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RADON TRANSFORMS OF TEMPERED
DISTRIBUTIONS

Abstract

The Radon transform is not uniquely defined for distributions. More-
over, on even dimensional Euclidean space, the formal integral defining
the transform converges only for a subspace of tempered distributions.

1 Introduction.

Let S(R™) denote the Schwartz class of functions f(x) which, together with
their partial derivatives of all order, go to 0 faster than |z|=* for all positive
integers k as x — oo. The Radon transform of f(z) € S(R"™) is given by

RIOO= [ fa)el) (11)
<0, z>=t

The hyperplane < 6, z >= t is parametrized by a unit normal vector 6
and its directed distance ¢t € R! from the origin; w(z) is the differential form
for integration on the hyperplane. Thus R f is defined on the product space
S7=1 x Rl where S"~! denotes the unit sphere in R™. Since Rf(6,t) =
Rf(—0,—t), it is convenient to choose § = (61,...,0,) so that the right most
non-zero component is positive. This choice is consistent with the application
of the Radon transform to reconstructive tomography. For lines in the plane,
01 = cos p and 02 = sin ¢ with scans taken over the range of angles 0 < ¢ < 7.
Basic properties of the Radon transform along with a wealth of applications
can be found in [2].

There is a simple relationship between the Radon transform and the Fourier
transform

Ffly) = - fx)e <% v> dg. (1.2)
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Write y = afl with a € R! and 6 € S"~!. Integrate (1.2) over the hyperplane
< 0, x >=t and then with respect to ¢t. This yields

Ff(ab) = o Rf(0, t)e ' dt, (1.3)

— 00

which implies that Rf is the one dimensional inverse Fourier transform of
Ff. The Fourier transform maps S(R™) onto itself. In our notation, the
range space of the Fourier transform is S(S"~! x R!). It follows from (1.3)
that the Radon transform maps S(R") into S(S"~! x R!). The mapping is
not onto since, for example, each f(z) € S(R™) satisfies

+oo
Rf(6,t) dt = C, (1.4)

— 00

where C' is a constant independent of §. There are additional moment condi-
tions that R f satisfies but these will not be needed in what follows.

The Fourier transform of a tempered distribution F' is uniquely defined as
a functional F on S(R™) satisfying

F(f) = @m) " FF(Ff) (1.5)

for all f € S(R™). The analog of (1.5) for the Radon transform [3, p. 12] is

+oo

F(f) = %(2@1*”/ RE(0,t)V(0,t)d0 dt = L

M) TRE(E), (16)
—00 Sn—l 2

where W;(0,t) = D" 'Rf(6,t). The operator D"~! corresponds to the
Fourier multiplier (i | a | )®~!. Thus,

1
(251) 0"

Us(0,t) =(-1) 51

Rf

if n is odd and the Hilbert transform of gﬂ—:R f for n even. Evidently, RF
is not uniquely defined since any polynomial Y ¢;(0)t/ of degree < n — 2
annihilates D"~ 'R f. Beyond non-uniqueness, the convergence of the integral
on the right hand side of (1.6) depends on F' when n is even. Indeed, ¥ (6, t)
is infinitely differentiable and %R f € 8(S" ! x RY). However, the order
estimate ¥y = O([t|~") is best possible for n even due to the Hilbert transform.
In section 2 we show that (1.6) converges for distributions that can be identified
with functions in LP(R") for 1 < p < 2. The annihilating polynomials are also
determined.
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2 LP? Spaces.

If F € L*(R"), then F is integrable over hyperplanes. In fact, integration of
|F| over < @, x >=t and then with respect to t yields

+o0
/ F(2)] do > / RE(0,1)] dt. (2.1)
" —00
Without the absolute values, (2.1) becomes an equality so F' € L!(R") satisfies
(1.4). A weaker condition, which also implies integrability over almost every
hyperplane, is

/Rn IF(2)] - (1 + |2]) ! da < o. (2.2)

By Hélder’s inequality, (2.2) is satisfied if F' € LP(R™) for some p with 1 <
p <.

Example 2.3. Let F(z) = (Jz|" ' In|z|)~! for |z| > 2 and 0 otherwise. This
function is not integrable over hyperplanes but F' € LP(R") for all p > -2+.
Thus, condition (2.2) is best possible for LP spaces.

For p such that "5 < p < 2 we have recourse to the Fourier transform.

n—

By the Hausdorff-Young theorem, |o|("7 1).7-'F(o<0) € LI(RY) for each ¢ where

q = ;. But \04|(an)00(0)5(04) = 0 where J(a) denotes the Dirac mass. As
such, the Radon transform is not uniquely defined.

Theorem 2.4. If F(x) € LP(R") for some p where "5 < p < 2, then the
integral in (1.6) converges and RF(0,t) is defined (almost everywhere) on
S xR up to an annihilating polynomial Y ¢;(0)t7 of degree < (n—1)(1—
1

)

PROOF. In the Fourier domain, (1.6) is equivalent to the convergence of

—+oo
/ FFE(ab)|a|" *Ff(ab) db da.
— 00 Snfl

Write the integrand as the product of ||~/ FF(af) times |o| = D/PF f(ah).
The first function is in L4(S"~! x R!), while the second is in LP(S"~1 x R!)
since F f(a#) is a Schwartz class function. Convergence of the integral follows
from Holder’s inequality.

To determine the extent of non-uniqueness of RF', suppose that the support
of the Schwartz class function Ff is disjoint from « = 0. Then dividing F f
by any power of |a| yields another Schwartz class function. It follows that any

distribution that annihilates every |a|(nT_1)_7-' f(a@) must have point support at
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a = 0. These are distributions of the form 3" ¢;(0)6")(a) for k < "T_l where

5U) denotes the j-th derivative of the Dirac mass. Replacing % by 1 — % and
computing the one dimensional inverse Fourier transform yields a polynomial

> e (0)t7 of degree < (n—1)(1 — %) O

Remark 2.5. The isometry between F' € L2(R") and D"z )RF € L2(S"1x
R!) is a well known property of the Radon transform [5, p. 29]. In particular,
if F € L?(R?) then %RF is uniquely defined. Antidifferentiation gives RF
up to an additive term ¢o(6). This applies also to the function in Example 2.3
since (n —1)(1 — %) =n-l

While F(z) € LP(R™) for p > 2 does not imply FF(af) € L(R™), the
proof of the Theorem 2.4 remains valid for Fourier transforms in the range 1 <
q < 2. In particular, suppose that F(x) € A(R™), the algebra of continuous
functions with absolutely summable Fourier transforms. Then the integral
(1.6) converges and RF is defined (almost everywhere) up to an annihilating
polynomial of degree n — 2.
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