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BANACH SPACE-VALUED FUNCTIONS

Abstract

In this paper we discuss integration by parts for several general-
izations of the Riemann-Stieltjes integral. In addition, we obtain new
results on integration by parts for the Henstock-Stieltjes integral and its
interior modification for Banach space-valued functions.

1 Introduction.

The present paper is devoted to certain problems related to theory of Stieltjes-
type integrals of Banach-valued functions. Normally, two fundamental meth-
ods are employed in the theory to obtain an integral wider than the Riemann-
Stieltjes integral. The first method is to refine the class of partitions and the
second is to modify the Riemann-Stieltjes sums.

1.1 Notation and Terminology.

Let E be a subset of the real line. In the paper we use the following notation:
I, E, Int(E), ∂E, and |E| denote an interval 1 of the real line, the closure
of E, the interior of E, the boundary of E, and the Lebesgue measure of a
measurable set E, respectively.
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∆f(I) denotes the increment of a vector-valued function f on I. For
example, we write ∆f((u, v)) = f(v−) − f(u+). The increment is similarly
defined for other types of intervals as well. Further, we assume that ∆f([t, t]) ≡
0 for a fixed point t. We also use the following notation to represent the saltus
of f at t: ∆−f(t) = f(t) − f(t−) ≡ −∆f([t, t)), ∆+f(t) = f(t+) − f(t) ≡
−∆f((t, t]), ∆f(t) = f(t+)− f(t−) ≡ −∆f((t, t)).

1E is the characteristic function (or indicator) of a set E.
A vector-valued function defined on I is said to be regulated on I, if it has

discontinuities of the first kind only. In particular, the function possesses all
the unilateral limits at each point of the interval I.

A positive function defined on a set E will be called a gauge on E.
Finally, in this paper [a, b] is a fixed compact interval of the real line.

2 Background.

2.1 Stieltjes-type Integrals of Real-valued Functions.

We are concerned with two types of generalizations of the Riemann-Stieltjes
integral. Firstly, in 1920, S. Pollard [34] proposed a generalized limit process
and introduced a new integral concept. Pollard’s integral is an additive interval
function, but the integration by parts formula does not hold for it under the
familiar hypothesis. Secondly, R. Henstock in 1955 and J. Kurzweil in 1957
independently introduced the so-called Henstock-Kurzweil (or gauge) integral
(see [7, 16]). We will call this integral H-integral. Then, in 1960, Henstock [8]
introduced the idea of a variational integral (VH-integral), showing that the
VH-integral coincides with the Perron type Ward’s integral (W-integral) (see
[46]). In 1961, Henstock went on to prove [9] that the VH-integral coincides
with the H-integral.
Pollard-type integrals. Let f and g be real-valued functions defined on
[a, b]. We now define the Pollard integral as follows.

Definition 2.1 (S. Pollard [34]). The function f is said to be P-integrable
(resp. P∗-integrable) with respect to g on [a, b] if there exists a real number z
such that for each ε > 0 there is a finite subset D of [a, b] such that∣∣∣∣ n∑

i=1

f(τi)∆g([ti−1, ti])− z

∣∣∣∣ < ε

for each collection of points T = {a = t0 < t1 < · · · < tn = b} ⊃ D and for all
tags τi with τi ∈ [ti−1, ti] (resp. τi ∈ (ti−1, ti)).
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The number z is called the P-integral (resp. P∗-integral2) of f with respect
to g on [a, b] and is denoted by P

∫ b

a
f dg (resp. P∗

∫ b

a
f dg).

Suppose that g is regulated on [a, b]. Here we assume that g(a−) ≡ g(a)
and g(b+) ≡ g(b). Let T = {a = t0 < t1 < · · · < tn = b} be a collection of
points, for each i we choose a tag τi ∈ [ti−1, ti]. Then form the sum

n∑
i=1

f(τi) ∆g((ti−1, ti)) +
n∑

i=0

f(ti) ∆g(ti),

which is called Young’s sum and is denoted by (f∆g)Y(Tτ ). These sums were
introduced by W. H. Young in his well-known paper [48]. We now define the
Young integral as follows.

Definition 2.2 (T. H. Hildebrandt [13]). The function f is said to be
Y-integrable (resp. Y∗-integrable) with respect to g on [a, b] if there exists a
real number z such that for each ε > 0 there is a finite subset D of [a, b] such
that

|(f∆g)Y(Tτ )− z| < ε

for each collection of points T = {a = t0 < t1 < · · · < tn = b} ⊃ D and for all
tags τi with τi ∈ [ti−1, ti] (resp. τi ∈ (ti−1, ti)).

The number z is called the Y-integral (resp. Y∗-integral) of f with respect
to g on [a, b] and is denoted by Y

∫ b

a
f dg (resp. Y∗

∫ b

a
f dg).

Let p be an integer such that p ≥ 2, and let (w1, w2, . . . , wp) be an ordered
collection of real numbers such that w1 + w2 + · · ·+ wp = 1. For a collection
of points

T = {a = t0 < t1 < · · · < tn = b},

and for each i we choose tags

τi = {ti−1 = τ1,i < τ2,i < · · · < τp,i = ti}

and form the sum

(f∆g)(w1,w2,...,wp)(Tτ ) =
n∑

i=1

( p∑
j=1

wj f(τj,i)
)

∆g([ti−1, ti]).

We now define the weighted integral as follows.

2T. H. Hildebrandt [13] calls this integral Dushnik’s integral. It is occasionally called the
interior integral as well.
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Definition 2.3 (F. M. Wright and J. D. Baker [47]). The function f is
said to be (w1, w2, . . . , wp)-integrable with respect to g on [a, b] if there exists
a real number z such that for each ε > 0 there is a finite subset D of [a, b] such
that

|(f∆g)(w1,w2,...,wp)(Tτ )− z| < ε

for each collection of points T = {a = t0 < t1 < · · · < tn = b} ⊃ D and for all
tags

τi = {ti−1 = τ1,i < τ2,i < · · · < τp,i = ti}.

