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ON CONTINUOUS N-FUNCTIONS AND AN
EXAMPLE OF MAZURKIEWICZ

Abstract

Let f and g be continuous real functions on the interval [a, b], and
let K denote the set of all knot points of f . Let E be a set of measure
zero for which f(E) has measure zero and (f + g)(E) does not, and let
g be differentiable at each point of E closure. We prove that K must
meet E, and moreover the intersection of K with the closure of E must
contain a nonvoid perfect subset. Thus in particular, the function of
Mazurkiewicz is a continuous N-Function with as many knot points as
there are real numbers.

In [M] Mazurkiewicz constructed a continuous N-Function F such that F +aI
is not an N-function if a 6= 0. (Here I denotes the identity function.) In the
present note we carry this idea further by using knot points.

We say that the point x is a knot point of the continuous function f if the
upper Dini derivatives of f at x (denoted D+f(x) and D−f(x)) are ∞ and
the lower Dini derivatives of f at x (denoted D+f(x) and D−f(x)) are −∞.
(See also [Y, p. 168].) Perhaps the most familiar example of a knot point is 0
for the function

√
|x| sin 1

x .
We begin with three easy lemmas. Their proofs are included for the sake

of completeness.

Lemma 1. Let f and h be continuous functions on [a, b] and let E be a set of
measure zero such that f(E) has measure zero but h(E) does not. Then there
exists a compact subset A of E closure (denoted E−) such that A and f(A)
have measure zero but h(A) does not.
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Proof. Let Un and Vn be open neighborhoods of E and f(E) respectively
such that m(Un) < 1

2n and m(Vn) < 1
2n , where m denotes Lebesgue outer

measure. Let B1 denote the closure of the union of finitely many components
of the set U1 ∩ f−1(V1) that meet E such that

m
(
h(E ∩B1)

)
>

(
1− 1

5

)
m

(
h(E)

)
.

Let B2 denote the closure of the union of finitely many components of the set
U2 ∩ f−1(V2) ∩B1 that meet E such that

m
(
h(E ∩B2)

)
>

(
1− 1

52

)
m

(
h(E ∩B1)

)
.

In general, let Bn denote the closure of the union of finitely many components
of the set Un ∩ f−1(Vn) ∩Bn−1 that meet E such that

m
(
h(E ∩Bn)

)
>

(
1− 1

5n

)
m

(
h(E ∩Bn−1)

)
.

Put A = ∩nBn.
Now A is the intersection of a contracting sequence of nonvoid compact

sets, so A is compact. For any a ∈ A and any index n, a lies in a component
of Bn shorter than 1

2n that contains points of E. Thus a ∈ E− and A ⊂ E−.
Also

m(A) ≤ m(Un) <
1
2n

and m
(
f(A)

)
≤ m(Vn) <

1
2n

for each index n, so m(A) = m(f(A)
)

= 0.
It follows from the construction that infn m

(
h(E ∩Bn)

)
> 0, so

m
(
∩nh(Bn)

)
> 0 .

Let b ∈ ∩nh(Bn). Then h−1(b) is a compact set that meets Bn for all n.
But (Bn) is a contracting sequence of compact sets, and it follows that h−1(b)
meets ∩n Bn and b ∈ h

(
∩nBn

)
. Thus ∩n h(Bn) = h

(
∩nBn

)
= h(A) . Finally,

m
(
h(A)

)
> 0 .

Lemma 2. Let h be a continuous function on [a, b]. Let A be a compact set
for which m

(
h(A)

)
> 0, and let (Dn) be a sequence of closed sets such that

m
(
h(A ∩ Dn)

)
= 0 for each n. Then there is a compact set A0 ⊂ A \ ∪kDk

such that m
(
h(A0)

)
> 0 .
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Proof. Observe that⋃
k

{
x ∈ A : distance from x to D1 is ≥ 1

k

}
= A \D1 ,

and each set in the union is compact. It follows that there is a compact set
P1 ⊂ A \D1 such that

m
(
h(P1)

)
>

(
1− 1

5

)
m

(
h(A \D1)

)
=

(
1− 1

5

)
m

(
h(A)

)
.

In general, for each index n > 1, choose a compact set Pn ⊂ Pn−1 \Dn such
that

m
(
h(Pn)

)
>

(
1− 1

5n

)
m

(
h(Pn−1 \Dn)

)
=

(
1− 1

5n

)
m

(
h(Pn−1)

)
.

It follows from the construction that m
(
∩nh(Pn)

)
> 0.

Put A0 = ∩nPn. By an argument essentially the same as the argument in
the last paragraph in the proof of Lemma 1,

∩nh(Pn) = h
(
∩nPn

)
= h(A0) .

Finally, m
(
h(A0)

)
> 0, and A0 is a compact subset of A \ ∪nDn .

Lemma 3. Let g and h be continuous functions on [a, b] and let g be differen-
tiable at each point of a set E. Then there exists a sequence of closed sets (Sn)
such that for each n, g is absolutely continuous on E ∩ Sn, h is of bounded
variation on E ∩ Sn, and every point in E \ ∪nSn is a knot point of h.

