ON QUASI-UNIFORM CONVERGENCE OF SEQUENCES OF s_{1}-STRONGLY QUASI-CONTINUOUS FUNCTIONS ON \mathbb{R}^{m}

Abstract

A function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called s_{1}-strongly quasi-continuous at a point $\mathbf{x} \in \mathbb{R}^{m}$ if for each real $\varepsilon>0$ and for each set $A \ni \mathbf{x}$ belonging to the density topology, there is a nonempty open set V such that $$
\emptyset \neq A \cap V \subset f^{-1}((f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)) \cap C(f),
$$ where $C(f)$ denotes the set of continuity points of f. It is proved that every λ-almost everywhere continuous function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the quasiuniform limit of a sequence of s_{1}-strongly quasi-continuous functions and that each measurable function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the quasi-uniform limit of a sequence of approximately quasi-continuous functions $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$.

Let \mathbb{R}, \mathbb{Z} and \mathbb{N} be respectively the set of all reals, the set of all integers and the set of all positive integers, and let \mathbb{R}^{m} be m-dimensional product space $\mathbb{R} \times \cdots \times \mathbb{R}$ with the standard metric $|\cdot|$; i.e., using the distance

$$
|\mathbf{x}-\mathbf{y}|=\sqrt{\sum_{i=1}^{m}\left|x_{i}-y_{i}\right|^{2}}
$$

between the points $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Moreover, let $\lambda,\left(\lambda^{*}\right)$ denote Lebesgue measure, (outer Lebesgue measure) in \mathbb{R}^{m}.

For each number $n \in \mathbb{N}$ and for each system of integers $\left(k_{1}, \ldots, k_{m}\right)$ let

$$
P_{k_{1}, \ldots, k_{m}}^{n}=\left[\frac{k_{1}-1}{2^{n}}, \frac{k_{1}}{2^{n}}\right) \times \cdots \times\left[\frac{k_{m}-1}{2^{n}}, \frac{k_{m}}{2^{n}}\right) .
$$

Key Words: continuity, strong quasicontinuity, density topology, quasi-uniform convergence

Mathematical Reviews subject classification: 26A15, 54C08, 54C30
Received by the editors April 26, 2004
Communicated by: B. S. Thomson

Moreover, let

$$
\mathcal{P}_{n}=\left\{P_{k_{1}, \ldots, k_{m}}^{n} ; k_{1}, \ldots, k_{m} \in \mathbb{Z}\right\} \text { and } \mathcal{P}=\bigcup_{n} \mathcal{P}_{n}
$$

Observe that
(1) if $\left(k_{1}, \ldots, k_{m}\right) \neq\left(l_{1}, \ldots, l_{m}\right)$, then $P_{k_{1}, \ldots, k_{m}}^{n} \cap P_{l_{1}, \ldots, l_{m}}^{n}=\emptyset$;
(2) $\mathbb{R}^{m}=\bigcup_{k_{1}, \ldots, k_{m} \in \mathbb{Z}} P_{k_{1}, \ldots, k_{m}}^{n}$;
(3) if $n_{1}>n_{2}$, then for each system of integers $\left(k_{1}, \ldots, k_{m}\right)$ there is a unique system of integers $\left(l_{1}, \ldots, l_{m}\right)$ such that $P_{k_{1}, \ldots, k_{m}}^{n_{1}} \subset P_{l_{1}, \ldots, l_{m}}^{n_{2}} ;$
(4) for each point $\mathbf{x} \in \mathbb{R}^{m}$ and for each index $n \in \mathbb{N}$ there is a unique system of integers $\left(k_{1}(\mathbf{x}), \ldots, k_{m}(\mathbf{x})\right)$ such that $\mathbf{x} \in P_{k_{1}(\mathbf{x}), \ldots, k_{m}(\mathbf{x})}^{n}=P^{n}(\mathbf{x})$.
For a set $A \subset \mathbb{R}^{m}$ and a point $\mathbf{x} \in \mathbb{R}^{m}$ let

$$
d_{u}(A, \mathbf{x})=\limsup _{n \rightarrow \infty} \frac{\lambda^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda\left(P^{n}(\mathbf{x})\right)}, \quad\left(d_{l}(A, \mathbf{x})=\liminf _{n \rightarrow \infty} \frac{\lambda^{*}\left(A \cap P^{n}(\mathbf{x})\right)}{\lambda\left(P^{n}(\mathbf{x})\right)}\right)
$$

the upper, (lower) outer density of the set $A \subset \mathbb{R}$ at the point \mathbf{x} (compare [1]).
A point $\mathbf{x} \in \mathbb{R}^{m}$ is called a density point of a set $A \subset \mathbb{R}^{m}$ if there exists a λ-measurable (i.e., measurable in the sense of Lebesgue) set $B \subset A$ such that $d_{l}(B, \mathbf{x})=1$. The family

$$
\mathcal{T}_{d}=\left\{A \subset \mathbb{R}^{m} ; A \text { is } \lambda \text {-measurable and } d_{l}(A, \mathbf{x})=1 \text { for } \mathbf{x} \in A\right\}
$$

is a topology called the density topology ([2], [3], [12], [13]).
Moreover, let \mathcal{T}_{e} be the Euclidean topology in \mathbb{R}^{m} and let $C(f)$ denote the set of all points at which a real function f is continuous.

We will say that a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is s_{1}-strongly quasi-continuous at a point $\mathbf{x},\left(f \in Q_{s_{1}}(\mathbf{x})\right)$ if for every set $A \in \mathcal{T}_{d}$ containing \mathbf{x} and for every real $\varepsilon>0$ there is a nonempty open set U such that

$$
f^{-1}((f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)) \cap C(f) \supset U \cap A \neq \emptyset, \quad([6],[11])
$$

Observe that if there is a nonempty open set $U \subset \mathbb{R}^{m} \cap C(f)$ such that $d_{u}(U, \mathbf{x})>0$ for $\mathbf{x} \in \mathbb{R}^{m}$ and the restricted function $\left.f\right|_{(U \cup\{\mathbf{x}\})}$ is continuous at \mathbf{x}, then $f \in Q_{s_{1}}(\mathbf{x})$.

A sequence of functions $f_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}, n=1,2, \ldots$, is said to be quasiuniformly convergent to a function $f([10], \mathrm{p} .143)$ if it pointwise converges to f and for each real $\varepsilon>0$ and for each index $i \in \mathbb{N}$ there is an index $p \in \mathbb{N}$ such that for each point $\mathbf{x} \in \mathbb{R}^{m}$

$$
\min \left(\left|f_{i+1}(\mathbf{x})-f(\mathbf{x})\right|, \ldots,\left|f_{i+p}(\mathbf{x})-f(\mathbf{x})\right|\right)<\varepsilon
$$

It is obvious (compare [6], [7], [11]) that every s_{1} - strongly quasi-continuous function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is λ - almost everywhere (i.e., almost everywhere with respect to λ) continuous. Since quasi-uniform convergence preserves continuity, the quasi-uniform limit of sequence of s_{1}-strongly quasi-continuous functions is a λ-almost everywhere continuous function.

We will prove the following.
Theorem 1. If a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is λ-almost everywhere continuous, then there are s_{1}-strongly quasi-continuous functions $g_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}, n=$ $1,2, \ldots$, such that the sequence $\left(g_{n}\right)$ quasi-uniformly converges to f.
Proof. Let cl denote the closure operation and let

$$
B=\left\{y \in \mathbb{R} ; \lambda\left(\operatorname{cl}\left(f^{-1}(y)\right)>0\right\} .\right.
$$

Since the function f is λ-almost everywhere continuous, the set B is countable. Without loss of the generality we can assume that $0 \notin B$, because in the contrary case we may consider the function $f-a$, where $a \neq 0$ is a real. Let $L(B)$ be the linear space over the field of all rationals generated by the set B. Since the set $L(B)$ is countable, there is a positive number $c \in \mathbb{R} \backslash L(B)$. Fix $k \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $\frac{k \cdot c}{2^{n}} \leq f(\mathbf{x})<\frac{(k+1) \cdot c}{2^{n}}$ for $\mathbf{x} \in \mathbb{R}^{m}$, then we define $f_{n}(\mathbf{x})=\frac{k \cdot c}{2^{n}}$. Observe that every function $f_{n}, n \in \mathbb{N}$, is λ-almost everywhere continuous and if $D\left(f_{n}\right)$ denotes the set of all discontinuity points of f_{n}, then $D\left(f_{n}\right)$ is a closed set of λ-measure zero. Moreover, $D\left(f_{n}\right) \subset D\left(f_{n+1}\right)$ for $n \in \mathbb{N}$ and if $\mathbf{x} \in D\left(f_{n+1}\right) \backslash D\left(f_{n}\right)$ for some $n \in \mathbb{N}$, then for every $i>n$ the inequality $\operatorname{osc}_{f_{i}}(\mathbf{x}) \leq \frac{c}{2^{n-1}}$ holds, where $\operatorname{osc}_{g}(\mathbf{x})$ denote the oscillation of a function g at the point \mathbf{x}.

