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ON CLASSES OF FUNCTIONS
GENERATING ABSOLUTELY

CONTINUOUS VARIATIONAL MEASURES

Abstract

It is proved that for a wide class of bases in Rm a function ge-
nerates a σ-finite absolutely continuous variational measure if and only
if this function belongs to ACGδ-class. It is also shown that under some
additional assumptions on a basis, σ-finiteness follows from the absolute
continuity of the variational measure.

1 Introduction.

Descriptive characterizations of the Henstock-Kurzweil type integrals in terms
of absolute continuity of variational measure were given in several recent pa-
pers (see [1, 2, 4, 7, 8, 10, 17, 20, 29, 30]). In the case of the one-dimensional
full interval basis this characterization is known (see [2]) to be equivalent to
the classical descriptive definition of the Denjoy-Perron integral in terms of
the ACG∗-class. However the definition of this class relies heavily on the order
structure of the real line and so it is difficult to extend this definition to higher
dimensions and to more general bases. As an alternative, the notion of ACGδ-
class and its generalization to the case of more general bases was considered.
This version of the generalized absolute continuity was introduced by Henstock

Key Words: derivation basis, ACGδ-function, variational measure, absolute continuity,
Henstock-Kurzweil integral

Mathematical Reviews subject classification: 26A39, 26A42, 26A45
Received by the editors February 12, 2004
Communicated by: B. S. Thomson

∗Supported by RFFI (05-01-00192) and by NSh-1657.2003.1
†Supported by RFFI (05-01-206) and by NSh-1657.2003.1

361



362 Valentin Skvortsov and Yurij Zherebyov

and investigated in [11, 12] in dimension one and in [15, p.58] and in [9] for the
regular interval basis in Rm (see also [28]). The ACGδ-class for dyadic basis
was considered in [13, 3, 30]. In all those cases the class of ACGδ-functions
coincides with the class of indefinite Henstock-Kurzweil integrals with respect
to the corresponding basis, which in turn coincides also with the class of func-
tions generating absolutely continuous variational measure with respect to the
considered basis. But there exist bases for which ACGδ-classes are not equiv-
alent to the respective classes of the indefinite integrals (a special case of the
so called P-adic basis can be taken as an example, see [5]). So the problem of
a direct comparison of the ACGδ-class and the class of functions generating
absolutely continuous variational measure with respect to such bases arises.

In the present paper we prove that for a wide class of bases in Rm a
function generates a σ-finite absolutely continuous variational measure if and
only if this function belongs to ACGδ-class. Moreover under some additional
assumptions on a basis, σ-finiteness follows from absolute continuity of the
variational measure. So, for such a basis, we obtain that the ACGδ-class and
the respective class of functions generating absolutely continuous variational
measures are equivalent. We note that no differentiability assumptions or
references to the Ward type theorem are involved in our proof.

2 Preliminaries.

By Rm, m ≥ 1, we denote the m-dimensional Euclidean space. If E⊂Rm, then
|E|, E, ∂E and Int E denote the m-dimensional Lebesgue (outer) measure,
the closure, the border and the interior of E, respectively. If |E|=0 then the
set E is called negligible. Almost everywhere (a.e) is always used in the sense
of the Lebesgue measure. The term ”measurable”, unless specified otherwise,
will refer to measurability in the Lebesgue sense. An open ball of radius r
centered at x is denoted by B(x, r).

A derivation basis (or simply basis) B in Rm is a subset of the product
space Rm× Ψ, where Ψ is a fixed class of measurable bounded sets called
generalized intervals or B-sets.

For each positive function δ on Rm, called a gage, we set

Bδ ={(x,M)∈B : M ⊂B(x, δ(x))}. (1)

To be exact, the basis (according to [26, 18]) in our case is the collection {Bδ}δ,
where δ runs over the set of all gages.

If in the definition (1) we assume, that (x,M)∈Bδ implies x∈M , then the
basis B is called a Perron basis. Otherwise we call it a McShane basis.

For E ⊂Rm we put Bδ[E] = {(x, M)∈Bδ : x∈E} and call
{
Bδ[E]

}
δ

the
restriction of B on E or simply the basis B on E. Throughout this paper we
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shall assume that:
(a) basis B is a Vitali basis, that is Bδ[{x}] 6= ∅ for any x and for any gage
δ;
(b) |∂M | = 0 and Int M 6= ∅ for each B-set M .

