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RADON TRANSFORMS OF TEMPERED
DISTRIBUTIONS

Abstract

The Radon transform is not uniquely defined for distributions. More-
over, on even dimensional Euclidean space, the formal integral defining
the transform converges only for a subspace of tempered distributions.

1 Introduction.

Let S(Rn) denote the Schwartz class of functions f(x) which, together with
their partial derivatives of all order, go to 0 faster than |x|−k for all positive
integers k as x →∞. The Radon transform of f(x) ∈ S(Rn) is given by

Rf(θ, t) =
∫

<θ, x>=t

f(x) ω(x). (1.1)

The hyperplane < θ, x >= t is parametrized by a unit normal vector θ
and its directed distance t ∈ R1 from the origin; ω(x) is the differential form
for integration on the hyperplane. Thus Rf is defined on the product space
Sn−1 × R1 where Sn−1 denotes the unit sphere in Rn. Since Rf(θ, t) =
Rf(−θ,−t), it is convenient to choose θ = (θ1, . . . , θn) so that the right most
non-zero component is positive. This choice is consistent with the application
of the Radon transform to reconstructive tomography. For lines in the plane,
θ1 = cos ϕ and θ2 = sinϕ with scans taken over the range of angles 0 ≤ ϕ < π.
Basic properties of the Radon transform along with a wealth of applications
can be found in [2].

There is a simple relationship between the Radon transform and the Fourier
transform

Ff(y) =
∫

Rn

f(x)e−i<x, y> dx. (1.2)
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Write y = αθ with α ∈ R1 and θ ∈ Sn−1. Integrate (1.2) over the hyperplane
< θ, x >= t and then with respect to t. This yields

Ff(αθ) =
∫ +∞

−∞
Rf(θ, t)e−iαt dt, (1.3)

which implies that Rf is the one dimensional inverse Fourier transform of
Ff . The Fourier transform maps S(Rn) onto itself. In our notation, the
range space of the Fourier transform is S(Sn−1 × R1). It follows from (1.3)
that the Radon transform maps S(Rn) into S(Sn−1 × R1). The mapping is
not onto since, for example, each f(x) ∈ S(Rn) satisfies∫ +∞

−∞
Rf(θ, t) dt = C, (1.4)

where C is a constant independent of θ. There are additional moment condi-
tions that Rf satisfies but these will not be needed in what follows.

The Fourier transform of a tempered distribution F is uniquely defined as
a functional F on S(Rn) satisfying

F (f) = (2π)−nFF (Ff) (1.5)

for all f ∈ S(Rn). The analog of (1.5) for the Radon transform [3, p. 12] is

F (f) =
1
2
(2π)1−n

∫ +∞

−∞

∫
Sn−1

RF (θ, t)Ψf (θ, t) dθ dt =
1
2
(2π)1−nRF (Ψf ), (1.6)

where Ψf (θ, t) = Dn−1Rf(θ, t). The operator Dn−1 corresponds to the
Fourier multiplier (i | α | )n−1. Thus,

Ψf (θ, t) = (−1)(
n−1

2 ) ∂n−1

∂tn−1Rf

if n is odd and the Hilbert transform of ∂n−1

∂tn−1Rf for n even. Evidently, RF

is not uniquely defined since any polynomial
∑

cj(θ)tj of degree ≤ n − 2
annihilates Dn−1Rf . Beyond non-uniqueness, the convergence of the integral
on the right hand side of (1.6) depends on F when n is even. Indeed, Ψf (θ, t)
is infinitely differentiable and ∂n−1

∂tn−1Rf ∈ S(Sn−1 × R1). However, the order
estimate Ψf = O(|t|−n) is best possible for n even due to the Hilbert transform.
In section 2 we show that (1.6) converges for distributions that can be identified
with functions in Lp(Rn) for 1 ≤ p ≤ 2. The annihilating polynomials are also
determined.
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2 Lp Spaces.

If F ∈ L1(Rn), then F is integrable over hyperplanes. In fact, integration of
|F | over < θ, x >= t and then with respect to t yields∫

Rn

|F (x)| dx ≥
∫ +∞

−∞
|RF (θ, t)| dt. (2.1)

Without the absolute values, (2.1) becomes an equality so F ∈ L1(Rn) satisfies
(1.4). A weaker condition, which also implies integrability over almost every
hyperplane, is ∫

Rn

|F (x)| · (1 + |x|)−1 dx < ∞. (2.2)

By Hölder’s inequality, (2.2) is satisfied if F ∈ Lp(Rn) for some p with 1 ≤
p < n

n−1 .

Example 2.3. Let F (x) = (|x|n−1 ln |x|)−1 for |x| ≥ 2 and 0 otherwise. This
function is not integrable over hyperplanes but F ∈ Lp(Rn) for all p ≥ n

n−1 .
Thus, condition (2.2) is best possible for Lp spaces.

For p such that n
n−1 ≤ p ≤ 2 we have recourse to the Fourier transform.

By the Hausdorff-Young theorem, |α|(
n−1

q )FF (αθ) ∈ Lq(R1) for each q where
q = p

p−1 . But |α|(
n−1

q )c0(θ)δ(α) = 0 where δ(α) denotes the Dirac mass. As
such, the Radon transform is not uniquely defined.

Theorem 2.4. If F (x) ∈ Lp(Rn) for some p where n
n−1 ≤ p ≤ 2, then the

integral in (1.6) converges and RF (θ, t) is defined (almost everywhere) on
Sn−1×R1 up to an annihilating polynomial

∑
cj(θ)tj of degree < (n−1)(1−

1
p ).

Proof. In the Fourier domain, (1.6) is equivalent to the convergence of∫ +∞

−∞

∫
Sn−1

FF (αθ)|α|n−1Ff(αθ) dθ dα.

Write the integrand as the product of |α|(n−1)/qFF (αθ) times |α|(n−1)/pFf(αθ).
The first function is in Lq(Sn−1 × R1), while the second is in Lp(Sn−1 × R1)
since Ff(αθ) is a Schwartz class function. Convergence of the integral follows
from Hölder’s inequality.

To determine the extent of non-uniqueness ofRF , suppose that the support
of the Schwartz class function Ff is disjoint from α = 0. Then dividing Ff
by any power of |α| yields another Schwartz class function. It follows that any
distribution that annihilates every |α|(

n−1
q )Ff(αθ) must have point support at
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α = 0. These are distributions of the form
∑

cj(θ)δ(j)(α) for k < n−1
q where

δ(j) denotes the j-th derivative of the Dirac mass. Replacing 1
q by 1− 1

p and
computing the one dimensional inverse Fourier transform yields a polynomial∑

cj(θ)tj of degree < (n− 1)(1− 1
p ).

Remark 2.5. The isometry between F ∈ L2(Rn) and D( n−1
2 )RF ∈ L2(Sn−1×

R1) is a well known property of the Radon transform [5, p. 29]. In particular,
if F ∈ L2(R3) then ∂

∂tRF is uniquely defined. Antidifferentiation gives RF
up to an additive term c0(θ). This applies also to the function in Example 2.3
since (n− 1)(1− 1

p ) = n−1
n .

While F (x) ∈ Lp(Rn) for p > 2 does not imply FF (αθ) ∈ Lq(Rn), the
proof of the Theorem 2.4 remains valid for Fourier transforms in the range 1 ≤
q ≤ 2. In particular, suppose that F (x) ∈ A(Rn), the algebra of continuous
functions with absolutely summable Fourier transforms. Then the integral
(1.6) converges and RF is defined (almost everywhere) up to an annihilating
polynomial of degree n− 2.
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