Step 1. Recall that the set $D\left(f_{1}\right)$ is closed and of λ-measure zero. For each point $\mathbf{x} \in D\left(f_{1}\right)$ there is a unique cube $P^{1}(\mathbf{x}) \in \mathcal{P}_{1}$ such that $\mathbf{x} \in$ $P^{1}(\mathbf{x})$. Observe that the diameter (with respect to the standard metric in $\left.\mathbb{R}^{m}\right), \operatorname{diam}\left(P^{1}(\mathbf{x})\right) \leq \frac{\sqrt{m}}{2}$. For a such cube $P^{1}(\mathbf{x})$ there is a finite family of cubes

$$
Q_{1,1, \mathbf{x}}, Q_{2,1, \mathbf{x}}, \ldots, Q_{i(1,1, \mathbf{x}), 1, \mathbf{x}} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{1}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ (int denotes the interior operation) and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1,1, \mathbf{x})} Q_{i, 1, \mathbf{x}}\right)}{\lambda\left(P^{1}(\mathbf{x})\right)}>\frac{1}{2}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$ the cubes $P^{1}(\mathbf{x})$ and $P^{1}(\mathbf{y})$ are the same, then $i(1,1, \mathbf{x})=i(1,1, \mathbf{y})$ and $Q_{i, 1, \mathbf{x}}=Q_{i, 1, \mathbf{y}}$ for $i \leq i(1,1, \mathbf{x})$. Let

$$
S_{1}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1,1, \mathbf{x})} Q_{i, 1, \mathbf{x}}
$$

Observe that

$$
\operatorname{cl}\left(S_{1}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1,1, \mathbf{x})} \operatorname{cl}\left(Q_{i, 1, \mathbf{x}}\right)
$$

and the family $\left\{Q_{i, 1, \mathbf{x}} ; i \leq i(1,1, \mathbf{x})\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}-locally finite; i.e., for each point $\mathbf{y} \in \mathbb{R}^{m}$ there is an index $l \in \mathbb{N}$ such that the family of triples $(i, 1, \mathbf{x})$, where $\mathbf{x} \in D\left(f_{1}\right)$, for which $Q_{i, 1, \mathbf{x}} \cap P^{l}(\mathbf{y}) \neq \emptyset$ is finite.

Now, for each point $\mathbf{x} \in D\left(f_{1}\right)$ there is the first positive integer $s(1,2, \mathbf{x})$ such that $\operatorname{diam}\left(P^{s(1,2, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{2}}$ and

$$
\mathbf{x} \in P^{s(1,2, \mathbf{x})}(\mathbf{x}) \subset P^{1}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{1}^{1}\right)
$$

For a such integer $s(1,2, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(1,2, \mathbf{x})}, Q_{2, s(1,2, \mathbf{x})}, \ldots, Q_{i(1, s(1,2, \mathbf{x})), s(1,2, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(1,2, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(1,2, \mathbf{x}))} Q_{i, s(1,2, \mathbf{x})}\right)}{\lambda\left(P^{s(1,2, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{2}}
$$

Assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$ the point $\mathbf{y} \in P^{s(1,2, \mathbf{x})}(\mathbf{x})$, then $P^{s(1,2, \mathbf{x})}(\mathbf{x})=$ $P^{s(1,2, \mathbf{y})}(\mathbf{y}), i(1, s(1,2, \mathbf{x}))=i(1, s(1,2, \mathbf{y}))$ and $Q_{i, s(1,2, \mathbf{x})}=Q_{i, s(1,2, \mathbf{y})}$ for $i \leq$ $i(1, s(1,2, \mathbf{x}))$.

Let

$$
S_{2}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, s(1,2, \mathbf{x}))} Q_{i, s(1,2, \mathbf{x})}
$$

Observe that

$$
\operatorname{cl}\left(S_{2}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, s(1,2, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(1,2, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(1,2, \mathbf{x})} ; i \leq i(1, s(1,2, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}-locally finite.

Generally, for $j>2$, we proceed analogously and for each point $\mathbf{x} \in D\left(f_{1}\right)$ we find the first positive integer $s(1, j, \mathbf{x})$ such that $\operatorname{diam}\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{j}}$ and

$$
\mathbf{x} \in P^{s(1, j, \mathbf{x})}(\mathbf{x}) \subset P^{s(1, j-1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{j-1}^{1}\right)
$$

For such an integer $s(1, j, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(1, j, \mathbf{x})}, Q_{2, s(1, j, \mathbf{x})}, \ldots, Q_{i(1, s(1, j, \mathbf{x})), s(1, j, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{1}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(1, j, \mathbf{x}))} Q_{i, s(1, j, \mathbf{x})}\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{1}\right)$ the point $\mathbf{y} \in P^{s(1, j, \mathbf{x})}(\mathbf{x})$, then $P^{s(1, j, \mathbf{x})}(\mathbf{x})=P^{s(1, j, \mathbf{y})}(\mathbf{y}), i(1, s(1, j, \mathbf{x}))=i(1, s(1, j, \mathbf{y}))$ and $Q_{i, s(1, j, \mathbf{x})}=$ $Q_{i, s(1, j, \mathbf{y})}$ for $i \leq i(1, s(1, j, \mathbf{x}))$. Let

$$
S_{j}^{1}=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, s(1, j, \mathbf{x}))} Q_{i, s(1, j, \mathbf{x})}
$$

Then

$$
\operatorname{cl}\left(S_{j}^{1}\right) \backslash D\left(f_{1}\right)=\bigcup_{\mathbf{x} \in D\left(f_{1}\right)} \bigcup_{i \leq i(1, s(1, j, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(1, j, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(1, j, \mathbf{x})} ; i \leq i(1, s(1, j, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{1}\right)\right\}$ is \mathcal{P}-locally finite.
Now, let $N_{l}, l \in \mathbb{Z}$, be pairwise disjoint infinite subsets of positive integers such that $\mathbb{N}=\bigcup_{l \in \mathbb{Z}} N_{l}$. Observe that for each index $l \in \mathbb{Z}$ and for each point $\mathbf{x} \in D\left(f_{1}\right)$ the upper density

$$
d_{u}\left(\bigcup_{j \in N_{l}} \operatorname{int}\left(S_{j}^{1}\right), \mathbf{x}\right)=1
$$

Let

$$
g_{1}(\mathbf{x})= \begin{cases}\frac{k \cdot c}{2} & \text { if } \mathbf{x} \in S_{j}^{1}, j \in N_{2 k-1}, k \in \mathbb{Z} \\ f_{1}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

and let

$$
g_{2}(\mathbf{x})= \begin{cases}\frac{k \cdot c}{2} & \text { if } \mathbf{x} \in S_{j}^{1}, j \in N_{2 k}, k \in \mathbb{Z} \\ f_{1}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

The functions g_{1}, g_{2} are s_{1}-strongly quasi-continuous at each point \mathbf{x}. Indeed, if $\mathbf{x} \in D\left(f_{1}\right)$, then there is an integer k with $f_{1}(\mathbf{x})=\frac{k \cdot c}{2}$. Since $\mathbf{x} \in D\left(f_{1}\right)$, for each positive integer $j \in N_{2 k-1}$ there is a cube $P^{1, s(1, j, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$. But

$$
\frac{\lambda\left(S_{j}^{1} \cap P^{1, s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{1, s(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

$g_{1}(\mathbf{x})=f_{1}(\mathbf{x})$ and $\operatorname{int}\left(S_{j}^{1}\right) \cap P^{1, s(1, j, \mathbf{x})}(\mathbf{x}) \subset C\left(g_{1}\right)$, so

$$
d_{u}\left(\operatorname{int}\left(\left(g_{1}\right)^{-1}\left(\frac{k \cdot c}{2}\right)\right), \mathbf{x}\right)=1
$$

and consequently g_{1} is s_{1}-strongly quasi-continuous at \mathbf{x}. If $\mathbf{x} \in \mathbb{R}^{m} \backslash D\left(f_{1}\right)$, then from the construction of g_{1} follows that $g_{1} \in Q_{s_{1}}(\mathbf{x})$.