As typical examples of Perron bases satisfying conditions (a) and (b) we
consider the full interval basis, with Ψ being the set of all nondegenerate
closed subintervals of Rm or of some fixed compact interval I0 ⊂ Rm, and
the dyadic basis, with Ψ being the set of all dyadic intervals I=[ p1

2k1
,

p1+1

2k1
] ×

. . . × [ pm

2km
,

pm+1

2km
], where ki = 0, 1, 2, . . . , pi = 0, . . . , 2ki − 1 (i = 1, . . . ,m).

Conditions (a) and (b) are still satisfied if we substitute intervals with figures
in the above definitions, but condition (b) excludes from our consideration the
basis with Ψ consisting of all bounded BV sets (see [19]). Another useful class
of bases satisfying (a) and (b) to be mentioned here is the one composed by
bases defined by so called local systems (see [24], [3] and [6]). In particular
the approximate basis belongs to this class.

A finite subset π of Bδ[E] is called δ-fine partition on E if for any pairs
(x, M), (y, L)∈π sets M and L are nonoverlapping, i.e. Int M ∩ Int L = ∅.
Having fixed a set W⊂Rm, a Vitali basis B on W and a B-set function F we
define, for each E⊂W ,

V ar
(
Bδ, F, E

)
=sup

π

∑
(x,M)∈π

|F (M)|,

where π is δ-fine partition on E, and we put V
(
B, F, E

)
= inf

δ
V ar

(
Bδ, F, E

)
.

Set functions V ar
(
Bδ, F, ·

)
and V

(
B, F, ·

)
, being defined on the family of all

the subsets E⊂W , are called, respectively, the δ-variation and the variational
measure on W , generated by F , with respect to the basis B. It’s easy to
check that V

(
B, F, ·

)
is a metric outer measure, so it is σ-additive measure

defined on all Borel subsets of W (see [14, chapter 2, § 11]). Unless specified
otherwise, absolute continuity of variational measure we understand in the
sense of absolute continuity with respect to Lebesgue measure. The sentence
”variational measure is σ∗-finite on the set S” means that V

(
B, F, ·

)
is σ-finite

on S as the outer measure, defined on all the subsets of S, i.e.

S =
∞⋃

n=1

Sn with V
(
B, F, Sn

)
< +∞ for each n. (2)

The term ”σ-finite” we reserve for the case when V
(
B, F, ·

)
is considered as a

measure defined on some σ-ring (or σ-algebra) A, i.e. the condition (2) is valid
under additional assumption Sn∈A. Of course σ-finiteness and σ∗-finiteness
are equivalent concepts for Borel regular measures. The Borel regularity can
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be easily established for variational measure related to the full interval basis
in R (it is enough to modify the proof of Theorem 3.15 of [25]). But for a
general case and in particular for the mentioned above bases defined by local
systems, the problem of regularity seems to be open. That is why we prefer
to avoid the assumption of regularity here, the more so that we do not need
it in our proofs.

Definition 1. Let B be a Vitali derivation basis on X. B-set function F is said
to be BACδ(X)-function if for any ε> 0 there exist a gage δ : X → (0,+∞)

and a real number η > 0 such that
p∑

i=1

|F (Mi)| < ε for each δ-fine partition

{(ξi,Mi)}p
i=1 on the set X satisfying the inequality

p∑
i=1

|Mi|<η. B-set function

F is said to be BACGδ(X)-function if there exist sets Xn such that X =
+∞⋃
n=1

Xn

with F being BACδ(Xn)-function for each n = 1, 2, . . . .

3 Absolute Continuity of Variational Measure and
BACGδ-Functions.

In this section we compare the class of BACGδ-functions with the class of
functions generating absolutely continuous variational measure. We need the
following version of the known result (see [21]).

Proposition 1. Let ν be a finite σ-additive measure defined on σ-ring R and
µ be the outer measure defined on R. Measure ν is absolutely continuous with
respect to µ iff for any ε > 0 there exists a number δ > 0 such that ν(E) < ε
for each set E∈R with µ(E) < δ.

We characterize now BACGδ(X)-functions in terms of variational mea-
sures. The next lemma is a crucial step in this direction.

Lemma 1. Let B be a derivate basis on X ⊂ Rm satisfying conditions (a)
and (b), and let F be a B-set function. Then under assumption V

(
B, F, X

)
<

+∞ the variational measure V
(
B, F, ·

)
is absolutely continuous on X iff F is

BACδ(X)-function.

