{i_{1}\left(t_{0}\right)}, \ldots, e_{i_{n}\left(t_{0}\right)}\right\}$ by L and set $Z=L^{\perp}$. Then for $t \in\left(t_{0}, t_{0}+\delta\left(t_{0}\right)\right)$ (with Π_{L}, Π_{Z} orthogonal projections onto $L, Z)(3)$ can be rewritten as

$$
\left\|\Pi_{Z}\left(\varphi(t)-\varphi\left(t_{0}\right)\right)\right\| \geqq\left\|\Pi_{L}\left(\varphi(t)-\varphi\left(t_{0}\right)\right)\right\|
$$

The union of the sets

$$
A_{p_{1}, \ldots, p_{n}}:=\left\{t_{0} \in E ; p_{1}=i_{1}\left(t_{0}\right), \ldots, p_{n}=i_{n}\left(t_{0}\right)\right\}
$$

over all combinations of natural numbers $1 \leqq p_{1}<\cdots<p_{n} \leqq n+k$ covers the set E.

By Lemma 1 the set $\varphi\left(A_{n_{1}, \ldots, n_{n}}\right)$ has σ-finite k-dimensional Hausdorff measure and so has the set E. Now we can conclude by employing Proposition 1 with $h(t)=t^{k}$.

To rewrite a "nonlocal version" of the previous theorem, we need some results on " α-variations" (cf. e.g. [5], [6]).

Definition 2. Let f be defined on $A \subset \mathbb{R}$. For $\alpha \geqq 0$ we denote by $V_{\alpha}(f, A)$ the least upper bound of the sums

$$
\sum_{i=1}^{n}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|^{\alpha}
$$

where $\left\{\left[a_{i}, b_{i}\right]\right\}_{i=1}^{n}$ is an arbitrary finite system of non-overlapping intervals with $a_{i}, b_{i} \in A(i=1, \ldots, n)$. We call $V_{\alpha}(f, A) \alpha$-variation.

We will need a property that was proved by L. C. Young in Theorem (4.2) of [5]. Without explicitly stating it, he showed that if f is a real function (defined on a compact interval I) of bounded α-th power variation (for $\alpha>1$), then there is a continuous increasing function h (from I onto itself) such that $f \circ h$ is $1 / \alpha$-Hölder.

Now we can state the corollary of Theorem 5.
Corollary 3. Let $f:[\alpha, \beta] \rightarrow \mathbb{R}^{n+k}(n, k \geqq 1)$ be a curve with n components of bounded k-variations. Then $\varphi([\alpha, \beta])$ is a C^{k}-set.

Proof. The case of $k=1$ is handled by Theorem 3 so let $k>1$. For simplicity (without loss of generality) we can assume that the first n components have bounded k-variations and denote $\psi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. We will prove that there is a homeomorphism h of $[\alpha, \beta]$ such that $\psi \circ h$ is $1 / k$-Hölder. As remarked above, due to [5] there are continuous increasing functions h_{1}, \ldots, h_{n} from $[\alpha, \beta]$ onto itself and positive constants K_{j} such that $\left|\psi_{j}\left(h_{j}(s)\right)-\psi_{j}\left(h_{j}(t)\right)\right| \leqq K_{j}|s-t|^{1 / k}$ holds for all $\alpha \leqq s, t \leqq \beta(j=1, \ldots, n)$.

Define $h:=\left(h_{1}^{-1}+\cdots+h_{n}{ }^{-1}\right)^{-1}$. Let $\alpha \leqq s<t \leqq \beta$ and $j \in\{1, \ldots, n\}$.

Then

$$
\begin{aligned}
& \left|\psi_{j}(h(s))-\psi_{j}(h(t))\right| \leqq K_{j}\left|h_{j}^{-1}(h(s))-h_{j}^{-1}(h(t))\right|^{1 / k}= \\
& K_{j}\left|\left(\left(h_{1}^{-1}+\cdots+{h_{n}}^{-1}\right) \circ h_{j}\right)^{-1}(s)-\left(\left(h_{1}^{-1}+\cdots+h_{n}^{-1}\right) \circ h_{j}\right)^{-1}(t)\right|^{1 / k}= \\
& \quad K_{j} \mid\left(\left(h_{1}^{-1}+\cdots+h_{j-1}^{-1}+h_{j+1}^{-1}+\cdots+h_{n}^{-1}\right) \circ h_{j}+\mathrm{id}\right)^{-1}(s)- \\
& \left.\left(\left(h_{1}^{-1}+\cdots+h_{j-1}^{-1}+h_{j+1}^{-1}+\cdots+{h_{n}}^{-1}\right) \circ h_{j}+\mathrm{id}\right)^{-1}(t)\right|^{1 / k} \leqq K_{j}|s-t|^{1 / k} .
\end{aligned}
$$

Using Theorem 5 for the curve φ oh we conclude that $\varphi([\alpha, \beta])=\varphi(h([\alpha, \beta]))$ is a C^{k}-set.

References

[1] H. Whitney, A function not constant on a connected set of critical points, Duke Math. J., 1 (1935), 514-517.
[2] G. Choquet, L'isometrie des ensembles dans ses rapports avec la théorie du contact et la théorie de la mesure, Mathematica, XX (1944), 29-64.
[3] M. Laczkovich and G. Petruska, Whitney sets and sets of constancy. On a problem of Whitney, Real Anal. Exchange, 10 (1984-85), 313-323.
[4] L. Zajíček, On the points of multivauledness of metric projections on separable Banach spaces, Comment. Math. Univ. Carolin., 19 (1978), 513-523.
[5] L. C. Young, Inequalities connected with bounded p-variation in the Wiener sense and with integrated Lipschitz conditions, Proc. London Math. Soc., 43 (1937), 449-467.
[6] M. Laczkovich and D. Preiss, α-Variation and transformation into C^{n} functions, Indiana Univ. Math. J., 34(2) (1985), 405-424.
[7] P. Matilla, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.

[^0]: Key Words: Whitney curves, bounded variation.
 Mathematical Reviews subject classification: Primary: 26A24, 26A45. Secondary: 54C30.

 Received by the editors May 4, 2004
 Communicated by: B. S. Thomson
 *Research supported by the Czech Science Foundation, Grant No. 201/03/0931