Analogously we can show that $g_{2} \in Q_{s_{1}}(\mathbf{x})$ for each point $\mathbf{x} \in \mathbb{R}^{m}$. Moreover,

$$
\begin{gathered}
\left|f_{1}-f\right|<\frac{c}{2} \text { and } \min \left(\left|g_{1}-f_{1}\right|,\left|g_{2}-f_{1}\right|\right)=0, \text { so } \\
\min \left(\left|g_{1}-f\right|,\left|g_{2}-f\right|\right) \leq \min \left(\left|g_{1}-f_{1}\right|+\left|f_{1}-f\right|,\left|g_{2}-f_{1}\right|+\left|f_{1}-f\right|\right)<\frac{c}{2}
\end{gathered}
$$

Step 2. For a nonempty closed set $H \subset \mathbb{R}^{m}$ and for a real $\eta>0$, we put

$$
\mathcal{O}(H, \eta)=\bigcup_{\mathbf{x} \in H} K(\mathbf{x}, \eta), \text { where } K(\mathbf{x}, \eta)=\left\{\mathbf{u} \in \mathbb{R}^{m} ;|\mathbf{u}-\mathbf{x}|<\eta\right\}
$$

The set $D\left(f_{2}\right)$ is closed and of λ-measure zero. Let

$$
D_{2}^{1}=\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right) \cap\left(\bigcup_{j \in \mathbb{N}} S_{j}^{1}\right), \text { and } D_{2}^{2}=\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right) \backslash D_{2}^{1}
$$

If for an index $p_{0} \in \mathbb{N}$ and a cube $Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}$, where $\mathbf{y} \in D\left(f_{1}\right)$ and $i \leq$ $i\left(1, s\left(1, p_{0}, \mathbf{y}\right)\right)$, the set

$$
D_{i, s\left(1, p_{0}, \mathbf{y}\right)}=D_{2}^{1} \cap Q_{i, s\left(1, p_{0}, \mathbf{y}\right)} \neq \emptyset
$$

then we find an open (in $\left.Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right)$ set $U\left(Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right) \subset Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}$ containing $D_{i, s\left(1, p_{0}, \mathbf{y}\right)}$ such that

$$
\frac{\lambda\left(\bigcup_{i \leq i\left(1, s\left(1, p_{0}, \mathbf{y}\right)\right)} U\left(Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right)\right)}{\lambda\left(S_{p_{0}}^{1}\right)}<\frac{1}{2^{p_{0}}}
$$

and $d_{u}\left(U\left(Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right), \mathbf{x}\right)=0$ for $\mathbf{x} \in \operatorname{Fr}\left(Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right)$, where $\operatorname{Fr}(H)$ denotes the boundary of the set H. If $D_{i, s\left(1, p_{0}, \mathbf{y}\right)}=\emptyset$, then we take $U\left(Q_{i, s\left(1, p_{0}, \mathbf{y}\right)}\right)=\emptyset$. Thus, for every $p \in \mathbb{N}$ such that $S_{p}^{1} \cap D_{2}^{1} \neq \emptyset$ and for $\mathbf{x} \in \operatorname{Fr}\left(Q_{i, s(1, p, \mathbf{y})}\right)$,

$$
\begin{equation*}
\lambda\left(\bigcup_{i \leq i(1, s(1, p, \mathbf{y}))} U\left(Q_{i, s(1, p, \mathbf{y})}\right)\right)<\frac{1}{2^{p}} \cdot \lambda\left(S_{p}^{1}\right) \tag{*}
\end{equation*}
$$

where $U\left(Q_{i, s(1, p, \mathbf{y})}\right) \supset D_{i, s(1, p, \mathbf{y})}$ and $d_{u}\left(U\left(Q_{i, s(1, p, \mathbf{y})}\right), \mathbf{x}\right)=0$.
Similarly, as in the first step, for each point $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ there is the first positive integer $s(2,1, \mathbf{x})$ such that:

- if $\mathbf{x} \in D_{i, s(1, p, \mathbf{y})}$ for $i \leq i(1, s(1, p, \mathbf{y})), p \in \mathbb{N}$ and $\mathbf{y} \in D\left(f_{1}\right)$, then

$$
\mathbf{x} \in P^{s(2,1, \mathbf{x})}(\mathbf{x}) \subset U\left(Q_{i, s(1, p, \mathbf{y})}\right) \cap \mathcal{O}\left(D_{2}^{1}, \frac{1}{2^{4}}\right)
$$

- if $\mathbf{x} \in D_{2}^{2}$, then

$$
\mathbf{x} \in P^{s(2,1, \mathbf{x})}(\mathbf{x}) \subset \mathcal{O}\left(D_{2}^{2}, \frac{1}{2^{4}}\right) \backslash \bigcup_{j \in \mathbb{N}} \operatorname{cl}\left(S_{j}^{1}\right),
$$

- $\operatorname{diam}\left(P^{s(2,1, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{4}}$ and f_{1} is constant on $P^{s(2,1, \mathbf{x})}(\mathbf{x})$.

For a such positive integer $s(2,1, x)$ there is a finite family of cubes

$$
Q_{1, s(2,1, \mathbf{x})}, Q_{2, s(2,1, \mathbf{x})}, \ldots, Q_{i(1, s(2,1, \mathbf{x})), s(2,1, \mathbf{x})} \in \mathcal{P},
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(2,1, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{2}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(2,1, \mathbf{x}))} Q_{i, s(2,1, \mathbf{x})}\right)}{\lambda\left(P^{s(2,1, \mathbf{x})}(\mathbf{x})\right)}>\frac{1}{2} .
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ the point $\mathbf{y} \in P^{s(2,1, \mathbf{x})}(\mathbf{x})$, then $P^{s(2,1, \mathbf{x})}(\mathbf{x})=P^{s(2,1, \mathbf{y})}(\mathbf{y}), i(1, s(2,1, \mathbf{x}))=i(1, s(2,1, \mathbf{y}))$ and $Q_{i, s(2,1, \mathbf{x})}$ $=Q_{i, s(2,1, \mathbf{y})}$ for $i \leq i(1, s(2,1, \mathbf{x}))$. Let

$$
\begin{gathered}
S_{1}^{2,1}=\bigcup_{\mathbf{x} \in D_{2}^{1}} \bigcup_{i \leq i(1, s(2,1, \mathbf{x}))} Q_{i, s(2,1, \mathbf{x})}, S_{1}^{2,2}=\bigcup_{\mathbf{x} \in D_{2}^{2}} \bigcup_{i \leq i(1, s(2,1, \mathbf{x}))} Q_{i, s(2,1, \mathbf{x})}, \\
\text { and } S_{1}^{2}=S_{1}^{2,1} \cup S_{1}^{2,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2,1, \mathbf{x}))} Q_{i, s(2,1, \mathbf{x})} .
\end{gathered}
$$

Obviously

$$
\operatorname{cl}\left(S_{1}^{2}\right) \backslash D\left(f_{2}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2,1, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(2,1, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(2,1, \mathbf{x})} ; i \leq i(1, s(2,1, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right\}$ is \mathcal{P} locally finite.