The number z is called the (w1, w2, . . . , wp)-weighted integral of f with
respect to g on [a, b] and is denoted by (w1, w2, . . . , wp)

∫ b

a
f dg.

It can easily be seen that the (0, 1, 0)-weighted integral coincides with the
P∗-integral. Furthermore, it follows from [47, Theorems 2.5, 3.1, and 3.6] that,
if one of the integrand and integrator is of bounded variation on [a, b] and the
other is regulated on [a, b], then the integrals (1,−1, 1)

∫ b

a
f dg and Y∗

∫ b

a
f dg

exist and are equal.
The theory of Pollard-type integrals can be found for example in Hilde-

brandt’s monograph [15].
Variational and gauge integrals. An arbitrary subset B of the Cartesian
product I × [a, b], where I denotes the set of all compact subintervals of
[a, b], is called a derivation basis (or a basis for short) in [a, b].

Given a basis B in [a, b], an interval I ∈ I is called a B-interval if there
exists a point t ∈ I such that (I, t) ∈ B.

Let E be a subset of [a, b]. Then, by B(E), we denote the set

{(I, t) ∈ B : I ⊂ E}

and, by B[E], we denote the set

{(I, t) ∈ B : t ∈ E}.

The set B(E) may be empty; e.g., in the case when E does not contain an
interval.

Let δ be a gauge on E. Then, by Bδ, we denote the set

{(I, t) ∈ B[E] : I ⊂ (t− δ(t), t + δ(t))}.

The set of all interval-point pairs (I, t) ∈ I × [a, b] such that t ∈ I is called
the full Henstock-Kurzweil basis in [a, b] and is denoted by F .

A finite set π ⊂ B[E] is called a B-partition tagged in E if (I
′
, t
′
), (I

′′
, t
′′
) ∈

π and (I
′
, t
′
) 6= (I

′′
, t
′′
) imply that the intervals I

′
and I

′′
are mutually non-

overlapping B-intervals. Let I0 be a B-interval and π be any B-partition
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tagged in I0. If π ⊂ B(I0) and
⋃

(I,t)∈π I = I0, then π is called a B-partition
of I0.

We say that B possesses the partitioning property (p-property) if the fol-
lowing conditions hold:

(i) for each finite collection I0, I1, . . . , In of B-intervals with I1, . . . , In ⊂
I0 the difference I0 \ ∪n

i=1 Int(Ii) can be expressed as a finite union of
pairwise non-overlapping B-intervals;

(ii) for each B-interval I and for each gauge δ on I there exists a Bδ-partition
of I (the so-called Cousin lemma).

As an illustration, the full Henstock-Kurzweil basis F possesses the p-
property. A large amount of work concerning the concept of a derivation basis
has been published by B. S. Thomson (see, for example, [42, 43, 44]).

Let Φ(I, t) and Ψ(I, t) be B-interval-point functions. If δ is a gauge on E,
then

Var(Bδ,Φ, E) = sup
π

∑
(I,t)∈π

|Φ(I, t)|,

where π runs over Bδ-partitions tagged in E, is called the δ-variation of Φ on
E relative to B. Variational measure generated by Φ, relative to B, is the set
function

V (Φ, E, B) = inf
δ

Var(Bδ,Φ, E),

where δ runs over gauges on E.
The function Φ is said to be variationally equivalent to Ψ on E, relative

to B, if V (Φ −Ψ , E, B) = 0.

Definition 2.4 (R. Henstock [11, 12]). Suppose that the interval [a, b]
is a B-interval. The function Φ is said to be variationally integrable (V B-
integrable) in [a, b] relative to B if there exists an additive B-interval function
F (I), which is variationally equivalent to Φ on [a, b] relative to B. The func-
tion F is called the variational integral of Φ in [a, b] relative to B. We write
F (I) = V B

∫
I
Φ for each B-interval I.

Definition 2.5 (R. Henstock [11, 12]). Suppose that B possesses the p-
property. The function Φ is said to be B-integrable on a B-interval I0 if there
exists a real number z such that for each ε > 0 there is a gauge δ on I0 such
that ∣∣∣∣ ∑

(I,t)∈π

Φ(I, t)− z

∣∣∣∣ < ε

for each Bδ-partition π of I0. We write z = B
∫

I0
Φ.
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Let us now reformulate Henstock’s definitions to make use of them in the
theory of Riemann-Stieltjes-type integrals. Let f and g be real-valued func-
tions defined on [a, b]. If the interval-point function

Π (I, t) = f(t) ∆g(I)

is F -integrable on [a, b], then f is said to be integrable in the Henstock-Stieltjes
sense (H-integrable) with respect to g on [a, b]. If the function Π is variation-
ally integrable in [a, b] relative to F , then f is said to be variationally integrable
in the Henstock-Stieltjes sense (VH-integrable) with respect to g on [a, b].

McShane’s derivation basis M in [a, b] was introduced by E. J. McShane in
[26] and consists of all interval-point pairs (I, t) such that I ∈ I and t ∈ [a, b].

As for Lebesgue-Stieltjes integral3, it can be obtained from the above def-
initions if we substitute McShane’s derivation basis M for the full Henstock-
Kurzweil basis F . In [26] McShane showed that Lebesgue-Stieltjes integrable
function f with respect to a function g on [a, b] is M -integrable with respect
to g on [a, b] and the integrals are equal. In 1986, S. Meinershagen [27] was the
first to prove the converse under the additional assumption that the function
g is of bounded variation. Thus, the Lebesgue-Stieltjes integral coincides with
McShane’s.

Monographs [5, 11, 12, 18, 21, 22, 24, 31, 33] are devoted to the theory of
variational and gauge integrals.

2.2 Stieltjes-type Integrals of Banach-valued Functions.

In what follows, X, Y, Z, and “ � ” will denote real Banach spaces and a
bilinear mapping (� : X ×Y → Z), which is supposed to be bounded. 4 This
means that the inequality ‖x � y‖ ≤ ‖x‖ · ‖y‖ is fulfilled for all x ∈ X, y ∈ Y.

