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SUBDIFFERENTIABILITY OF REAL
FUNCTIONS

Abstract

In this paper, we show that nowhere monotone functions are the key
ingredients to construction of continuous functions, absolutely continu-
ous functions, and Lipschitz functions with large subdifferentials on the
real line. Let ∂cf, ∂af denote the Clarke subdifferential and approxi-
mate subdifferential respectively. We construct absolutely continuous
functions on R such that ∂af = ∂cf ≡ R. In the Banach space of con-
tinuous functions defined on [0, 1], denoted by C[0, 1], with the uniform
norm, we show that there exists a residual and prevalent set D ⊂ C[0, 1]
such that ∂af = ∂cf ≡ R on [0, 1] for every f ∈ D. In the space of auto-
morphisms we prove that most functions f satisfy ∂af = ∂cf ≡ [0, +∞)
on [0, 1]. The subdifferentiability of the Weierstrass function and the
Cantor function are completely analyzed. Similar results for Lipschitz
functions are also given.

1 Introduction.

Nonsmooth analysis deals with nondifferentiabilities. Little has been written
on the subdifferentiabilities of the classical nondifferentiable examples. In this
paper, we study the subdifferentiabilities of nowhere monotone functions as
they provide the best test ground of generalized subdifferentials. Subdifferen-
tials have been defined for lower semicontinuous functions in arbitrary Banach
spaces [9, 20, 21, 27, 28]. Since we work on continuous functions on real line,
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we do not see any advantage in presenting a general definition. We recall the
definitions of subdifferentials that we need and present basic comments on
them. For more properties on subgradients and subderivatives of functions on
Rn, we refer the readers to [35, pages 299–348].

Let U be open in Rn and f : U → R be continuous. At x ∈ U , the Dini-
Hadamard type lower derivative and upper derivative of f at x in the direction
v ∈ Rn are defined by

f−(x; v) := lim inf
t↓0,h→v

f(x + th)− f(x)
t

,

f+(x; v) := lim sup
t↓0,h→v

f(x + th)− f(x)
t

.

When f−(x; v) = f+(x; v), we write f ′(x; v). We define the Dini-Hadamard
subdifferential of f at x as

∂−f(x) := {x∗ ∈ Rn : 〈x∗, v〉 ≤ f−(x; v) for every v ∈ Rn}.

The Rockafellar directional derivative of f at x in the direction v and the
Clarke-Rockafellar subdifferential of f at x [35, page 337] are given respectively
by

f↑(x; v) := lim
ε↓0

lim sup
y→x,t↓0

inf
w∈v+εB

f(y + tw)− f(y)
t

,

∂cf(x) := {x∗ ∈ Rn : 〈x∗, v〉 ≤ f↑(x; v) for all v ∈ Rn}.

When f is locally Lipschitz at x, f↑(x; v) and ∂cf reduce to the Clarke direc-
tional derivative and Clarke subdifferential ∂cf given by

f0(x; v) := lim sup
y→x,t↓0

f(y + tv)− f(y)
t

,

∂cf(x) := {x∗ ∈ Rn : 〈x∗, v〉 ≤ f0(x; v) for all v ∈ Rn}.

The Michel-Penot directional derivative of f at x in the direction v and
subdifferential at x are given respectively by:

f�(x; v) := sup
w

lim sup
t↓0

f(x + tw + tv)− f(x + tw)
t

, (1)

∂mpf(x) := {x∗ : 〈x∗, v〉 ≤ f�(x; v) for all v ∈ Rn}.

In general, the Michel-Penot subdifferential is smaller than the Clarke subdif-
ferential. Unlike ∂cf , the Michel-Penot subdifferential ∂mpf(x) is singleton if
and only if f is Gâteaux differentiable at x.
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A special type of viscosity subdifferential is the proximal subdifferential:
x∗ ∈ Rn is called a proximal subgradient of f at x if for some σ > 0 and δ > 0
one has

f(y) ≥ f(x) + 〈x∗, y − x〉 − σ‖y − x‖2,

when ‖y − x‖ < δ. We write x∗ ∈ ∂pf(x).
The Mordukhovich sequential (or approximate) subdifferential [26] of f at

x, denoted by ∂af(x), is defined by

{ lim
n→∞

x∗n : x∗n ∈ ∂pf(xn), xn → x},

and it has an equivalent characterization given by

∂af(x) := { lim
n→∞

x∗n : x∗n ∈ ∂−f(xn), xn → x}. (2)

Both ∂cf and ∂af enjoy nice calculus rules. Unlike ∂cf , ∂af needs not be
convex-valued. Extension of the limiting subdifferential to infinite dimen-
sional spaces (in the form of limiting Fréchet subdifferential) was done in [27].
Ioffe made another line of developments of Mordukhovich’s constructions to
infinite-dimensional spaces in [20, 21]. See [28, 35] for the full account of these
constructions and relationships among them.

