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SEPARATION BY AMBIVALENT SETS

Abstract

A characterization of when two sets in R can be separated by am-
bivalent sets is given. Two applications of the characterization are also
presented.

A set is said to be ambivalent if it is Gδ and Fσ simultaneously. Ambivalent
sets form an algebra of sets [3, p. 65]. The following characterization of
separation of sets in R by ambivalent sets has turned out to be a useful tool in
proving various facts about Baire class one functions. It would be of interest to
find a proof of the proposition not resting on the use of transfinite induction.

Proprosition 1. Let A and B be disjoint subsets of [0, 1]. Then the following
statements are equivalent:

(i) A and B can be separated by ambivalent sets1.

(ii) A and B can be separated by a Baire class one function2.

(iii) There is no perfect set K such that both A and B are dense in K.

Proof. (i) ⇒ (ii). Let U be an ambivalent set that contains A and that is
disjoint from B. Then the characteristic function of the complement of U is of
Baire class one and separates A and B.

(ii) ⇒ (iii). If (iii) were false, then the function f separating A and B
would have no continuity point when restricted to K. This is impossible for f
is of Baire class one.
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1 It means that there are disjoint ambivalent sets U and V such that A ⊂ U and B ⊂ V .
2 It means that there is a Baire class one function f : [0, 1]→ [0, 1] such that f

˛̨
A
≡ 0

and f
˛̨
B
≡ 1 .
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(iii) ⇒ (i). Let A and B be disjoint sets that are not simultaneously
dense in any perfect set K. Set F0 = A ∪ B and define a transfinite sequence
(Fα)α<ω1 of subsets of [0, 1] as follows. If an ordinal α ≥ 1 has a predecessor
then we set

Fα = A ∩ Fα−1 ∩ B ∩ Fα−1 ,

and if α ≥ 1 is a limit ordinal, then we set

Fα =
⋂

γ<α

Fγ .

Then (Fα)α<ω1 is a nonincreasing sequence of closed sets and by [1, Thm 3.10]
there is the smallest α0 < ω1 such that Fα = Fα0 for all α > α0.

Suppose Fα0 is nonempty. Then the equality Fα0+1 = Fα0 implies that

Fα0 = A ∩ Fα0 ∩ B ∩ Fα0 ,

and hence both A and B are dense in Fα0 . Since the sets A and B are disjoint,
Fα0 must be perfect which contradicts (iii). Therefore Fα0 = ∅.

Now for α ≤ α0 let us define sets

Uα = Fα−1 \B ∩ Fα−1 and Vα = B ∩ Fα−1 \ Fα

if α has a predecessor, and define Uα = Vα = ∅ otherwise.
Observe that for every α such that 1 ≤ α ≤ α0 we get

Uα t Fα t Vα =
⋂

λ<α

Fλ

(here the symbol t denotes a union of pairwise disjoint sets) and

F0 =
⊔

λ≤α

Uλ t Fα t
⊔

λ≤α

Vλ .

All sets in the sequences (Uα)α≤α0 and (Vα)α≤α0 are Fσ and so are the unions

U
df=

⊔
α≤α0

Uα and V
df=

⊔
α≤α0

Vα .

Furhter we get A ⊂ U and B ⊂ V since the inclusions

A \ Fα ⊂
⊔

λ≤α

Uλ and B \ Fα ⊂
⊔

λ≤α

Vλ

hold for all α. Clearly U∩V = ∅ and U∪V = F0. Since F0 is closed, U = F0\V
is a Gδ in addition to being Fσ. Thus both U and V are ambivalent sets which
completes the proof.
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The following corollary is a special case (α = 1) of Sierpiński theorem on
separation by ambivalent sets [5].

Corollary 1. Any two disjoint Gδ sets in R can be separated by ambivalent
sets.

Proof. If two disjoint Gδ sets were both dense in the same perfect set K,
then K would be a union of two disjoint residual sets which is impossible.

In [2] S. Kempisty gave a proof of an approximation theorem on Baire class
one functions (see also [3, Proposition 3.37 and the following Remark there]).
At the end of his note Kempisty refined the result by proving that given an
ε > 0 , for every function f of Baire class one there is a function of Baire class
one that differs from f by less than 2ε and that takes values only in the set of
integer multiples of ε. Actually, Kempisty claimed that the function g differs
from f by less than ε, but the claim is not supported by his proof. However,
a simple application of the above separation property yields a proof of the
original statement of refined approximation theorem.

Proprosition 2. Let f : [0, 1] → R be a Baire class one function. Given
ε > 0, there is a Baire class one function g such that |f(x) − g(x)| < ε on
[0, 1] and values of g are integer multiples of ε .

Proof. Given an integer i, let hi : R → [0, 1] be a continuous function
defined by

hi(x) = min
{

1, max
{

0,
x− iε

ε

}}
.

Then hi ◦ f is a Baire class one function that separates sets {x : f(x) ≤ iε }
and {x : f(x) ≥ (i + 1)ε }. Hence by Proposition 1 for every integer i there
is an ambivalent set Ai such that

{x : f(x) ≤ iε } ⊂ Ai ⊂ {x : f(x) < (i + 1)ε } .

Setting Bi = Ai \Ai−1 for i ∈ Z , we get a partition of [0, 1] into disjoint
ambivalent sets and hence the function g =

∑
i∈Z iεχBi

is the required Baire
class one function.

The second application of our separation property consists of a short proof
of a characterization of Baire class one functions found by D. Preiss [4]. Inci-
dentally, the new proof yields easily a slightly strengthened condition (see (iii)
below).

Proprosition 3 ([4]). Let f : [a, b] → R̄ . The following assertions are
equivalent:
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(i) f is of Baire class one.

(ii) For each closed subset P of [a, b] and for any real numbers α < β at
most one of the sets {x ∈ P : f(x) ≥ β } and {x ∈ P : f(x) ≤ α }
is dense in P.

(iii) For each closed subset P of [a, b] and for any rational numbers α < β at
most one of the sets {x ∈ P : f(x) ≥ β } and {x ∈ P : f(x) ≤ α }
is dense in P.

Proof. (i) ⇒ (ii). Since the sets {x : f(x) ≥ β } and {x : f(x) ≤ α }
are disjoint, it suffices to prove (ii) for perfect sets only. Let h : R → R be
a continuous function such that h(y) = 0 for y ≤ α and h(y) = 1 for y ≥ β.
Then h◦f is a Baire class one function that separates the sets {x : f(x) ≥ β }
and {x : f(x) ≤ α }. Hence by Proposition 1 (ii) holds.

(ii) ⇒ (iii). Obvious.
(iii) ⇒ (i). Given rationals α < β, there is by Proposition 1 an ambivalent

set Aα, β such that

{x : f(x) ≤ α } ⊂ Aα, β ⊂ {x : f(x) < β } .

Thus, given a ∈ R, we get

{x : f(x) < a } =
⋃

α<β<a
α, β∈Q

Aα, β

and
{x : f(x) > a } =

⋃
a<α<β
α, β∈Q

CAα, β

(where the symbol CE denotes the complement of a set E ), and since both
unions are taken over countable families of indices, the sets {x : f(x) < a }
and {x : f(x) > a } are Fσ which completes the proof that f is Baire class
one.
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