We are concerned in the present paper with Stieltjes-type integrals of
Banach-valued functions defined analogously to Gowurin’s 1936 generaliza-
tion of the Riemann-Stieltjes integral 5.

Definition 2.6 (M. Gowurin [6]). A function f : [a, b] → X is said to be
integrable in the Riemann-Stieltjes sense with respect to a function g : [a, b] →
Y on [a, b] if there exists a vector z ∈ Z such that for each ε > 0 there is a
constant gauge δ on [a, b] such that∥∥∥∥ ∑

(I,t)∈π

f(t) � ∆g(I)− z

∥∥∥∥ < ε (1)

3We consider here the Lebesgue-Stieltjes integral defined in [35, Chapter VIII, § 2], which
is an additive interval function.

4We always study the spaces X, Y and Z together with the bilinear mapping “ � ”; in
other words, a bilinear triple is considered and is denoted by (X, Y, Z).

5The original Gowurin definition is reformulated in our framework.



Integration by Parts for Stieltjes-Type Integrals 241

for each Fδ-partition π of [a, b].
The vector z is called the Riemann-Stieltjes integral (R-integral) of f with

respect to g on [a, b] and is denoted by R
∫ b

a
f � dg.

A classical survey on integration of Banach-valued functions can be found
in [14]. More recently, the Henstock-Stieltjes integral has frequently been
considered for Banach-valued functions. A series of papers devoted to the
Henstock-Stieltjes integral as well as to its generalization for Banach-valued
functions have been published by S̆. Schwabik [36, 37, 38, 39]. Finally it
should be mentioned that there is a considerable amount of work concerning
applications of those integrals in equations theory (see, for example, [45]).

2.3 Integration by Parts for Stieltjes-type Integrals.

We should in the first place recall that the integration by parts formula is
generally obtained for a Stieltjes-type integral by means of algebraic trans-
formations of the integral sums. And then the respective definition of the
integral, in turn, plays an important role in the proof of its validity.

A well-known fact concerning integration by parts for the Riemann-Stieltjes
integral (cf. Stieltjes [41], Pollard [34], Gowurin [6]) reads as follows.

Theorem A. Suppose that f : [a, b] → X and g : [a, b] → Y are Banach-valued
functions defined on the interval [a, b]. Then

R
∫ b

a

f � dg +R
∫ b

a

df � g = f(b) � g(b)− f(a) � g(a) (2)

provided that at least one integral exists.

Thus, formula (2) is the “internal” property of the Riemann-Stieltjes in-
tegral; in other words, it does not depend on the integrands taken separately.
And normally we must impose additional conditions on the integrands for
other integrals of the Stieltjes type.
Integration by parts for Pollard-type integrals. T. H. Hildebrandt dis-
cussed certain integrals of the Pollard type and also integration by parts for
the Y∗-integral (see Definition 2.2) in [13].

Theorem B (T. H. Hildebrandt, 1938). Let f and g be real-valued func-
tions of bounded variation on the interval [a, b]. Then the integrals Y∗

∫ b

a
f dg

and Y∗
∫ b

a
g df exist and the following formula holds:

Y∗
∫ b

a

f dg + Y∗
∫ b

a

g df =f(b) g(b)− f(a) g(a)−∑
a≤t≤b

[∆+f(t) ∆+g(t)−∆−f(t) ∆−g(t)].
(3)
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Note that the Y∗-integral under the hypotheses of Theorem B is “absolute”
because it is equivalent to the Lebesgue-Stieltjes integral. Theorem B includes
also the famous theorems obtained by W. H. Young [48, pp. 136–137] and S.
Saks [35, Chapter III, § 14]. A generalization of Theorem B for Banach-valued
functions under similar hypotheses can be found in [39, Theorem 13].

In [25] J. S. MacNerney considered a special case of Gowurin’s construction,
when the spaces X, Y and Z coincide with a Banach algebra and the bilinear
mapping “ � ” is the algebra multiplication. In this special case MacNerney
established Theorem C on integration by parts.

Theorem C (J. S. MacNerney, 1963). If f and g are regulated Banach
algebra valued-functions, and one of f and g is of bounded variation on [a, b].
Then the integrals Y∗

∫ b

a
f � dg and P∗

∫ b

a
df � g exist and the following formula

holds:

Y∗
∫ b

a

f � dg + P∗
∫ b

a

df � g = f(b) � g(b)− f(a) � g(a). (4)

It is interesting that there are no additional terms in the right side of
formula (4) unlike in the right side of formula (3). The property of bounded
variation plays an important role in MacNerney’s proof.

In [47], F. M. Wright and J. D. Baker investigated the question of integra-
tion by parts for (w1, w2, w3)-weighted integrals (see Definition 2.3).

Theorem D (F. M. Wright and J. D. Baker, 1969). Suppose that f and
g are real-valued functions defined on [a, b], g is of bounded variation and f is
bounded on [a, b]. Let

S+ = {t ∈ [a, b) : g(t+) 6= g(t)}, and S− = {t ∈ (a, b] : g(t−) 6= g(t)}.

If the integral (w1, w2, w3)
∫ b

a
f dg exists, f(t+) exists for t ∈ S+, and f(t−)

exists for t ∈ S−, then the integrals (w1, w2, w3)
∫ b

a
g df , (w3, w2, w1)

∫ b

a
g df ,

and (1− w1,−w2, 1− w3)
∫ b

a
g df exist and the following formulae hold:

(w1, w2, w3)
∫ b

a

f dg + (w1, w2, w3)
∫ b

a

g df = f(b) g(b)− f(a) g(a)−

(2 w1 − 1)
∑

t∈S+

∆+f(t)∆+g(t) + (2 w3 − 1)
∑

t∈S−

∆−f(t) ∆−g(t);

(w1, w2, w3)
∫ b

a

f dg + (w3, w2, w1)
∫ b

a

g df = f(b) g(b)− f(a) g(a)+

w2

{ ∑
t∈S+

∆+f(t)∆+g(t)−
∑

t∈S−

∆−f(t) ∆−g(t)
}

;
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(w1, w2, w3)
∫ b

a

f dg + (1− w1,−w2, 1− w3)
∫ b

a

g df = f(b) g(b)− f(a) g(a).