Now, for each point $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ there is the first positive integer $s(2,2, \mathbf{x})$ such that $\operatorname{diam}\left(P^{s(2,2, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{2}} \cdot \operatorname{diam}\left(P^{s(2,1, \mathbf{x})}(\mathbf{x})\right)$ and

$$
\mathbf{x} \in P^{s(2,2, \mathbf{x})}(\mathbf{x}) \subset P^{s(2,1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{1}^{2}\right)
$$

For a such integer $s(2,2, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(2,2, \mathbf{x})}, Q_{2, s(2,2, \mathbf{x})}, \ldots, Q_{i(1, s(2,2, \mathbf{x})), s(2,2, \mathbf{x})} \in \mathcal{P},
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(2,2, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{2}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(2,2, \mathbf{x}))} Q_{i, s(2,2, \mathbf{x})}\right)}{\lambda\left(P^{s(2,2, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{2}} .
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ the point $\mathbf{y} \in P^{s(2,2, \mathbf{x})}(\mathbf{x})$, then $P^{s(2,2, \mathbf{x})}(\mathbf{x})=P^{s(2,2, \mathbf{y})}(\mathbf{y}), i(1, s(2,2, \mathbf{x}))=i(1, s(2,2, \mathbf{y}))$ and $Q_{i, s(2,2, \mathbf{x})}$ $=Q_{i, s(2,2, \mathbf{y})}$ for $i \leq i(1, s(2,2, \mathbf{x}))$. Let

$$
\begin{aligned}
& S_{2}^{2,1}=\bigcup_{\mathbf{x} \in D_{2}^{1}} \bigcup_{i \leq i(1, s(2,2, \mathbf{x}))} Q_{i, s(2,2, \mathbf{x})}, S_{2}^{2,2}=\bigcup_{\mathbf{x} \in D_{2}^{2}} \bigcup_{i \leq i(1, s(2,2, \mathbf{x}))} Q_{i, s(2,2, \mathbf{x})} \\
& \quad \text { and } S_{2}^{2}=S_{2}^{2,1} \cup S_{2}^{2,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2,2, \mathbf{x}))} Q_{i, s(2,2, \mathbf{x})}
\end{aligned}
$$

Then

$$
\operatorname{cl}\left(S_{2}^{2}\right) \backslash D\left(f_{2}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2,2, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(2,2, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(2,2, \mathbf{x})} ; i \leq i(1, s(2,2, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right\}$ is \mathcal{P}_{-} locally finite.

Generally, for $j>2$ and for each point $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ let $s(2, j, \mathbf{x})$ be the smallest positive integer such that $\operatorname{diam}\left(P^{s(2, j, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{j}} \cdot \operatorname{diam}\left(P^{s(2, j-1, \mathbf{x})}(\mathbf{x})\right)$ and

$$
\mathbf{x} \in P^{s(2, j, \mathbf{x})}(\mathbf{x}) \subset P^{s(2, j-1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{j-1}^{2}\right)
$$

For a such integer $s(2, j, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(2, j, \mathbf{x})}, Q_{2, s(2, j, \mathbf{x})}, \ldots, Q_{i(1, s(2, j, \mathbf{x})), s(2, j, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(2, j, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{2}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(2, j, \mathbf{x}))} Q_{i, s(2, j, \mathbf{x})}\right)}{\lambda\left(P^{s(2, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ the point $\mathbf{y} \in P^{s(2, j, \mathbf{x})}(\mathbf{x})$, then $P^{s(2, j, \mathbf{x})}(\mathbf{x})=P^{s(2, j, \mathbf{y})}(\mathbf{y}), i(1, s(2, j, \mathbf{x}))=i(1, s(2, j, \mathbf{y}))$ and $Q_{i, s(2, j, \mathbf{x})}$ $=Q_{i, s(2, j, \mathbf{y})}$ for $i \leq i(1, s(2, j, \mathbf{x}))$. Let

$$
\begin{aligned}
& S_{j}^{2,1}=\bigcup_{\mathbf{x} \in D_{2}^{1}} \bigcup_{i \leq i(1, s(2, j, \mathbf{x}))} Q_{i, s(2, j, \mathbf{x})}, S_{j}^{2,2}=\bigcup_{\mathbf{x} \in D_{2}^{2}} \bigcup_{i \leq i(1, s(2, j, \mathbf{x}))} Q_{i, s(2, j, \mathbf{x})} \\
& \quad \text { and } S_{j}^{2}=S_{j}^{2,1} \cup S_{j}^{2,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2, j, \mathbf{x}))} Q_{i, s(2, j, \mathbf{x})}
\end{aligned}
$$

Then

$$
\operatorname{cl}\left(S_{j}^{2}\right) \backslash D\left(f_{2}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right)} \bigcup_{i \leq i(1, s(2, j, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(2, j, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(2, j, \mathbf{x})} ; i \leq i(1, s(2, j, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)\right\}$ is \mathcal{P}_{-} locally finite. Note too, since $\left(\bigcup_{j \in \mathbb{N}} S_{j}^{2,1}\right) \cap S_{p}^{1} \subset \bigcup_{i \leq i(1, s(1, p, \mathbf{y}))} U\left(Q_{i, s(1, p, \mathbf{y})}\right)$ for every $p \in \mathbb{N}$ and $\mathbf{y} \in D\left(f_{1}\right)$, by $(*)$ we have

$$
\begin{equation*}
\lambda\left(\left(\bigcup_{j \in \mathbb{N}} S_{j}^{2,1}\right) \cap S_{p}^{1}\right)<\frac{1}{2^{p}} \cdot \lambda\left(S_{p}^{1}\right) \tag{**}
\end{equation*}
$$

Let $N_{k, t}, k \in \mathbb{Z}, t \in \mathbb{N}$, be pairwise disjoint infinite subsets of positive integers such that for all $k \in \mathbb{Z}, N_{k}=\bigcup_{t \in \mathbb{N}} N_{k, t}$. Observe that for all integers k and each point $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$ the upper density

$$
d_{u}\left(\bigcup_{j \in N_{k, t}} \operatorname{int}\left(S_{j}^{2}\right), \mathbf{x}\right)=1
$$

Recall that

$$
\bigcup_{l \in \mathbb{N}} S_{l}^{2,1} \subset \bigcup_{j \in \mathbb{N}} S_{j}^{1} \text { and } \bigcup_{l \in \mathbb{N}} S_{l}^{2,2} \subset \mathbb{R}^{m} \backslash \bigcup_{j \in \mathbb{N}} S_{j}^{1}
$$

Moreover, there is an index $j_{2} \in \mathbb{N}$ such that

$$
S_{j}^{1} \subset \mathcal{O}\left(D\left(f_{1}\right), \frac{1}{2^{4}}\right) \text { for } j>j_{2}
$$

Next, for $k \in \mathbb{Z}$ we define the functions $g_{3}, g_{4}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by

$$
g_{3}(\mathbf{x})= \begin{cases}f_{2}(\mathbf{x}) & \text { if } \mathbf{x} \in D\left(f_{2}\right) \\ g_{1}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1},\left(j \in N_{2 k-1,1}\right) \wedge\left(j>j_{2}\right) \\ g_{1}(\mathbf{x})+\frac{c}{2^{2}} & \text { if } \mathbf{x} \in S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1},\left(j \in N_{2 k-1,2}\right) \wedge\left(j>j_{2}\right) \\ f_{1}(\mathbf{x}) & \text { if } \mathbf{x} \in \bigcup_{l \in N_{2 k-1,1}}\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \\ f_{1}(\mathbf{x})+\frac{c}{2^{2}} & \text { if } \mathbf{x} \in \bigcup_{l \in N_{2 k-1,2}}\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \\ f_{2}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

and let

$$
g_{4}(\mathbf{x})= \begin{cases}f_{2}(\mathbf{x}) & \text { if } \mathbf{x} \in D\left(f_{2}\right) \\ g_{2}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1},\left(j \in N_{2 k, 1}\right) \wedge\left(j>j_{2}\right) \\ g_{2}(\mathbf{x})+\frac{c}{2^{2}} & \text { if } \mathbf{x} \in S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1},\left(j \in N_{2 k, 2}\right) \wedge\left(j>j_{2}\right) \\ f_{1}(\mathbf{x}) & \text { if } \mathbf{x} \in \bigcup_{l \in N_{2 k, 1}}\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \\ f_{1}(\mathbf{x})+\frac{c}{2^{2}} & \text { if } \mathbf{x} \in \bigcup_{l \in N_{2 k, 2}}\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \\ f_{2}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

The function g_{3} and g_{4} are s_{1}-strongly quasi-continuous. Indeed,
$(-)$ if $\mathbf{x} \in D\left(f_{2}\right)$, then there exists an index $k \in \mathbb{Z}$ such that $g_{3}(\mathbf{x})=$ $f_{2}(\mathbf{x})=\frac{k \cdot c}{4}$. Then, for some $k_{0} \in \mathbb{Z}$, we have two cases

$$
g_{3}(\mathbf{x})=\frac{2 k_{0} \cdot c}{4}=\frac{k_{0} \cdot c}{2}=f_{1}(\mathbf{x}) \text { or } g_{3}(\mathbf{x})=\frac{\left(2 k_{0}+1\right) \cdot c}{4}=\frac{k_{0} \cdot c}{2}+\frac{c}{4} .
$$