Proof. The necessity part for the case of the full interval basis was in fact
proved in [17]. Following the lines of the proof [17, lemma 6.2], we adjust
it for our more general case of the basis, dropping also the assumption of
measurability of the set X. Note first that if |X|=0 then V

(
B, F, X

)
=0 and

F is a BACδ(X)-function by the definition. Suppose now that |X|> 0 and fix
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ε> 0. Since V
(
B, F, X

)
<+∞, there exists a gage δ : X → (0,+∞) such that

V ar
(
Bδ, F, X

)
<V

(
B, F, X

)
+

ε

3
. (3)

V
(
B, F, ·

)
being a metric outer measure, is σ-additive measure on σ-algebra

BX of all Borel sets in the metric space X. Proposition 1 implies that there
exists η∈

(
0, |X|

2

)
such that

V
(
B, F, Y

)
<

ε

3
(4)

for any set Y ∈BX with |Y |< η. Let π={(ξi,Mi)}p
i=1 be any δ-fine partition

on X satisfying condition
p∑

i=1

|Mi|< η. As |∂Mi| = 0 by condition (b), then
p∑

i=1

∣∣M i

∣∣ < η. The set X ∩
( p⋃
i=1

M i

)
is Borel in X and

∣∣X ∩
( p⋃
i=1

M i

)∣∣ 6

6
p∑

i=1

∣∣M i

∣∣<η. We get

V
(
B, F, X ∩

( p⋃
i=1

M i

)) (4)
<

ε

3
. (5)

Consider the set Z =X \
( p⋃

i=1

M i

)
. Since η∈

(
0, |X|

2

)
, then |Z|> 0. Define a

gage δ0 : Z → (0,+∞) having the following properties:
(i ) δ0(x) 6 δ(x) for each x∈Z;

(ii ) B(x, δ0(x))∩
( p⋃

i=1

M i

)
=∅ for each x∈Z;

(iii ) V ar
(
Bδ0

, F, Z
)
<+∞ (since V (B, F, X)<+∞).

By condition (iii) there exists δ0-fine partition P={(yi, Li)}q
i=1 on Z such

that
q∑

i=1

|F (Li)|>V ar
(
Bδ0

, F, Z
)
− ε

3
. (6)

By condition (ii) none of Li intersect
p⋃

i=1

Mi. Then P∪π is δ-fine partition on

X (condition (i)). As V
(
B, F, ·

)
is an outer measure we finally get

p∑
i=1

|F (Mi)|
(3)
< V

(
B, F, X

)
−

q∑
i=1

|F (Li)|+
ε

3
(6)
< V

(
B, F, X

)
− V ar

(
Bδ0

, F, Z
)
+

+
2ε

3
6 V

(
B, F, X

)
− V

(
B, F, Z

)
+

2ε

3
6 V

(
B, F, X∩

( p⋃
i=1

M i

))
+

2ε

3
(5)
< ε.
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It means that F is BACδ(X)-function.
To prove the sufficiency let E be an arbitrary negligible subset of X. Then

for each n it is possible to choose a function δ′n : E → (0,+∞), a number
ηn>0 and an open set Gn covering E so that

µ(Gn)<ηn (7)

and
pn∑
i=1

|F (Mi)|<
1
n

(8)

for each δ′n-fine partition πn = {(ξi,Mi)}pn

i=1 on E satisfying the inequality
pn∑
i=1

|Mi|< ηn. Put δn(x) = min
(
δ′n(x), ρ(x, Rm \Gn)

)
on E. Then by (7) any

δn-fine partition Pn={(ζi,Mi)}
sn
i=1 on E satisfies the condition

sn∑
i=1

|Mi|< ηn.

Thus (8) is valid for Pn. Hence V ar
(
Bδn

, F, E
)
6 1

n , and so V
(
B, F, E

)
=0.

Remark 1. Note that the proof of the sufficiency part of Lemma 1 does not
require finiteness of V

(
B, F, ·

)
on X. Therefore condition F∈BACδ(X) always

implies absolute continuity of variational measure V
(
B, F, ·

)
on X.

Remark 2. The case of the dyadic basis was considered in [30, Lemma 7].

Theorem 1. Let B be a derivate basis on X satisfying conditions (a) and
(b) and let F be a B-set function generating a σ∗-finite variational measure
V

(
B, F, ·

)
. Then V

(
B, F, ·

)
is absolutely continuous on X iff F is BACGδ(X)-

function.