Theorem B follows from Theorem D when f is of bounded variation and
w2 = −1, w1 = w3 = 1. In addition, Theorem C follows from Theorem D in
the special case when the Banach algebra coincides with R. The generalization
of Theorem C for the case when one of the integrands is of bounded variation
on [a, b] and the other is bounded on [a, b] is given in [47] as well.

Theorem E (F. M. Wright and J. D. Baker, 1969). Suppose that f and
g are real-valued functions defined on [a, b], g is of bounded variation and f is
bounded on [a, b]. Then, the integral Y∗

∫ b

a
f dg exists if and only if the integral

P∗
∫ b

a
g df exists, and (4) holds.

Thus, all the above-mentioned results on integration by parts involving the
integrals of the Pollard type keep the bounded variation condition for at least
one of the integrands. However, E. R. Love [23] has shown that this condition
can be omitted for regular real-valued functions. So, a formula for integration
by parts might be extended over a wide range of functions of unbounded
variation.

A vector-valued function f is said to be regular at a point τ if the limits
f(τ−) and f(τ+) exist and

f(τ) =
f(τ−) + f(τ+)

2
.

Theorem F (E. R. Love, 1998). Let f and g be regulated real-valued func-
tions defined on [a, b] that are regular at each point of the open interval (a, b).
Then

Y∗
∫ b

a

f dg + Y∗
∫ b

a

g df =f(b) g(b)− f(a) g(a)

+ ∆−f(b) ∆−g(b)−∆+f(a) ∆+g(a)
(5)

provided that at least one integral exists.

It can easily be seen that (5) is simpler than (3) since all the intermediate
terms in the right side of formula (3) vanish due to the regularity of the
integrands. Using Love’s approach to integration by parts, the author obtained
Theorem G in [29].

Theorem G. Suppose that f : [a, b] → X and g : [a, b] → Y are Banach-
valued functions and g is regulated on [a, b]. If the integral P∗

∫ b

a
df � g exists,

then the integral Y∗
∫ b

a
f � dg exists and (4) holds.
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Moreover, the conditions of Theorem G are non-symmetrical; that is, if we
replace the existence condition of the P∗-integral with that of the Y∗-integral,
then the other integral in (4) may not exist (see [30, Example 3.3.1]).
Integration by parts for variational and gauge integrals. Typically
the V BG∗-property plays the role of the bounded variation property when the
Henstock-Stieltjes integral is considered. The classical definitions of the V B∗-
and V BG∗-functions on a set can be found in Saks [35, Chapter VII, § 7].

A. J. Ward in [46] obtained Theorem H and Theorem I, which give nec-
essary and sufficient conditions for integration by parts in the case of the
W-integral. Ward employed Perron’s approach to integration in his proofs.

Theorem H (A. J. Ward, 1936). Suppose that f and g are real-valued
functions defined on [a, b], g is bounded and V BG∗ on [a, b], f is bounded on
[a, b] and also continuous on [a, b] except at the points of a set N such that
|g(N)| = 0 and g is continuous at each point of N . Then

W
∫ b

a

f dg +W
∫ b

a

g df = f(b) g(b)− f(a) g(a) (6)

provided that at least one integral exists.

Further Ward noted: “It may be remarked that the conditions of the theo-
rem, while far from being necessary, are not so artificial as they might at first
appear.” Also it is possible to prove Theorem I. However, no proof of this
theorem was published.

Theorem I (A. J. Ward, 1936). Suppose that f and g are real-valued
functions defined on [a, b], g is V BG∗ on [a, b], and, for t ∈ [a, b],

W
∫ t

a

f dg +W
∫ t

a

g df = f(t) g(t)− f(a) g(a).

Then f is continuous on [a, b] except at the points of a set N such that |g(N)| =
0.

P. S. Bullen gave a very short proof of the integration by parts formula for
the Perron integral (see [1]). In addition, his extensive survey on integration
by parts for Perron-type integrals can be found in [2].

In his expository paper [10] R. Henstock pointed out that, although the
family of variational and gauge integrals does not contain, for example, the P∗-
integral, it is wide enough to contain many of known integrals of the Stieltjes
type6. In particular in [10] Henstock established Theorem J, which provides a

6It should be noted at this point that a Riemann-type definition of an integral that
includes both the Y∗- and H-integrals has been given in [20].
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set of necessary and sufficient conditions for integration by parts in the special
variational integral case.

Consider the end-point tagged Henstock-Kurzweil basis

E = {(I, t) ∈ I × [a, b] : I ∈ I , t ∈ ∂I}.

It is not hard to prove that the V E -integral coincides with the H-integral.

Theorem J (R. Henstock, 1973). Suppose that f and g are real-valued
functions defined on [a, b]. If the formula

V E

∫
[a,t]

f ∆g + V E

∫
[a,t]

g ∆f = f(t) g(t)− f(a) g(a) (7)

holds for each t ∈ (a, b], then

V (∆f∆g, [a, b],E ) = 0. (8)

Conversely, if (8) holds and one of the integrals in (7) exists when t = b, then
the other one exists and (7) holds for each t ∈ (a, b].

Thus Theorem J gives a common approach to integration by parts for
integrals that are covered by the Henstock-Stieltjes integral. Nevertheless, the
conditions of Theorem J are quite difficult to check for concrete functions f and
g. Henstock also obtained Ward’s Theorem H as a consequence of Theorem
J and gave several examples. These examples show that the condition (8) is
independent of the existence condition for the integrals in (7).

Finally we must mention W. F. Pfeffer’s paper [32]. He found there that
integration by parts theorems for the Henstock-Stieltjes integral, which is
“non-absolute”, ought not to be concerned with absolutely integrable func-
tions exclusively. Pfeffer’s theorem on integration by parts reads as follows.