Suppose that $\mathbf{x} \in D\left(f_{1}\right) \subset D\left(f_{2}\right)$. If $k=2 k_{0}$, then for each index $j \in N_{2 k-1,1}$ there is a cube $P^{s(1, j, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$ such that

$$
\frac{\lambda\left(S_{j}^{1} \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

Moreover, if $j>j_{2}$ is such that $S_{j}^{1} \cap D_{2}^{1} \neq \emptyset$, then by the formula $(* *)$ we have

$$
\begin{aligned}
& \frac{\lambda\left(\left(S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)} \\
= & \frac{\lambda\left(\left(S_{j}^{1} \backslash\left(\left(\bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap S_{j}^{1}\right)\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)} \\
= & \frac{\lambda\left(S_{j}^{1} \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}-\frac{\lambda\left(\left(\left(\bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap S_{j}^{1}\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)} \\
> & \frac{\lambda\left(S_{j}^{1} \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}-\frac{\frac{1}{2^{j}} \cdot \lambda\left(S_{j}^{1} \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)} \\
> & \left(1-\frac{1}{2^{j}}\right)-\frac{1}{2^{j}} \cdot\left(1-\frac{1}{2^{j}}\right)>1-\frac{1}{2^{j-1}} .
\end{aligned}
$$

For all $\mathbf{y} \in\left(S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})$, by definition, $g_{3}(\mathbf{y})=g_{1}(\mathbf{y})=\frac{k_{0} \cdot c}{2}$. Thus

$$
d_{u}\left(\operatorname{int}\left(\left(g_{3}\right)^{-1}\left(\frac{k_{0} \cdot c}{2}\right)\right), \mathbf{x}\right)=1
$$

Similarly, if $k=2 k_{0}+1$, then for each index $j \in N_{2 k-1,2}$ there is a cube $P^{s(1, j, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$ such that if $j>j_{2}$ and $S_{j}^{1} \cap D_{2}^{1} \neq \emptyset$, then

$$
\frac{\lambda\left(\left(S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(1, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j-1}} .
$$

Then, for all $\mathbf{y} \in\left(S_{j}^{1} \backslash \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right) \cap P^{s(1, j, \mathbf{x})}(\mathbf{x})$, by definition, $g_{3}(\mathbf{y})=g_{1}(\mathbf{y})+$ $\frac{c}{4}=\frac{k_{0} \cdot c}{2}+\frac{c}{4}=\frac{\left(2 k_{0}+1\right) \cdot c}{4}$. Thus

$$
d_{u}\left(\operatorname{int}\left(\left(g_{3}\right)^{-1}\left(\frac{\left(2 k_{0}+1\right) \cdot c}{4}\right)\right), \mathbf{x}\right)=1
$$

and consequently $g_{3} \in Q_{s_{1}}(\mathbf{x})$ for each $\mathbf{x} \in D\left(f_{1}\right)$.
Suppose that $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$. If $k=2 k_{0}$, then for each index $l \in N_{2 k-1,1}$ there is a cube $P^{s(2, l, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$ such that

$$
\frac{\lambda\left(S_{l}^{2,1} \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(n, l, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{l}} \text { or } \frac{\lambda\left(S_{l}^{2,2} \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(n, l, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{l}}
$$

because for all $l \in N_{2 k-1,1}$ we have $S_{l}^{2,1} \cap S_{l}^{2,2}=\emptyset$. Thus, by definition, for all $\mathbf{y} \in\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})$ we have $g_{3}(\mathbf{y})=f_{1}(\mathbf{y})=\frac{k_{0} \cdot c}{2}$ and

$$
d_{u}\left(\operatorname{int}\left(\left(g_{3}\right)^{-1}\left(\frac{k_{0} \cdot c}{2}\right)\right), \mathbf{x}\right)=1
$$

Similarly, if $k=2 k_{0}+1$, then for each index $l \in N_{2 k-1,2}$ there is a cube $P^{s(2, l, \mathbf{x})}(\mathbf{x}) \ni \mathbf{x}$ such that

$$
\frac{\lambda\left(S_{l}^{2,1} \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(n, l, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{l}} \text { or } \frac{\lambda\left(S_{l}^{2,2} \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})\right)}{\lambda\left(P^{s(n, l, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{l}}
$$

because for all $l \in N_{2 k-1,2}$ we have $S_{l}^{2,1} \cap S_{l}^{2,2}=\emptyset$. Observe that for all $\mathbf{y} \in\left(S_{l}^{2,1} \cup S_{l}^{2,2}\right) \cap P^{s(2, l, \mathbf{x})}(\mathbf{x})$, by definition , $g_{3}(\mathbf{y})=f_{1}(\mathbf{y})+\frac{c}{4}=\frac{k_{0} \cdot c}{2}+\frac{c}{4}=$ $\frac{\left(2 k_{0}+1\right) \cdot c}{4}$. Thus

$$
d_{u}\left(\operatorname{int}\left(\left(g_{3}\right)^{-1}\left(\frac{\left(2 k_{0}+1\right) \cdot c}{4}\right)\right), \mathbf{x}\right)=1
$$

and consequently $g_{3} \in Q_{s_{1}}(\mathbf{x})$ for each $\mathbf{x} \in D\left(f_{2}\right) \backslash D\left(f_{1}\right)$.
$(-)$ if $\mathbf{x} \in \mathbb{R}^{m} \backslash D\left(f_{2}\right)$, then by the construction of g_{3}, we have that $g_{3} \in$ $Q_{s_{1}}(\mathbf{x})$.

So, $g_{3} \in Q_{s_{1}}(\mathbf{x})$ for each $\mathbf{x} \in \mathbb{R}^{m}$. Analogously we can show that g_{4} is s_{1}-strongly quasi-continuous at each point of its domain. Observe too, that $g_{3}(\mathbf{x})=g_{4}(\mathbf{x})=f_{2}(\mathbf{x})$ for all

$$
\mathbf{x} \notin \mathcal{O}\left(D\left(f_{2}\right), \frac{1}{2^{4}}\right)=\mathcal{O}\left(D\left(f_{1}\right), \frac{1}{2^{4}}\right) \cup \mathcal{O}\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right), \frac{1}{2^{4}}\right)
$$

Moreover, since $\left|f_{2}-f\right|<\frac{c}{4}$ and $\min \left(\left|g_{3}-f_{2}\right|,\left|g_{4}-f_{2}\right|\right)=0$,

$$
\min \left(\left|g_{3}-f\right|,\left|g_{4}-f\right|\right)=\min \left(\left|g_{3}-f_{2}\right|+\left|f_{2}-f\right|,\left|g_{4}-f_{2}\right|+\left|f_{2}-f\right|\right)<\frac{c}{4}
$$

Step 3. The set $D\left(f_{3}\right)$ is closed and of λ-measure zero. Let

$$
D_{3}^{1}=\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right) \cap\left(\bigcup_{r=1}^{2} \bigcup_{j \in \mathbb{N}} S_{j}^{r}\right) \text { and let } D_{3}^{2}=\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right) \backslash D_{3}^{1}
$$

If for an index $r_{0} \in\{1,2\}$ and an index $p_{0} \in \mathbb{N}$ and a cube $Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}$, where $\mathbf{y} \in D\left(f_{2}\right)$ and $i \leq i\left(1, s\left(r_{0}, p_{0}, \mathbf{y}\right)\right)$, the set

$$
D_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}=D_{3}^{1} \cap Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)} \neq \emptyset
$$

then we find an open $\left(\right.$ in $\left.Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}\right)$ set $U\left(Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}\right) \subset Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}$ containing $D_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}$ such that

$$
\frac{\lambda\left(\bigcup_{i \leq i\left(1, s\left(r_{0}, p_{0}, \mathbf{y}\right)\right)} U\left(Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}\right)\right)}{\lambda\left(S_{p_{0}^{0}}^{r_{0}}\right)}<\frac{1}{2^{p_{0}}}
$$

and $d_{u}\left(U\left(Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}\right), \mathbf{x}\right)=0$ for $\mathbf{x} \in \operatorname{Fr}\left(Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}\right)$. If $D_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}=\emptyset$, we take $U\left(Q_{i, s\left(r_{0}, p_{0}, \mathbf{y}\right)}=\emptyset\right.$. Thus, for every $p \in \mathbb{N}$ and $r \in\{1,2\}$ such that $S_{p}^{r} \cap D_{3}^{1} \neq \emptyset$ and for $\mathbf{x} \in \operatorname{Fr}\left(Q_{i, s(r, p, \mathbf{y})}\right)$ we have

$$
\lambda\left(\bigcup_{i \leq i(1, s(r, p, \mathbf{y}))} U\left(Q_{i, s(r, p, \mathbf{y})}\right)\right)<\frac{1}{2^{p}} \cdot \lambda\left(S_{p}^{r}\right)
$$

where $U\left(Q_{i, s(r, p, \mathbf{y})}\right) \supset D_{i, s(1, p, \mathbf{y})}$ and $d_{u}\left(U\left(Q_{i, s(r, p, \mathbf{y})}\right), \mathbf{x}\right)=0$.
Similarly, as in the second step, for each point $\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)$ there is the first positive integer $s(3,1, \mathbf{x})$ such that:

- if $\mathbf{x} \in D_{i, s(r, p, \mathbf{y})}$ for $p \in \mathbb{N}, r \in\{1,2\}, i \leq i(1, s(r, p, \mathbf{y}))$ and $\mathbf{y} \in D\left(f_{2}\right)$, then

$$
\mathbf{x} \in P^{s(3,1, \mathbf{x})}(\mathbf{x}) \subset U\left(Q_{i, s(r, p, \mathbf{y})}\right) \cap \mathcal{O}\left(D_{3}^{1}, \frac{1}{2^{9}}\right)
$$

- if $\mathbf{x} \in D_{3}^{2}$, then

$$
\mathbf{x} \in P^{s(3,1, \mathbf{x})}(\mathbf{x}) \subset \mathcal{O}\left(D_{3}^{2}, \frac{1}{2^{9}}\right) \backslash \bigcup_{r=1}^{2} \bigcup_{j \in \mathbb{N}} \operatorname{cl}\left(S_{j}^{r}\right)
$$

- $\operatorname{diam}\left(P^{s(3,1, \mathbf{x})}(\mathbf{x})<\frac{1}{2^{9}}\right.$ and f_{2} is constant on $P^{s(3,1, \mathbf{x})}(\mathbf{x})$.

For a such positive integer $s(3,1, x)$ there is a finite family of cubes

$$
Q_{1, s(3,1, \mathbf{x})}, Q_{2, s(3,1, \mathbf{x})}, \ldots, Q_{i(1, s(3,1, \mathbf{x})), s(3,1, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained $\operatorname{in} \operatorname{int}\left(P^{s(3,1, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{3}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(3,1, \mathbf{x}))} Q_{i, s(3,1, \mathbf{x})}\right)}{\lambda\left(P^{s(3,1, \mathbf{x})}(\mathbf{x})\right)}>\frac{1}{2}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)$ the point $\mathbf{y} \in P^{s(3,1, \mathbf{x})}(\mathbf{x})$, then $P^{s(3,1, \mathbf{x})}(\mathbf{x})=P^{s(3,1, \mathbf{y})}(\mathbf{y}), i(1, s(3,1, \mathbf{x}))=i(1, s(3,1, \mathbf{y}))$ and $Q_{i, s(3,1, \mathbf{x})}$ $=Q_{i, s(3,1, \mathbf{y})}$ for $i \leq i(1, s(3,1, \mathbf{x}))$. Let

$$
\begin{gathered}
S_{1}^{3,1}=\bigcup_{\mathbf{x} \in D_{3}^{1}} \bigcup_{i \leq i(1, s(3,1, \mathbf{x}))} Q_{i, s(3,1, \mathbf{x})}, \quad S_{1}^{3,2}=\bigcup_{\mathbf{x} \in D_{3}^{2}} \bigcup_{i \leq i(1, s(3,1, \mathbf{x}))} Q_{i, s(3,1, \mathbf{x})} \text { and } \\
S_{1}^{3}=S_{1}^{3,1} \cup S_{1}^{3,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3,1, \mathbf{x})} Q_{i, s(3,1, \mathbf{x})}
\end{gathered}
$$

Obviously

$$
\operatorname{cl}\left(S_{1}^{3}\right) \backslash D\left(f_{3}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3,1, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(3,1, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(3,1, \mathbf{x})} ; i \leq i(1, s(3,1, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right\}$ is \mathcal{P} locally finite.

Now, for each point $\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)$ let $s(3,2, \mathbf{x})$ be the smallest positive integer such that $\operatorname{diam}\left(P^{s(3,2, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{2}} \cdot \operatorname{diam}\left(P^{s(3,1, \mathbf{x})}(\mathbf{x})\right)$ and

$$
\mathbf{x} \in P^{s(3,2, \mathbf{x})}(\mathbf{x}) \subset P^{s(3,1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{1}^{3}\right)
$$

For a such integer $s(3,2, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(3,2, \mathbf{x})}, Q_{2, s(3,2, \mathbf{x})}, \ldots, Q_{i(1, s(3,2, \mathbf{x})), s(3,2, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(3,2, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{3}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(3,2, \mathbf{x}))} Q_{i, s(3,2, \mathbf{x})}\right)}{\lambda\left(P^{s(3,2, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{2}}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{3}\right) \backslash D\left(f_{3}\right)$ the point $\mathbf{y} \in P^{s(3,2, \mathbf{x})}(\mathbf{x})$, then $P^{s(3,2, \mathbf{x})}(\mathbf{x})=P^{s(3,2, \mathbf{y})}(\mathbf{y}), i(1, s(3,2, \mathbf{x}))=i(1, s(3,2, \mathbf{y}))$ and $Q_{i, s(3,2, \mathbf{x})}$ $=Q_{i, s(3,2, \mathbf{y})}$ for $i \leq i(1, s(3,2, \mathbf{x}))$. Let

$$
\begin{gathered}
S_{2}^{3,1}=\bigcup_{\mathbf{x} \in D_{3}^{1}} \bigcup_{i \leq i(1, s(3,2, \mathbf{x}))} Q_{i, s(3,2, \mathbf{x})}, \quad S_{2}^{3,2}=\bigcup_{\mathbf{x} \in D_{3}^{2}} \bigcup_{i \leq i(1, s(3,2, \mathbf{x}))} Q_{i, s(3,2, \mathbf{x})} \text { and } \\
S_{2}^{3}=S_{2}^{3,1} \cup S_{2}^{3,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3,2, \mathbf{x}))} Q_{i, s(3,2, \mathbf{x})}
\end{gathered}
$$

Observe that

$$
\operatorname{cl}\left(S_{2}^{3}\right) \backslash D\left(f_{3}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3,2, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(3,2, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(3,2, \mathbf{x})} ; i \leq i(1, s(3,2, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right\}$ is \mathcal{P} locally finite.

Generally, for $j>2$ and for each point $\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)$ let $s(3, j, \mathbf{x})$ be the smallest positive integer such that $\operatorname{diam}\left(P^{s(3, j, \mathbf{x})}(\mathbf{x})\right)<\frac{1}{2^{j}} \cdot \operatorname{diam}\left(P^{s(3, j-1, \mathbf{x})}(\mathbf{x})\right)$ and

$$
\mathbf{x} \in P^{s(3, j, \mathbf{x})}(\mathbf{x}) \subset P^{s(3, j-1, \mathbf{x})}(\mathbf{x}) \backslash \operatorname{cl}\left(S_{j-1}^{3}\right)
$$

For a such integer $s(3, j, \mathbf{x})$ there is a finite family of cubes

$$
Q_{1, s(3, j, \mathbf{x})}, Q_{2, s(3, j, \mathbf{x})}, \ldots, Q_{i(1, s(3, j, \mathbf{x})), s(3, j, \mathbf{x})} \in \mathcal{P}
$$

whose closures are pairwise disjoint and contained in $\operatorname{int}\left(P^{s(3, j, \mathbf{x})}(\mathbf{x})\right) \backslash D\left(f_{3}\right)$ and such that

$$
\frac{\lambda\left(\bigcup_{i=1}^{i(1, s(3, j, \mathbf{x}))} Q_{i, s(3, j, \mathbf{x})}\right)}{\lambda\left(P^{s(3, j, \mathbf{x})}(\mathbf{x})\right)}>1-\frac{1}{2^{j}}
$$

Moreover, we assume that if for $\mathbf{x}, \mathbf{y} \in D\left(f_{3}\right) \backslash D\left(f_{3}\right)$ the point $\mathbf{y} \in P^{s(3, j, \mathbf{x})}(\mathbf{x})$, then $P^{s(3, j, \mathbf{x})}(\mathbf{x})=P^{s(3, j, \mathbf{y})}(\mathbf{y}), i(1, s(3, j, \mathbf{x}))=i(1, s(3, j, \mathbf{y}))$ and $Q_{i, s(3, j, \mathbf{x})}=$ $Q_{i, s(3, j, \mathbf{y})}$ for $i \leq i(1, s(3, j, \mathbf{x}))$. Let

$$
\begin{gathered}
S_{j}^{3,1}=\bigcup_{\mathbf{x} \in D_{3}^{1}} \bigcup_{i \leq i(1, s(3, j, \mathbf{x}))} Q_{i, s(3, j, \mathbf{x})}, S_{j}^{3,2}=\bigcup_{\mathbf{x} \in D_{3}^{2}} \bigcup_{i \leq i(1, s(3, j, \mathbf{x}))} Q_{i, s(3, j, \mathbf{x})} \text { and } \\
S_{j}^{3}=S_{j}^{3,1} \cup S_{j}^{3,2}=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3, j, \mathbf{x}))} Q_{i, s(3, j, \mathbf{x})}
\end{gathered}
$$

Observe that

$$
\operatorname{cl}\left(S_{j}^{3}\right) \backslash D\left(f_{3}\right)=\bigcup_{\mathbf{x} \in\left(D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right)} \bigcup_{i \leq i(1, s(3, j, \mathbf{x}))} \operatorname{cl}\left(Q_{i, s(3, j, \mathbf{x})}\right)
$$

and the family $\left\{Q_{i, s(3, j, \mathbf{x})} ; i \leq i(1, s(3, j, \mathbf{x}))\right.$ and $\left.\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)\right\}$ is \mathcal{P} locally finite.

Let $N_{k, t, l}, k \in \mathbb{Z}$ and $t, l \in \mathbb{N}$; be pairwise disjoint infinite subsets of positive integers such that for all $k \in \mathbb{Z}$ and $t \in \mathbb{N}, N_{k, t}=\bigcup_{l \in \mathbb{N}} N_{k, t, l}$. Observe, that for each point $\mathbf{x} \in D\left(f_{3}\right) \backslash D\left(f_{2}\right)$ and $k \in \mathbb{Z}, t \in \mathbb{N}$ the upper density

$$
d_{u}\left(\bigcup_{j \in N_{k, t, l}} \operatorname{int}\left(S_{j}^{3}\right), \mathbf{x}\right)=1
$$

Put

- $N_{2 k-1,3}=N_{2 k-1,1,1} \cup N_{2 k-1,2,1}$ and $N_{2 k-1,4}=N_{2 k-1,1,2} \cup N_{2 k-1,2,2}$;
- $N_{2 k, 3}=N_{2 k, 1,1} \cup N_{2 k, 2,1}$ and $N_{2 k, 4}=N_{2 k, 1,2} \cup N_{2 k, 2,2}$.

Recall, too, that

- $\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \subset \bigcup_{r=1}^{2} \bigcup_{l \in \mathbb{N}} S_{l}^{r}, \bigcup_{p \in \mathbb{N}} S_{p}^{3,2} \subset \mathbb{R}^{m} \backslash \bigcup_{r=1}^{2} \bigcup_{l \in \mathbb{N}} c l\left(S_{l}^{r}\right)$ and
- $\bigcup_{p \in \mathbb{N}} S_{p}^{3}=\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \cup \bigcup_{p \in \mathbb{N}} S_{p}^{3,2}$.

There are indexes $j_{3}, l_{3} \in \mathbb{N}$ such that
$S_{j}^{1} \subset \mathcal{O}\left(D\left(f_{1}\right), \frac{1}{2^{9}}\right)$ for $j>j_{3}$ and $S_{l}^{2} \subset \mathcal{O}\left(D\left(f_{2}\right) \backslash D\left(f_{1}\right), \frac{1}{2^{9}}\right)$ for $l>l_{3}$.
Next, for $k \in \mathbb{Z}$ we define the functions $g_{5}, g_{6}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by
$g_{5}(\mathbf{x}) \begin{cases}f_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in D\left(f_{3}\right) \\ g_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{j}^{1} \backslash\left(\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \cup \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right),\left(j \in N_{2 k-1,3}\right) \wedge\left(j>j_{3}\right) \\ g_{3}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in S_{j}^{1} \backslash\left(\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \cup \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right),\left(j \in N_{2 k-1,4}\right) \wedge\left(j>j_{3}\right) \\ g_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{l}^{2} \backslash \bigcup_{p \in \mathbb{N}} S_{p}^{3,1},\left(l \in N_{2 k-1,3}\right) \wedge\left(l>l_{3}\right) \\ g_{3}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in S_{l}^{2} \backslash \bigcup_{p \in \mathbb{N}} S_{p}^{3,1},\left(l \in N_{2 k-1,4}\right) \wedge\left(l>l_{3}\right) \\ f_{2}(\mathbf{x}) & \text { if } \mathbf{x} \in \bigcup_{p \in N_{2 k-1,1}} S_{p}^{3} \\ f_{2}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in \bigcup_{p \in N_{2 k-1,2}} S_{p}^{3} \\ f_{3}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}$
and
$g_{6}(\mathbf{x})= \begin{cases}f_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in D\left(f_{3}\right) \\ g_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{j}^{1} \backslash\left(\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \cup \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right),\left(j \in N_{2 k, 3}\right) \wedge\left(j>j_{3}\right) \\ g_{3}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in S_{j}^{1} \backslash\left(\bigcup_{p \in \mathbb{N}} S_{p}^{3,1} \cup \bigcup_{l \in \mathbb{N}} S_{l}^{2,1}\right),\left(j \in N_{2 k, 4}\right) \wedge\left(j>j_{3}\right) \\ g_{3}(\mathbf{x}) & \text { if } \mathbf{x} \in S_{l}^{2} \backslash \bigcup_{p \in \mathbb{N}} S_{p}^{3,1},\left(l \in N_{2 k, 3}\right) \wedge\left(l>l_{3}\right) \\ g_{3}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in S_{l}^{2} \backslash \bigcup_{p \in \mathbb{N}} S_{p}^{3,1},\left(l \in N_{2 k, 4}\right) \wedge\left(l>l_{3}\right) \\ f_{2}(\mathbf{x}) & \text { if } \mathbf{x} \in \bigcup_{p \in N_{2 k, 1}} S_{p}^{3} \\ f_{2}(\mathbf{x})+\frac{c}{2^{3}} & \text { if } \mathbf{x} \in \bigcup_{p \in N_{2 k, 2}, 2}^{3} S_{p}^{3} \\ f_{3}(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m} .\end{cases}$
As in the second step we can verify that $g_{5}, g_{6} \in Q_{s_{1}}(\mathbf{x})$ for each $\mathbf{x} \in \mathbb{R}^{m}$. Observe too, that $g_{5}(\mathbf{x})=g_{6}(\mathbf{x})=f_{3}(\mathbf{x})$ for all

$$
\mathbf{x} \notin \mathcal{O}\left(D\left(f_{3}\right), \frac{1}{2^{9}}\right)=\bigcup_{i=0}^{2} \mathcal{O}\left(D\left(f_{i+1}\right) \backslash D\left(f_{i}\right), \frac{1}{2^{9}}\right), \text { where } D\left(f_{0}\right)=\emptyset .
$$

Moreover, since $\left|f_{3}-f\right|<\frac{c}{2^{3}}$ and $\min \left(\left|g_{5}-f_{3}\right|,\left|g_{6}-f_{3}\right|\right)=0$,

$$
\min \left(\left|g_{5}-f\right|,\left|g_{6}-f\right|\right)=\min \left(\left|g_{5}-f_{3}\right|+\left|f_{3}-f\right|,\left|g_{6}-f_{3}\right|+\left|f_{3}-f\right|\right)<\frac{c}{2^{3}}
$$