Proof. For integers i, j > 0, put

Tij =
{

x :
h(x + r)− h(x)

r
≤ i for any r satisfying 0 < r ≤ 1

j

}
.

Then each set Tij is closed by continuity, h is of bounded variation on the set
E ∩ Tij , and

E ∩
(
∪ijTij

)
=

{
x ∈ E : D+h(x) < ∞

}
.

In a similar manner we find a sequence (Vk) of closed sets such that

E ∩
(
∪kVk

)
=

{
x ∈ E : either D+h(x) < ∞ or D−h(x) < ∞

or D+h(x) > −∞ or D−h(x) > −∞
}

,

and h is of bounded variation on each set E ∩ Vk. It follows that each point
of E \ (∪kVk) is a knot point of h.
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Likewise closed sets of the form

Wij =
{

x :
∣∣∣g(x + r)− g(x)

r

∣∣∣ ≤ i for any r satisfying 0 < r ≤ 1
j

}
(for integers i, j > 0) cover E because g is differentiable on E.

Certainly g is absolutely continuous on each set E∩Wij . Finally, the closed
sets of the form Vk ∩Wij suffice.

We are now able to prove our main result.

Theorem I. Let f and g be continuous real valued functions on [a, b] and let
K be the set of all knot points of f . Let E ⊂ [a, b] be a set of measure zero
such that f(E) has measure zero and g is differentiable at each point of E−.
Then

(1) the set (f + g)(E \K) has measure zero,

(2) if (f + g)(E) does not have measure zero, then the set K ∩ E− has a
nonvoid perfect subset.

(It follows that Mazurkiewicz’ function F is a continuous N-Function with
as many knot points as there are real numbers. Note that in Theorem I the
hypothesis imposed on f is independent of the choice of g.)

Proof. By Lemma 3, there exists a sequence of closed sets (Sn) such that
for each n, g is absolutely continuous on E ∩Sn and f is of bounded variation
on E ∩ Sn, and each point of E \ ∪nSn is a knot point of f . For (1) it suffices
to prove that (f + g)(E ∩ Sn) has measure zero for each n.

We proceed by contradiction. Let N be an index for which (f +g)(E∩SN )
does not have measure zero. By Lemma 1, there is a compact subset A of
(E ∩ SN )− such that A and f(A) have measure zero but (f + g)(A) does not.
Now f is of bounded variation on E ∩ SN and A is a subset of (E ∩ SN )−. It
follows that f is of bounded variation on A; likewise g is absolutely continuous
on E ∩ SN and on A. But f is a continuous N -function on A because f(A)
has measure zero. It follows from [S, (6.7) chapter VII] that f is an absolutely
continuous function on A. Then f + g is absolutely continuous on A. Again
by [S, (6.7) chapter VII], (f + g)(A) has measure zero, contrary to the choice
of A. This contradiction proves (1).

To prove (2) we assume that (f + g)(E) does not have measure zero. By
Lemma 1, there is a compact subset B of E− such that B and f(B) have
measure zero but (f + g)(B) does not. By Lemma 3, there exists a sequence
of closed sets (Tn) such that for each n, g is absolutely continuous on B ∩ Tn,
and f + g is of bounded variation on B ∩ Tn, and such that each point of
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B \ ∪nTn is a knot point of the functions f + g and f . From an argument in
the preceding paragraph we see (f + g)(B ∩ Tn) has measure zero for each n.
Hence (f + g)(B \ ∪nTn) does not have measure zero. By Lemma 2, there is
a compact subset X of B \ ∪nTn such that (f + g)(X) does not have measure
zero. Then X must be uncountable, so X contains a nonvoid perfect subset
Y . Finally,

Y ⊂ X ⊂ B \
(
∪nTn

)
⊂ K and Y ⊂ B ⊂ E− .

This proves (2).

The following corollaries are immediate.

Corollary 1. Let f be a continuous N-function and let g be a differentiable
function on [a, b]. Let K be the set of all knot points of f . Then f + g is an
N-function on the set [a, b] \K .

Corollary 2. In Corollary 1, let K have no nonvoid perfect subset. Then
f + g is an N-function on [a, b].

Corollary 3. Let p be a continuous function that is not an N-function on
[a, b], let K be the set of all knot points of p, and let m

(
p(K)

)
= 0. Let g be

a differentiable function on [a, b]. Then p− g is not an N-function on [a, b].

To see this, put f = p− g in the proof of Theorem I. We leave the argument.

We conclude with one further observation. Let L be the set of all N -
functions f on [a, b] such that f + h is an N-function for every N-function h
on [a, b]. Then L is closed under addition; for if f1 and f2 lie in L, then for
any N-function h, f2 + h and

(f1 + f2) + h = f1 + (f2 + h)

are N-functions on [a, b]. Obviously if f lies in L and if c is any real number,
then cf lies in L. Thus L can be regarded as a linear space that contains all
the constant functions. However L does not contain Mazurkiewicz’ function
F or the identity function I.
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