Proof. σ∗- finiteness of V
(
B, F, ·

)
implies that X =

∞⋃
n=1

Xn, with V
(
B, F, Xn

)
<+∞. If V

(
B, F, ·

)
is absolutely continuous on X, then using Lemma 1 we

conclude that F is BACδ(Xn)-function for each n. Hence F is BACGδ(X)-
function. Conversely, let F be BACGδ(X)-function. By definition there exists

the sequence {Xn}∞n=1 such that X =
∞⋃

n=1
Xn and F is BACδ(Xn)-function for

each n. By Remark 1 we obtain absolute continuity of the variational measure
V

(
B, F, ·

)
on each Xn and therefore, by subadditivity of V

(
B, F, ·

)
, on X.

4 Absolute Continuity Implies σ-Finiteness.

In this section we impose two additional assumptions on basis B:
(c) for each B-set M and for each x∈M , the pair (x, M) belongs to B;
(d) each point of ∂M is a point of positive lower density of M .
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Bases satisfying condition (c) are sometimes referred to as Busemann –
Feller bases (abbreviated as BF -bases).

We prove now that for a Perron basis defined on a measurable set and
satisfying conditions (a)−(d) a priori assumption of σ∗-finiteness in Theorem 1
can be dropped because it follows from the absolute continuity of V

(
B, F, ·

)
.

Theorem 2. Let B be a Perron derivation basis on a closed set E satisfying
conditions (a)− (d) and let F be a B-set function. If the variational measure
V

(
B, F, ·

)
is σ-finite on each negligible Borel set B⊂E then it is σ-finite on

E.

Proof. Let Q be the set of all points x∈E for which V
(
B, F, ·

)
is not σ-fi-

nite on E ∩ O for any open ball O containing x. Since (E, τ
E
) with topology

τ
E

induced by topology of Rm is obviously a Lindelöf space, then V
(
B, F, ·

)
is σ-finite on E \Q. So we are to prove that Q is empty. If not, we can easily
deduce that Q is closed and |Q|>0 (for a proof of a similar fact in dimension
one see [4, theorem 3.1]). Let P be the set of all density points of Q belonging
to Q. In this notation we prove the following lemmas.

Lemma 2. For each open ball O with O∩P 6= ∅,

V
(
B, F, P ∩O

)
= +∞. (9)

Proof of Lemma 2. Using representation

E ∩O=(P ∩O) ∪
(
(Q \ P ) ∩O

)
∪

(
(E \Q) ∩O

)
for the ball O, we note that V

(
B, F, ·

)
is σ-finite on (Q\P )∩O (since Q\P is

negligible Borel set) and σ-finite on (E \Q)∩O (because it is σ-finite on E \Q).
To avoid contradiction with the definition of Q we conclude that V

(
B, F, ·

)
is

not σ-finite on P ∩O. This implies (9).

Lemma 3. Let M be a B-set with P ∩M 6=∅. Then P ∩ (Int M) 6= ∅.

Proof of Lemma 3. If P ∩ (Int M) = ∅, then for any ball O centered at
x∈P ∩ ∂M we have

M ∩O = (∂M ∩ P ∩O) ∪ (M ∩ (O \ P ))

and so the equality

lim
diam(O)→0

|M ∩O|
|O|

= lim
diam(O)→0

|∂M ∩ P ∩O|
|O|

+ lim
diam(O)→0

|M ∩ (O \ P )|
|O|

= 0

leads to a contradiction with condition (d) imposed on B-sets. This completes
the proof of Lemma 3.
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Proceeding with the proof of Theorem 2, note that Lemma 2 implies
V ar

(
Bδ, F, P ∩ O

)
= +∞ for any ball O with O ∩ P 6= ∅ and for any gage

δ. Taking the ball O small enough and choosing δ so that all the B-sets from
Bδ[O ∩ P ] are contained in O, we can construct a partition

{
(x(1)

j ,M
(1)
j )

}p1
j=1

on P such that
p1∑

j=1

∣∣M (1)
j

∣∣ <
1
2

and
p1∑

j=1

∣∣F (M (1)
j )

∣∣ > 2 .