If f is convex, the subdifferential of f at x is defined as

∂f(x) := {x∗ : 〈x∗, y − x〉 ≤ f(y)− f(x) for all y ∈ U}. (3)

A convex function f on an open convex subset U of a Banach space X is
Gâteaux differentiable at x ∈ U if and only if f has a unique subgradient
[30]. If f is a continuous convex function on an open set U , then f is locally
Lipschitz [9], and all generalized subdifferentials become ∂f [30, 9, 21]. For
any continuous function f : U → R, we have

∂pf(x) ⊂ ∂−f(x) ⊂ ∂af(x) ⊂ ∂cf(x), and

∂cf(x) 6= ∅ ⇒ ∂af(x) 6= ∅.

When f is locally Lipschitz at x, both ∂cf and ∂af are upper semi-continuous
and compact-valued multifunctions, and ∂cf(x) = conv[∂af(x)], where ‘conv’
denotes convex hull.

When f is locally Lipschitz at x,

f−(x; ·) ≤ f+(x; ·) ≤ f�(x; ·) ≤ f0(x; ·),

always hold. We say that f is regular at x if f−(x; v) = f0(x; v) for each
v ∈ Rn, and f is pseudo-regular at x if f+(x; v) = f0(x; v) for each v ∈ Rn.
Whenever ∂cf(x) 6= ∅, f is regular at x if and only if ∂−f(x) = ∂cf(x).
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For f : U ⊂ R → R and x ∈ U , we will frequently use the following Dini
derivatives:

f+(x) := lim sup
h→0+

f(x + h)− f(x)
h

, f+(x) := lim inf
h→0+

f(x + h)− f(x)
h

,

f−(x) := lim sup
h→0−

f(x + h)− f(x)
h

, f−(x) := lim inf
h→0−

f(x + h)− f(x)
h

,

f
′
(x) := max{f+(x), f−(x)} f ′(x) := min{f−(x), f+(x)}.

By “differentiable” we will always mean “having a finite derivative”. Different
choices of w in Equation (1) provide inequalities linking the Michel-Penot
subderivative with the Dini derivates of f at x:

f�(x; 1) ≥ max{f+(x), f−(x)}, and f�(x;−1) ≥ max{−f−(x),−f+(x)}.
(4)

In the sequel, if a property is valid for all points in a complete metric
space (respectively a measure space) except for a subset of the first category
(respectively a set of measure zero), we shall say that the property holds
typically or residually (respectively almost everywhere, abbreviated a.e.). The
complement of a first-category set is called a residual set. For a set A ⊂ R,
we will use µ(A) to denote its Lebesgue measure.

The paper is laid out as follows. Section 2 is a brief introduction on nowhere
monotone functions while in Section 3 basic properties of nowhere monotone
functions are given. The concrete constructions of nowhere monotone func-
tions with large subdifferentials are given in Sections 4, 5. Utilizing nowhere
monotone functions of second species, in Sections 6, 7, 8, 9 we show that
typical continuous functions in the spaces of nondecreasing continuous func-
tions, automorphisms, or continuous functions have large subdifferentials. In
Section 10, we show that Lipschitz functions with large subdifferentials are
also typical in the space of Lipschitz functions with controlled rank. In Sec-
tion 11, we answer one question posed in Sciffer’s thesis. At the end, we cite
Rockafellar’s result on convex functions for comparison, and give some open
problems concerning ∂af , ∂cf .

2 Nowhere Monotone Functions.

Definition 2.1. We say a finite real function f defined on [0, 1] is nowhere
monotone if f is not monotone in any subinterval of [0, 1]. A nowhere mono-
tone function f is of the first species in [0, 1] if there exists a real number r
such that the function f(x) + r · x becomes monotone in [0, 1], and is of the
second species in [0, 1] provided that for every r ∈ R the function f(x) + r · x
is also nowhere monotone.
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From the definition, we see that if a nowhere monotone f is not the second
species on [0, 1], then for some r the function f(x) + rx is monotonic on some
subinterval I ⊂ [0, 1]. Thus the complement of the second species need not be
the first species. Since every nondifferentiable function f is nowhere monotone
and for every r ∈ R the function f(x) + r · x is also nowhere monotone in
[0, 1], every nondifferentiable function f is a nowhere monotone function of
the second species.

Definition 2.2. A continuous function f defined on [0, 1] is said to be nonde-
creasing at x ∈ [0, 1] if there exists a δ > 0 such that f(t) ≤ f(x) on (x−δ, x)∩
[0, 1] and f(t) ≥ f(x) on (x, x+ δ)∩ [0, 1]; that is, (f(t)−f(x))/(t−x) ≥ 0 for
all t 6= x in some neighborhood of x. The function f is nonincreasing at x if
−f is nondecreasing at x, and f is monotonic at x if it is either nondecreasing
or nonincreasing at x. We shall say that f is of monotonic type at x if there
exists ν ∈ R such that fν(x) := f(x) + ν · x is monotonic at x. If f is not of
monotonic type at any point of [0, 1], we say f is of nonmonotonic type [5].

Note that if f is not monotonic type at x, then f does not simply cross any
line at (x, f(x)). Recall Corollary 4.3 [5, page 129]: Suppose f is continuous
on [a, b], f+ ≥ 0 almost everywhere and f+ > −∞ except, perhaps, on a
countable set. Then f is nondecreasing.

Proposition 2.3. Monotonic type at no point ⇒ monotonic at no point ⇒
nowhere monotone of second species ⇒ nowhere monotone.

Proof. Only the second ