F. S. Cater, Department of Mathematics, Portland State University, Portland, Oregon, 97207.

ON CONTINUOUS N-FUNCTIONS AND AN EXAMPLE OF MAZURKIEWICZ

Abstract

Let f and g be continuous real functions on the interval $[a, b]$, and let K denote the set of all knot points of f. Let E be a set of measure zero for which $f(E)$ has measure zero and $(f+g)(E)$ does not, and let g be differentiable at each point of E closure. We prove that K must meet E, and moreover the intersection of K with the closure of E must contain a nonvoid perfect subset. Thus in particular, the function of Mazurkiewicz is a continuous N-Function with as many knot points as there are real numbers.

In [M] Mazurkiewicz constructed a continuous N-Function F such that $F+a I$ is not an N-function if $a \neq 0$. (Here I denotes the identity function.) In the present note we carry this idea further by using knot points.

We say that the point x is a knot point of the continuous function f if the upper Dini derivatives of f at x (denoted $D^{+} f(x)$ and $\left.D^{-} f(x)\right)$ are ∞ and the lower Dini derivatives of f at x (denoted $D_{+} f(x)$ and $\left.D_{-} f(x)\right)$ are $-\infty$. (See also [Y, p. 168].) Perhaps the most familiar example of a knot point is 0 for the function $\sqrt{|x|} \sin \frac{1}{x}$.

We begin with three easy lemmas. Their proofs are included for the sake of completeness.

Lemma 1. Let f and h be continuous functions on $[a, b]$ and let E be a set of measure zero such that $f(E)$ has measure zero but $h(E)$ does not. Then there exists a compact subset A of E closure (denoted E^{-}) such that A and $f(A)$ have measure zero but $h(A)$ does not.

[^0]Proof. Let U_{n} and V_{n} be open neighborhoods of E and $f(E)$ respectively such that $m\left(U_{n}\right)<\frac{1}{2^{n}}$ and $m\left(V_{n}\right)<\frac{1}{2^{n}}$, where m denotes Lebesgue outer measure. Let B_{1} denote the closure of the union of finitely many components of the set $U_{1} \cap f^{-1}\left(V_{1}\right)$ that meet E such that

$$
m\left(h\left(E \cap B_{1}\right)\right)>\left(1-\frac{1}{5}\right) m(h(E)) .
$$

Let B_{2} denote the closure of the union of finitely many components of the set $U_{2} \cap f^{-1}\left(V_{2}\right) \cap B_{1}$ that meet E such that

$$
m\left(h\left(E \cap B_{2}\right)\right)>\left(1-\frac{1}{5^{2}}\right) m\left(h\left(E \cap B_{1}\right)\right) .
$$

In general, let B_{n} denote the closure of the union of finitely many components of the set $U_{n} \cap f^{-1}\left(V_{n}\right) \cap B_{n-1}$ that meet E such that

$$
m\left(h\left(E \cap B_{n}\right)\right)>\left(1-\frac{1}{5^{n}}\right) m\left(h\left(E \cap B_{n-1}\right)\right) .
$$

Put $A=\cap_{n} B_{n}$.
Now A is the intersection of a contracting sequence of nonvoid compact sets, so A is compact. For any $a \in A$ and any index n, a lies in a component of B_{n} shorter than $\frac{1}{2^{n}}$ that contains points of E. Thus $a \in E^{-}$and $A \subset E^{-}$. Also

$$
m(A) \leq m\left(U_{n}\right)<\frac{1}{2^{n}} \quad \text { and } \quad m(f(A)) \leq m\left(V_{n}\right)<\frac{1}{2^{n}}
$$

for each index n, so $m(A)=m(f(A))=0$.
It follows from the construction that $\inf _{n} m\left(h\left(E \cap B_{n}\right)\right)>0$, so

$$
m\left(\cap_{n} h\left(B_{n}\right)\right)>0
$$

Let $b \in \cap_{n} h\left(B_{n}\right)$. Then $h^{-1}(b)$ is a compact set that meets B_{n} for all n. But $\left(B_{n}\right)$ is a contracting sequence of compact sets, and it follows that $h^{-1}(b)$ meets $\cap_{n} B_{n}$ and $b \in h\left(\cap_{n} B_{n}\right)$. Thus $\cap_{n} h\left(B_{n}\right)=h\left(\cap_{n} B_{n}\right)=h(A)$. Finally, $m(h(A))>0$.

Lemma 2. Let h be a continuous function on $[a, b]$. Let A be a compact set for which $m(h(A))>0$, and let $\left(D_{n}\right)$ be a sequence of closed sets such that $m\left(h\left(A \cap D_{n}\right)\right)=0$ for each n. Then there is a compact set $A_{0} \subset A \backslash \cup_{k} D_{k}$ such that $m\left(h\left(A_{0}\right)\right)>0$.

Proof. Observe that

$$
\bigcup_{k}\left\{x \in A: \text { distance from } x \text { to } D_{1} \text { is } \geq \frac{1}{k}\right\}=A \backslash D_{1}
$$

and each set in the union is compact. It follows that there is a compact set $P_{1} \subset A \backslash D_{1}$ such that

$$
m\left(h\left(P_{1}\right)\right)>\left(1-\frac{1}{5}\right) m\left(h\left(A \backslash D_{1}\right)\right)=\left(1-\frac{1}{5}\right) m(h(A)) .
$$

In general, for each index $n>1$, choose a compact set $P_{n} \subset P_{n-1} \backslash D_{n}$ such that

$$
m\left(h\left(P_{n}\right)\right)>\left(1-\frac{1}{5^{n}}\right) m\left(h\left(P_{n-1} \backslash D_{n}\right)\right)=\left(1-\frac{1}{5^{n}}\right) m\left(h\left(P_{n-1}\right)\right)
$$

It follows from the construction that $m\left(\cap_{n} h\left(P_{n}\right)\right)>0$.
Put $A_{0}=\cap_{n} P_{n}$. By an argument essentially the same as the argument in the last paragraph in the proof of Lemma 1,

$$
\cap_{n} h\left(P_{n}\right)=h\left(\cap_{n} P_{n}\right)=h\left(A_{0}\right) .
$$

Finally, $m\left(h\left(A_{0}\right)\right)>0$, and A_{0} is a compact subset of $A \backslash \cup_{n} D_{n}$.
Lemma 3. Let g and h be continuous functions on $[a, b]$ and let g be differentiable at each point of a set E. Then there exists a sequence of closed sets $\left(S_{n}\right)$ such that for each n, g is absolutely continuous on $E \cap S_{n}$, h is of bounded variation on $E \cap S_{n}$, and every point in $E \backslash \cup_{n} S_{n}$ is a knot point of h.

Proof. For integers $i, j>0$, put

$$
T_{i j}=\left\{x: \frac{h(x+r)-h(x)}{r} \leq i \text { for any } r \text { satisfying } 0<r \leq \frac{1}{j}\right\}
$$

Then each set $T_{i j}$ is closed by continuity, h is of bounded variation on the set $E \cap T_{i j}$, and

$$
E \cap\left(\cup_{i j} T_{i j}\right)=\left\{x \in E: D^{+} h(x)<\infty\right\}
$$

In a similar manner we find a sequence $\left(V_{k}\right)$ of closed sets such that

$$
\begin{aligned}
E \cap\left(\cup_{k} V_{k}\right)=\{x \in E & \text { either } D^{+} h(x)<\infty \text { or } D^{-} h(x)<\infty \\
& \text { or } \left.D_{+} h(x)>-\infty \text { or } D_{-} h(x)>-\infty\right\}
\end{aligned}
$$

and h is of bounded variation on each set $E \cap V_{k}$. It follows that each point of $E \backslash\left(\cup_{k} V_{k}\right)$ is a knot point of h.

Likewise closed sets of the form

$$
W_{i j}=\left\{x:\left|\frac{g(x+r)-g(x)}{r}\right| \leq i \text { for any } r \text { satisfying } 0<r \leq \frac{1}{j}\right\}
$$

(for integers $i, j>0$) cover E because g is differentiable on E.
Certainly g is absolutely continuous on each set $E \cap W_{i j}$. Finally, the closed sets of the form $V_{k} \cap W_{i j}$ suffice.

We are now able to prove our main result.
Theorem I. Let f and g be continuous real valued functions on $[a, b]$ and let K be the set of all knot points of f. Let $E \subset[a, b]$ be a set of measure zero such that $f(E)$ has measure zero and g is differentiable at each point of E^{-}. Then
(1) the set $(f+g)(E \backslash K)$ has measure zero,
(2) if $(f+g)(E)$ does not have measure zero, then the set $K \cap E^{-}$has a nonvoid perfect subset.
(It follows that Mazurkiewicz' function F is a continuous N-Function with as many knot points as there are real numbers. Note that in Theorem I the hypothesis imposed on f is independent of the choice of g.)

Proof. By Lemma 3, there exists a sequence of closed sets $\left(S_{n}\right)$ such that for each n, g is absolutely continuous on $E \cap S_{n}$ and f is of bounded variation on $E \cap S_{n}$, and each point of $E \backslash \cup_{n} S_{n}$ is a knot point of f. For (1) it suffices to prove that $(f+g)\left(E \cap S_{n}\right)$ has measure zero for each n.

We proceed by contradiction. Let N be an index for which $(f+g)\left(E \cap S_{N}\right)$ does not have measure zero. By Lemma 1, there is a compact subset A of $\left(E \cap S_{N}\right)^{-}$such that A and $f(A)$ have measure zero but $(f+g)(A)$ does not. Now f is of bounded variation on $E \cap S_{N}$ and A is a subset of $\left(E \cap S_{N}\right)^{-}$. It follows that f is of bounded variation on A; likewise g is absolutely continuous on $E \cap S_{N}$ and on A. But f is a continuous N-function on A because $f(A)$ has measure zero. It follows from $[\mathrm{S},(6.7)$ chapter VII$]$ that f is an absolutely continuous function on A. Then $f+g$ is absolutely continuous on A. Again by $[\mathrm{S},(6.7)$ chapter VII $],(f+g)(A)$ has measure zero, contrary to the choice of A. This contradiction proves (1).

To prove (2) we assume that $(f+g)(E)$ does not have measure zero. By Lemma 1 , there is a compact subset B of E^{-}such that B and $f(B)$ have measure zero but $(f+g)(B)$ does not. By Lemma 3 , there exists a sequence of closed sets $\left(T_{n}\right)$ such that for each n, g is absolutely continuous on $B \cap T_{n}$, and $f+g$ is of bounded variation on $B \cap T_{n}$, and such that each point of
$B \backslash \cup_{n} T_{n}$ is a knot point of the functions $f+g$ and f. From an argument in the preceding paragraph we see $(f+g)\left(B \cap T_{n}\right)$ has measure zero for each n. Hence $(f+g)\left(B \backslash \cup_{n} T_{n}\right)$ does not have measure zero. By Lemma 2, there is a compact subset X of $B \backslash \cup_{n} T_{n}$ such that $(f+g)(X)$ does not have measure zero. Then X must be uncountable, so X contains a nonvoid perfect subset Y. Finally,

$$
Y \subset X \subset B \backslash\left(\cup_{n} T_{n}\right) \subset K \text { and } Y \subset B \subset E^{-}
$$

This proves (2).

The following corollaries are immediate.

Corollary 1. Let f be a continuous N-function and let g be a differentiable function on $[a, b]$. Let K be the set of all knot points of f. Then $f+g$ is an N-function on the set $[a, b] \backslash K$.

Corollary 2. In Corollary 1, let K have no nonvoid perfect subset. Then $f+g$ is an N-function on $[a, b]$.

Corollary 3. Let p be a continuous function that is not an N-function on $[a, b]$, let K be the set of all knot points of p, and let $m(p(K))=0$. Let g be a differentiable function on $[a, b]$. Then $p-g$ is not an N-function on $[a, b]$.

To see this, put $f=p-g$ in the proof of Theorem I. We leave the argument.

We conclude with one further observation. Let L be the set of all N functions f on $[a, b]$ such that $f+h$ is an N -function for every N -function h on $[a, b]$. Then L is closed under addition; for if f_{1} and f_{2} lie in L, then for any N -function $h, f_{2}+h$ and

$$
\left(f_{1}+f_{2}\right)+h=f_{1}+\left(f_{2}+h\right)
$$

are N -functions on $[a, b]$. Obviously if f lies in L and if c is any real number, then $c f$ lies in L. Thus L can be regarded as a linear space that contains all the constant functions. However L does not contain Mazurkiewicz' function F or the identity function I.

References

[M] S. Mazurkiewicz, Sur les fonctions qui satisfont à la condition (N), Fund. Math., 16, (1930), 348-352.
[S] S. Saks, Theory of the Integral, 2nd rev. ed., Dover, NewYork, 1964.
[Y] G. C. Young, On infinite derivates, Quart. Jour. Math., 47 (1916), 127175.

[^0]: Key Words: continuous N-function, bounded variation, absolutely continuous, knot point, measure, Dini derivate.

 Mathematical Reviews subject classification: 26A24, 26A45, 26A46, 26A27.
 Received by the editors March 1, 2004
 Communicated by: B. S. Thomson