Generally, for $n>3$, as in step 3 , we define functions $g_{2 n-1}, g_{2 n}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that $g_{2 n-1}, g_{2 n} \in Q_{s_{1}}(\mathbf{x})$ for each point $\mathbf{x} \in \mathbb{R}^{m}, g_{2 n-1}(\mathbf{x})-g_{2 n}(\mathbf{x})=$ $f_{n}(\mathbf{x})$ for all

$$
\mathbf{x} \notin \mathcal{O}\left(D\left(f_{n}\right), \frac{1}{2^{n^{2}}}\right)=\bigcup_{i=0}^{n-1} \mathcal{O}\left(D\left(f_{i+1}\right) \backslash D\left(f_{i}\right), \frac{1}{2^{n^{2}}}\right) \text { where } D\left(f_{0}\right)=\emptyset
$$

and $\min \left(\left|g_{2 n-1}-f_{n}\right|,\left|g_{2 n}-f_{n}\right|\right)=0$. We will prove that the sequence $\left(g_{n}\right)$ quasi-uniformly converges to f. First we shall show that the sequence $\left(g_{n}\right)$ converges pointwise to f. Suppose that $\mathbf{x} \in \bigcup_{n=1}^{\infty} D\left(f_{n}\right)=\bigcup_{n=2}^{\infty} \bigcup_{i=0}^{n-1}\left(D\left(f_{i+1}\right) \backslash\right.$ $D\left(f_{i}\right)$ where $D\left(f_{0}\right)=\emptyset$. Then there is an index $M \in \mathbb{N}$ such that $g_{2 n-1}(\mathbf{x})=$ $g_{2 n}(\mathbf{x})=f_{n}(\mathbf{x})$ for $n>M$ and consequently

$$
\lim _{n \rightarrow \infty} g_{2 n-1}(\mathbf{x})=\lim _{n \rightarrow \infty} g_{2 n}(\mathbf{x})=\lim _{n \rightarrow \infty} f_{n}(\mathbf{x})=f(\mathbf{x})
$$

Now suppose that $\mathbf{x} \notin \bigcup_{n=1}^{\infty} D\left(f_{n}\right)$. Fix a real $\varepsilon>0$. There is an index $T \in \mathbb{N}$ such that $\frac{c}{2^{T-2}}<\varepsilon$. Since $\mathbf{x} \notin D\left(f_{T}\right)$, there is a real $\eta>0$ with $\mathbf{x} \notin \mathcal{O}\left(D\left(f_{T}\right), \eta\right)$. Let $M>T$ be a positive integer such that $\frac{1}{2^{M}}<\eta$. Then, for all $n>M>T$ we have $\mathbf{x} \notin \mathcal{O}\left(D\left(f_{T}\right), \frac{1}{2^{M}}\right)$ and consequently

$$
\max \left(\left|g_{2 n-1}(\mathbf{x})-f_{n}(\mathbf{x})\right|,\left|g_{2 n}(\mathbf{x})-f_{n}(\mathbf{x})\right|\right)<\frac{c}{2^{M}}
$$

Since for all $n>M$ we obtain

$$
\max \left(\left|g_{2 n-1}(\mathbf{x})-f(\mathbf{x})\right|,\left|g_{2 n}(\mathbf{x})-f(\mathbf{x})\right|\right)<\frac{c}{2^{M}}+\frac{c}{2^{n}}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}<\varepsilon
$$

the sequence $\left(g_{n}\right)$ converges pointwise to f. It is obvious that $\min \left(\mid g_{2 n-1}-\right.$ $f\left|,\left|g_{2 n}-f\right|\right)<\varepsilon$ for all $n>M$ and the proof is completed.

Recall that a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is approximately quasi-continuous at a point $\mathbf{x} \in \mathbb{R}^{m},\left(f \in Q_{a p}(\mathbf{x})\right)$ if for each real $\varepsilon>0$ and each set $U \in \mathcal{T}_{d}$ containing \mathbf{x} there is a nonempty set $V \subset U$ belonging to \mathcal{T}_{d} with $f(V) \subset$ $(f(\mathbf{x})-\varepsilon, f(\mathbf{x})+\varepsilon)([4])$.

In [4] it is proved that each λ-measurable function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the limit of a pointwise convergent sequence of approximately quasi-continuous functions. We will prove the following assertion.

Theorem 2. If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a λ-measurable function, then there is a sequence of approximately quasi-continuous functions $g_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ which quasi-uniformly converges to f.

Proof. Since f is λ-measurable, the set

$$
D_{a p}(f)=\left\{\mathbf{x} \in \mathbb{R}^{m} ; f \text { is not approximately continuous at } \mathbf{x}\right\}
$$

is of λ-measure zero. There exists an G_{δ}-set $A \supset D_{a p}(f)$ of λ-measure zero.
Let $\left(G_{n}\right)$ be a decreasing sequence of open sets $G_{1} \supset G_{2} \supset \ldots$ such that $A=\bigcap_{n=1}^{\infty} G_{n}$. Fix an index $n \in \mathbb{N}$. From Lemma 3 in [4] there is a sequence of pairwise disjoint measurable sets $A_{n, k} \subset G_{n} \backslash A$ such that

- $\bigcup_{k=0}^{\infty} A_{n, k}=G_{n} \backslash A ;$
- $d_{u}\left(A_{n, k}, \mathbf{x}\right)>0$ for each $\mathbf{x} \in A \cup A_{n, k}$ and each $k \geq 0$, and
- $d_{u}\left(\left(\mathbb{R}^{m} \backslash G_{n}\right) \cup A_{n, 0}, \mathbf{x}\right)>0$ for each $\mathbf{x} \in \mathbb{R}^{m} \backslash G_{n}$.

Let $\left(w_{k}\right)$ be a sequence of all rationals such that $w_{i} \neq w_{j}$ for $i \neq j$ and let

$$
g_{2 n-1}(\mathbf{x})= \begin{cases}w_{k} & \text { for } \mathbf{x} \in A_{n, 2 k}, k=1,2, \ldots \\ f(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

and

$$
g_{2 n}(\mathbf{x})= \begin{cases}w_{k} & \text { for } \mathbf{x} \in A_{n, 2 k-1}, k=1,2, \ldots \\ f(\mathbf{x}) & \text { otherwise on } \mathbb{R}^{m}\end{cases}
$$

Evidently the functions $g_{n},(n \in \mathbb{N})$ are approximately quasi-continuous. Since $A=\bigcap_{n} G_{n}$ and $G_{n} \supset G_{n+1}$ for $n \geq 1$, we have $f=\lim _{n \rightarrow \infty} g_{n}$. Moreover, since $\min \left(\left|g_{2 n-1}-f\right|,\left|g_{2 n}-f\right|\right)=0$ for every $n \in \mathbb{N}$, the sequence $\left(g_{n}\right)$ quasi-uniformly converges to f and the proof is completed.

References

[1] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math., 659 (1978), Springer-Verlag.
[2] A. M. Bruckner, Differentiation of the integrals, Amer. Math. Monthly, 78 (1978), 1-54.
[3] C. Goffman, C. J. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J., 28 (1961), 497-506.
[4] Z. Grande, T. Natkaniec, E. Strońska, Algebraic structures generated by d-quasicontinuous functions, Bull. Polish Acad. Sci., Math., 35 No. 1112 (1987), 717-723.
[5] Z. Grande, On quasi-uniform convergence of a sequence of s.q.c. functions, Math. Slovaca, 48 (1998), 507-511.
[6] Z. Grande., On some special notions of approximate quasicontinuity, Real Analysis Exch., 24 (1998-99), 171-183.
[7] Z. Grande, E. Strońska E., On some properties connected with continuity and measurability, Tatra Mont. Math. Publ., 19 (2000), 117-125.
[8] T. Neubrunn, Quasi-continuity, Real Anal. Exch., 14, No. 2 (1988-89), 259-306.
[9] S. Saks, Theory of the integral, Monografie Matematyczne, Warszawa, (1937).
[10] R. Sikorski, Real functions, PWN, Warszawa, (1958), vol.I.
[11] E. Strońska, On some special notions of approximate quasicontinuity on \mathbb{R}^{m}, Demonstratio Math., (2004/2005), (to appear).
[12] F. D. Tall, The density topology, Pacific J. Math., 62 (1976), 275-284.
[13] W. Wilczyński, Density topologies, Edited by Pap E. Handbook of measure theory, Elsevier Science B.V., Amsterdam (2002), ch.15.