Theorem K (W. F. Pfeffer, 1983). Suppose that f , g, and α are real-valued
functions defined on [a, b] where α is of bounded variation and write

F (t) = H
∫ t

a

f dα and G(t) = H
∫ t

a

g dα

where it is assumed that these functions exist and are continuous on [a, b].
Then

H
∫ b

a

F dG +H
∫ b

a

G dF = F (b) G(b) (9)

provided that at least one integral exists.
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Note that under these hypotheses both F and G must be V BG∗ on [a, b].
Pfeffer made use of the Saks-Henstock lemma, equivalently, of the variational
approach to the integral in his proof.

However, A. P. Solodov has shown that the gauge integral properly con-
tains the variational integral when any infinite dimensional Banach space is
considered (see [40]). Henceforth we will present a set of necessary and suf-
ficient conditions for integration by parts in the case of Banach-valued gauge
integrals. Our approach is fully based on Henstock’s definition of the Riemann
type integral and a weak variational condition.

3 Integration by Parts for Banach-Valued Gauge Inte-
grals.

3.1 Preliminaries.

This section will give definitions and basic properties of the gauge integrals
and of the functions of weakly bounded variation with respect to (X,Y,Z).
In particular, an interior integral is considered relative to a special kind of
bases. Using constructions, due to I. M. Gelfand [3, 4] and M. Gowurin [6], we
introduce new classes wV B, wV BG, wV B∗, and wV BG∗, which generalize
the well-known classes V B, V BG, V B∗, and V BG∗, respectively in the case
of Banach-valued functions. We take a different approach to a definition of
the wV B∗-property on a set in comparison with [35, Chapter VII, § 7]. This
approach was developed in [21, 22] according to problems related to the theory
of gauge integrals.

Let B be a basis in [a, b]. We say that a B-partition π of a B-interval I is
an interior tagged B-partition (B∗-partition) if the following conditions hold:

(i) (I0, t) ∈ π and I0 ⊂ Int(I) imply t ∈ Int(I0);

(ii) (I0, t) ∈ π and I0 ∩ ∂I 6= ∅ imply t ∈ I0 ∩ ∂I.

We say that B possesses the interior partitioning property (p∗-property) if the
following conditions hold:

(i) for each finite collection I0, I1, . . . , In of B-intervals with I1, . . . , In ⊂
I0 the difference I0 \ ∪n

i=1 Int(Ii) can be expressed as a finite union of
pairwise non-overlapping B-intervals;

(ii) (I0, t) ∈ B, (I1, t) ∈ B, and I0 ∩ I1 = {t} imply (I0 ∪ I1, t) ∈ B;

(iii) (I, t) ∈ B, t ∈ Int(I) imply ((−∞, t]∩I, t) ∈ B and (I∩ [t, +∞), t) ∈ B;

(iv) for each B-interval I and for each gauge δ on I there exists B∗
δ -partition

of I.
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Lemma 1. The full Henstock-Kurzweil basis F possesses the p∗-property.

Proof. The proof can be found for example in [19, Lemma 1.2].

Definition 3.1. Suppose that B possesses the p-property (resp. p∗-property).
A function f : [a, b] → X is said to be B-integrable (resp. B∗-integrable) with
respect to a function g : [a, b] → Y on a B-interval I0 if there exists a vector
z ∈ Z such that for each ε > 0 there is a gauge δ on I0 such that (1) holds for
each Bδ-partition (resp. B∗

δ -partition) π of I0.
The vector z is called the B-integral (resp. B∗-integral) of f with respect

to g on I0 and is denoted by B
∫

I0
f � dg (resp. B∗ ∫

I0
f � dg).

Remark 1. It can be easily proved by standard methods that the B-integral
and the B∗-integral are linear with respect to both the integrand and inte-
grator as well as are additive B-interval functions. Also, the so-called weak
Saks-Henstock lemma 7 is valid for the B-integral.

The F -integral and the F ∗-integral are called the Henstock-Stieltjes integral
(H-integral) and the interior Henstock-Stieltjes integral (H∗-integral), respec-
tively. It seems that the notion of the H∗-integral for real-valued functions
was first proposed by S̆. Schwabik in [37]. It follows from [36, Example 2.1]
and [37, Proposition 2] that the F ∗-integral is essentially wider than the F -
integral. The proofs of all basic properties of the F -integral for Banach-valued
functions can be found in [38]. We need only Lemma 2 in what follows.

Lemma 2. Suppose that f : [a, b] → X and g : [a, b] → Y are Banach-valued
functions such that g is locally bounded at a point c and f is F -integrable with
respect to g on [a, b]. Then the indefinite F -integral of f with respect to g is
locally bounded at c.

Proof. It follows from [38, Theorem 19] that

lim
t→c

t∈[a,b]

{
F

∫ t

a

f � dg + f(c) � [g(c)− g(t)]
}

= F

∫ c

a

f � dg.

Hence

lim sup
t→c

t∈[a,b]

∥∥∥∥F

∫ t

a

f � dg

∥∥∥∥ ≤ ∥∥∥∥F

∫ c

a

f � dg

∥∥∥∥+ ‖f(c)‖ · lim sup
t→c

t∈[a,b]

‖g(c)− g(t)‖ < +∞.

This completes our proof of Lemma 2.
7This version of the Saks-Henstock lemma, in contrast to the ordinary version, is fulfilled

for Banach-valued gauge integrals (see [40, Lemma 1.2]).
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Definition 3.2. A function g : [a, b] → Y is of weakly bounded variation,
(wV B) on a set E ⊂ [a, b] if there exists a positive number M such that∥∥∥∥ K∑

k=1

xk � ∆g(Ik)
∥∥∥∥ ≤ M · max

1≤k≤K
‖xk‖ (10)

for each finite collection {xk}K
k=1 ⊂ X and for each finite collection {Ik}K

k=1 of
pairwise non-overlapping compact intervals with ∂Ik ⊂ E.

The lower bound of those M is denoted by W(g,E) and is called the
w-weak variation of g on E.

Definition 3.3. A function g : [a, b] → Y is of weakly bounded variation in the
restricted sense, (wV B∗) on a set E ⊂ [a, b] if there exists a positive number
M such that (10) holds for each finite collection {xk}K

k=1 ⊂ X and for each
finite collection {Ik}K

k=1 of pairwise non-overlapping compact intervals with
Ik ⊂ [a, b] and ∂Ik ∩ E 6= ∅.

The lower bound of those M is denoted by W∗(g,E) and is called the
w-strong variation of g on E.

We remark that if the spaces X, Y and Z coincide with R and the bilinear
mapping “ � ” is ordinary multiplication, then it is possible to substitute

K∑
k=1

|∆g(Ik)| ≤ M

for (10) in Definitions 3.2 and 3.3. In this case Lemma 3 is very important for
our aims. The proof of this assertion can be found in [22, Lemma 5.3.8].

Lemma 3. Let f be a real-valued function defined on [a, b] and E ⊂ [a, b].
Then, f is wV B∗ on E if and only if f is V B∗ on E and is bounded on [a, b].

Definition 3.4. A function g : [a, b] → Y is of generalized weakly bounded
variation (wV BG) on a set E ⊂ [a, b] if E can be written as a countable
union of sets on each of which g is wV B. The function g is of generalized
weakly bounded variation in the restricted sense (wV BG∗) on E if E can be
written as a countable union of sets on each of which g is wV B∗.

Lemma 4. Let g : [a, b] → Y be wV BG∗ (resp. wV BG) on a set E ⊂ [a, b].
Then E can be written as a countable disjoint union of sets on each of which
g is wV B∗ (resp. wV B).

Proof. The proof is clear.
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Example 1. This example is borrowed from [6]. Let g be the function from
[0, 1] to L∞[0, 1] such that g(t) = 1[0,t] for all t ∈ [0, 1] and let the bilinear
mapping “ � ” from R×L∞[0, 1] to L∞[0, 1] be scalar multiplication. Then it
can easily be checked that g is wV B∗ on [0, 1], moreover W∗(g, [0, 1]) = 1. Yet
t′ 6= t′′ implies ‖g(t′)− g(t′′)‖∞ = 1. Therefore g is not of bounded variation
on [0, 1]. Note that g is discontinuous at each point of [0, 1].

3.2 Necessary Conditions for Integration by Parts.

This section will give necessary conditions for integration by parts in the case
of the H-integral. The main result, Theorem L, is analogous to Theorem I
and Theorem J. This theorem was proved by the author in [28].

We say that vector-valued functions f and g satisfy the conditions of the
first kind at a point τ if they have neither simultaneous left-hand discontinuity
nor simultaneous right-hand discontinuity at τ .

Theorem L. Suppose that the bilinear mapping “ � ” is such that x � y = 0 if
and only if x = 0 or y = 0. Let f : [a, b] → X and g : [a, b] → Y be functions
possessing all the unilateral limits at a point τ . In order that

F

∫
I

f � dg + F

∫
I

df � g = ∆(f � g)(I)

holds for each compact interval I it is necessary that f and g satisfy the con-
ditions of the first kind at τ .

3.3 Sufficient Conditions for Integration by Parts.

This section will give sufficient conditions for integration by parts in the case
of the H-integral and in the case of the H∗-integral. Henstock’s methods (see
[10]) are employed for generalizing our previous results obtained in [28].

First of all, we prove several lemmas. Recall that a vector-valued function
has a removable discontinuity at a point τ if its unilateral limits at τ are equal
and it is not continuous at τ .

Lemma 5. Suppose that π = {([ti−1, ti], τi)}n
i=1 is a set of interval-point

pairs such that [a, b] = ∪n
i=1[ti−1, ti] and also τi ∈ [a, b], and f : [a, b] → X,

g : [a, b] → Y being given. Then the following equation holds:

∆(f, g;π) ≡f(b) � g(b)− f(a) � g(a)−
n∑

i=1

f(τi) � ∆g([ti−1, ti])

−
n∑

i=1

∆f([ti−1, ti]) � g(τi) =
n∑

i=1

∆i(f, g;π),
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where ∆i(f, g;π) can be expressed as

1. ∆f([τi, ti]) � ∆g([ti−1, ti])−∆f([ti−1, ti]) � ∆g([ti−1, τi]);

2. ∆f([ti−1, ti]) � ∆g([τi, ti])−∆f([ti−1, τi]) � ∆g([ti−1, ti]);

3. ∆f([τi, ti]) � ∆g([τi, ti])−∆f([ti−1, τi]) � ∆g([ti−1, τi]);

4. if f and g have removable discontinuities at τi, then

∆f([τi, ti]) � {∆g([ti−1, τi)) + ∆g((τi, ti])}
− {∆f([ti−1, τi)) + ∆f((τi, ti])} � ∆g([ti−1, τi]);

5. if f and g are regular at τi, then{
∆f((τi, ti])−∆f([ti−1, τi))

2

}
� ∆g([ti−1, ti])

+ ∆f([ti−1, ti]) �

{
∆g((τi, ti])−∆g([ti−1, τi))

2

}
.

Proof. The lemma can be proved by direct calculations.

Lemma 6 (The weak variational condition, cf. Theorem J, Kurzweil
[17], Schwabik [39]). Let B be a basis in [a, b] possessing the p-property
(resp. p∗-property), and let f : [a, b] → X and g : [a, b] → Y be functions such
that, under the same notations as above,

inf
δ

sup
π
‖∆(f, g;π)‖ = 0, (11)

where δ and π run over gauges on [a, b] and Bδ-partitions (resp. B∗
δ -partitions)

of [a, b], respectively. Then∫ b

a

f � dg +
∫ b

a

df � g = f(b) � g(b)− f(a) � g(a) (12)

holds for B-integrals (resp. B∗-integrals) provided that at least one integral
exists.

Proof. Assume without loss of generality that the B-integral (resp. B∗-
integral)

∫ b

a
df � g exists. Denote by z the integral

∫ b

a
df � g, by B the vector

f(b) � g(b) and by A the vector f(a) � g(a).
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Let π be an arbitrary B-partition (resp. B∗-partition) of [a, b]. Then we
have ∥∥∥∥(B −A)− z −

∑
(I,t)∈π

f(t) � ∆g(I)
∥∥∥∥

=
∥∥∥∥(B −A)−

∑
(I,t)∈π

[f(t) � ∆g(I) + ∆f(I) � g(t)]

+
∑

(I,t)∈π

∆f(I) � g(t)− z

∥∥∥∥ =
∥∥∥∥∆(f, g;π) +

∑
(I,t)∈π

∆f(I) � g(t)− z

∥∥∥∥
≤ ‖∆(f, g;π)‖+

∥∥∥∥ ∑
(I,t)∈π

∆f(I) � g(t)− z

∥∥∥∥.

Using (11) and the definition of the B-integral (resp. B∗-integral), we get

inf
δ

sup
π

∥∥∥∥(B −A)− z −
∑

(I,t)∈π

f(t) � ∆g(I)
∥∥∥∥ = 0.

Thus we obtain (12) for B-integrals (resp. B∗-integrals).

We say that vector-valued functions f and g satisfy the conditions of the
second kind at a point τ if at least one of the following conditions holds:

(i) they satisfy the conditions of the first kind at τ ;

(ii) they are regular at τ ;

(iii) they have removable discontinuities at τ .

Further, we say that vector-valued functions f and g satisfy the conditions of
the first (resp. second) kind in an I if they satisfy those at each point of I.

Lemma 7. Let f : [a, b] → X and g : [a, b] → Y be wV BG∗-functions on
[a, b]. If f and g satisfy the conditions of the first (resp. second) kind in [a, b],
then (11) holds for F -partitions (resp. F ∗-partitions) of [a, b].

Proof. To be definite, we will prove the assertion of our lemma for F ∗-par-
titions.

It follows from Lemma 4 that the interval [a, b] can be divided into sets
{Pk}∞k=1 and into sets {Ql}∞l=1 so that f is wV B∗ on each of Pk and g is wV B∗

on each of Ql.
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To each point τ ∈ [a, b] assign three numbers k(τ), l(τ), and M(τ) so that
τ ∈ Pk(τ), τ ∈ Ql(τ), and

M(τ) = max{W∗(f, Pk(τ)),W∗(g,Ql(τ))}.

Fix a positive number ε. Define a gauge δ at τ as follows.

1. If f(τ) = f(τ+) or g(τ) = g(τ+), we can choose δ(τ) so that

2l(τ)+1 M(τ) · ‖∆f([τ, t])‖ < ε or 2k(τ)+1 M(τ) · ‖∆g([τ, t])‖ < ε

holds for each t ∈ [τ, τ + δ(τ)).

2. If f(τ−) = f(τ) or g(τ−) = g(τ), we can choose δ(τ) so that

2l(τ)+1 M(τ) · ‖∆f([t, τ ])‖ < ε or 2k(τ)+1 M(τ) · ‖∆g([t, τ ])‖ < ε

holds for each t ∈ (τ − δ(τ), τ ].

3. If both f and g are regular at τ or have removable discontinuities at τ ,
we can choose δ(τ) so that

2l(τ)+1 M(τ) · ‖∆f((τ, t])‖ < ε and 2k(τ)+1 M(τ) · ‖∆g((τ, t])‖ < ε

hold for each t ∈ (τ, τ + δ(τ)) as well as

2l(τ)+1 M(τ) · ‖∆f([t, τ))‖ < ε and 2k(τ)+1 M(τ) · ‖∆g([t, τ))‖ < ε

for hold each t ∈ (τ − δ(τ), τ).

Consider an arbitrary F ∗
δ -partition π = {([ti−1, ti], τi)}n

i=1 of [a, b]. Denote,
by K, the maximum max

1≤i≤n
{k(τi)} and, by L, the maximum max

1≤i≤n
{l(τi)}.

We now introduce the sets of integers S0, S1, S±, S∓, S2, and S3 as follows.

S0 = {i : f or g is continuous at τi};S1 = {i : f is continuous at τi};
S± = {i : f(τi) = f(τi+) and g(τi−) = g(τi)} \ S0;
S∓ = {i : f(τi−) = f(τi) and g(τi) = g(τi+)} \ S0;
S2 = {i : f and g are regular at τi} \ S0;
S3 = {i : f and g have removable discontinuities at τi}.
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Using item 3 of Lemma 5, we get

∥∥∥∥ ∑
i∈S±

∆i(f, g;π)
∥∥∥∥ ≤ L∑

l=1

∥∥∥∥ ∑
S±3i:l(τi)=l

∆f([τi, ti]) � ∆g([τi, ti])
∥∥∥∥

+
K∑

k=1

∥∥∥∥ ∑
S±3i:

k(τi)=k

∆f([ti−1, τi]) � ∆g([ti−1, τi])
∥∥∥∥

≤
L∑

l=1

ε 2−l−1 +
K∑

k=1

ε 2−k−1 < ε.

In addition, we get the estimate
∥∥ ∑

i∈S∓

∆i(f, g;π)
∥∥ < ε in a similar manner.

Further,

∥∥∥∥∑
i∈S1

∆i(f, g;π)
∥∥∥∥ ≤ L∑

l=1

∥∥∥∥ ∑
S13i:l(τi)=l

∆f([τi, ti]) � ∆g([τi, ti])
∥∥∥∥

+
L∑

l=1

∥∥∥∥ ∑
S13i:l(τi)=l

∆f([ti−1, τi]) � ∆g([ti−1, τi])
∥∥∥∥

≤
L∑

l=1

{ε 2−l−1 + ε 2−l−1} < ε

and in a similar manner we get
∥∥ ∑

i∈S0\S1

∆i(f, g;π)
∥∥ < ε.