By Lemma 3 we find for each M
(1)
j a point z

(1)
j ∈P∩Int M

(1)
j . Now considering

small enough balls O
(1)
j centered at z

(1)
j such that O

(1)
j ⊂ Int M

(1)
j and once

again applying Lemma 2 and choosing an appropriate gage, we find a partition{
(x(2)

j ,M
(2)
j )

}p2
j=1

on
p1⋃

j=1

(
P ∩O

(1)
j

)
such that

• each M
(2)

j is contained in some O
(1)
i ⊂M

(1)
i ;

• each O
(1)
i contains at least two M

(2)

j ;

•
p2∑

j=1

∣∣M (2)
j

∣∣ < 1
4 ;

•
∑

M
(2)
j ⊂O

(1)
i

∣∣F (
M

(2)
j

)∣∣ > 4 for each i = 1, . . . , p1 .

Proceeding by induction we construct a family of partitions
{
{(x(k)

j ,M
(k)
j )}p

k
j=1

}∞
k=1

such that

(i) P ∩M
(k)
j 6= ∅;

(ii) each M
(k)

j is contained in some M
(k−1)
i ;

(iii) each M
(k−1)
i contains at least two M

(k)

j ;

(iv)
p

k∑
j=1

∣∣M (k)
j

∣∣ < 2−k;

(v)
∑

M
(k)
j ⊂M

(k−1)
i

∣∣F (
M

(k)
j

)∣∣ > 2k for each i = 1, . . . , pk−1.

We put

N=
∞⋂

k=1

p
k⋃

j=1

M
(k)

j .
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It follows from (iv) that N is a closed negligible set. Now we can complete
the proof by repeating the arguments used in [22, theorem 1], [23, theorem 2]
or [4, theorem 3.1].

If X is measurable then Theorem 2 allows to drop the condition of σ∗-
finiteness of the variational measure in Theorem 1.

Theorem 3. Let B be a Perron derivation basis on a measurable set X⊂Rm

satisfying conditions (a)− (d) and F be a B-set function. Then the variational
measure V

(
B, F, ·

)
is absolutely continuous on X iff F is BACGδ(X)-function

and sets Xn, on which F is BACδ(Xn)-function, can be chosen so that the set
X1 is negligible and the sets Xn, for n = 2, 3, . . . , are Borel.

Proof. The set X can be represented as X = K∪X1 where K is Fσ- set
and µ(X1) = 0. By Theorem 2 the variational measure V

(
B, F, ·

)
is σ-finite

on K, i.e. there are Borel sets Xn such that V
(
B, F, Xn

)
< +∞ and K =

=
∞⋃

n=2
Xn. By Lemma 1 the function F is BACδ(Xn)-function for all n=1, 2,

3, . . . . Hence it is BACGδ(X)-function. Sufficiency follows from Remark 1 and
subadditivity of variational measure.

Remark 3. BACGδ(X)-class for the P-adic basis was considered in [5]. It is
obvious that the P-adic basis is a Perron basis satisfying conditions (a)− (d).
So Theorem 3 gives the answer to the problem stated in [5, p. 586].

We apply now the above results to characterize the multiple Henstock-
Kurzweil integral with respect to the full interval basis and to the dyadic
basis. Denoting both of these integrals by HKB-integral we get

Corollary 1. Let B be the full interval basis or the dyadic basis defined on the
fixed B-interval I0 and let F be an additive B-interval function. The following
statements are equivalent:
1) variational measure V

(
B, F, ·

)
is absolutely continuous on I0;

2) F is BACGδ(I0)– function;
3) F is the indefinite HKB-integral of its ordinary B-derivative F ′

B(x) (in the
sense of Saks, see [21, 30]).

Proof. 1)⇔2) follows from Theorem 3. The existence of the ordinary B-
derivative follows from Corollary ?? by standard methods using the Ward
property (see [4, 10, 16, 27, 30]). The rest of the proof follows the lines
of [17, 30].

Remark 4. Corollary 1 gives in fact a descriptive definition of HKB-integral,
which extends the one-dimensional Denjoy-Perron type definition to higher
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dimensions: a function f defined on a B-interval I0 is said to beHKB-integrable
on I0 if there exists an additive BACGδ(I0)-function F such that the B-
ordinary derivative F ′

B(x) =f(x) a.e. on I0.

Remark 5. As we have already mentioned in the Introduction, for some bases
the BACGδ-classes are not equivalent to the respective classes of the indefinite
integrals and so the above type of a descriptive definition of the Henstock inte-
gral is not available for such bases. The so-called partial descriptive definition
(see [19]), however, can be obtained in this case by including into the class of
primitives only those BACGδ-functions which are B-differentiable a.e.
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