Using item 4 of Lemma 5, we get

∥∥∥∥∑
i∈S3

∆i(f, g;π)
∥∥∥∥ ≤ K∑

k=1

∥∥∥∥ ∑
S33i:

k(τi)=k

∆f([τi, ti]) � {∆g([ti−1, τi)) + ∆g((τi, ti])}
∥∥∥∥

+
L∑

l=1

∥∥∥∥ ∑
S33i:l(τi)=l

{∆f([ti−1, τi)) + ∆f((τi, ti])} � ∆g([ti−1, τi])
∥∥∥∥

≤
K∑

k=1

ε 2−k +
L∑

l=1

ε 2−l < 2 ε.
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Using item 5 of Lemma 5, we get∥∥∥∥∑
i∈S2

∆i(f, g;π)
∥∥∥∥≤ L∑

l=1

∥∥∥∥∑
S23i:

l(τi)=l

{
∆f((τi, ti])−∆f([ti−1, τi))

2

}
� ∆g([ti−1, ti])

∥∥∥∥
+

K∑
k=1

∥∥∥∥ ∑
S23i:

k(τi)=k

∆f([ti−1, ti]) �

{
∆g((τi, ti])−∆g([ti−1, τi))

2

} ∥∥∥∥
≤

L∑
l=1

ε 2−l−1 +
K∑

k=1

ε 2−k−1 < ε.

Thus, we obtain the estimate ‖∆(f, g;π)‖ < 7 ε for each F ∗
δ -partition π of

[a, b] and, so, our lemma is proved.

Combining Lemmas 6 and 7, we obtain the following theorem.

Theorem 1. Let f : [a, b] → X and g : [a, b] → Y be wV BG∗-functions on
[a, b]. If f and g satisfy the conditions of the first (resp. second) kind in [a, b],
then (12) holds for F -integrals (resp. F ∗-integrals) provided that at least one
integral in the left side of (12) exists.

We will now prove a generalization of Pfeffer’s Theorem K.

Corollary 1. The assertion of Theorem K holds provided that α is bounded
and V BG∗ and at least one of the functions F and G is continuous.

Proof. It follows from [46, p. 592, Theorem 9] that F and G are V BG∗ on
[a, b]. The application of Lemmas 2 and 3 and Theorem 1 yields our corollary.

Remark 2. Theorem G and Theorem 1 are independent of one another. It
can be demonstrated in the following way. For the functions f = 1Q and g =
1{1} on [0, 1] none of the integrals H∗ ∫ 1

0
f dg and H∗ ∫ 1

0
g df exist, the same

being true for the integral P∗
∫ 1

0
f dg. However, Y∗

∫ 1

0
f dg = 1,P∗

∫ 1

0
g df =

0 and f(1) g(1)− f(0) g(0) = 1. This agrees completely with Theorem G.

Remark 3. It is not possible to replace the wV BG∗-property, even for one of
the integrands in Theorem 1, with the wV BG-property. Consider for example
the functions f = 1Q, g(t) = t. It is well known that H

∫ 1

0
1Q dt = 0. However,

the integral H∗ ∫ 1

0
t d1Q does not exist. Finally note that f is wV BG on [0, 1],

while it is not wV BG∗ on [0, 1].
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Remark 4. A proof patterned after our proof of Theorem 1 shows that (12)
holds for F -integrals provided that at least one integral in the left side of
formula (12) exists as well as one of the integrands is continuous on [a, b] and
the other is wV BG∗ on [a, b].

Next we give three formulae for integration by parts when the integrands
have discontinuities of the first kind at a or at b.

Corollary 2. Let f : [a, b] → X and g : [a, b] → Y be wV BG∗-functions on
[a, b] possessing right-hand limits at a. If f and g satisfy the conditions of the
first (resp. second) kind in (a, b], then∫ b

a

f � dg +
∫ b

a

df � g = f(b) � g(b)− f(a) � g(a)−∆+f(a) � ∆+g(a) (13)

holds for F -integrals (resp. F ∗-integrals) provided that at least one integral
exists.

Proof. It can easily be checked that∫ b

a

{
∆+f(a)1(a,b]

}
� dg = ∆+f(a) � ∆g((a, b]),∫ b

a

d
{
∆+f(a)1(a,b]

}
� g = ∆+f(a) � g(a).

Using Theorem 1, we get∫ b

a

{
f −∆+f(a)1(a,b]

}
� dg +

∫ b

a

d
{
f −∆+f(a)1(a,b]

}
� g

=
{
f(b)−∆+f(a)

}
� g(b)− f(a) � g(a).

Hence,∫ b

a

f � dg +
∫ b

a

df � g =
{
f(b)−∆+f(a)

}
� g(b)− f(a) � g(a)

+ ∆+f(a) � ∆g((a, b]) + ∆+f(a) � g(a)

=f(b) � g(b)− f(a) � g(a)−∆+f(a) � ∆+g(a).

This completes our proof of Corollary 2.

Corollaries 3 and 4 can be proved in a similar way.
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Corollary 3. Let f : [a, b] → X and g : [a, b] → Y be wV BG∗-functions on
[a, b] possessing the left-hand limits at b. If f and g satisfy the conditions of
the first (resp. second) kind in [a, b), then∫ b

a

f � dg +
∫ b

a

df � g = f(b) � g(b)− f(a) � g(a) + ∆−f(b) � ∆−g(b) (14)

holds for F -integrals (resp. F ∗-integrals) provided that at least one integral
exists.

Corollary 4. Let f : [a, b] → X and g : [a, b] → Y be wV BG∗-functions on
[a, b] possessing all the unilateral limits at a and at b. If f and g satisfy the
conditions of the first (resp. second) kind in (a, b), then∫ b

a

f � dg +
∫ b

a

df � g =f(b) � g(b)− f(a) � g(a)

+ ∆−f(b) � ∆−g(b)−∆+f(a) � ∆+g(a)

holds for F -integrals (resp. F ∗-integrals) provided that at least one integral
exists.

4 Further Problems.

The above discussion reveals certain questions related to integration by parts
for Stieltjes-type integrals. Interesting problems seem to be the following:

• Obtain integration-by-parts type formulae analogous to those in Theo-
rem D under the hypothesis that the condition of bounded variation is
omitted or is replaced with a weaker condition.

• Find pairs of integrals of the Stieltjes type that might be contained in
integration-by-parts type formulae.

As for Banach-valued functions of weakly bounded variation, it would be inter-
esting to find some structural properties of those functions and to determine
how these properties depend on structural properties of (X,Y,Z).
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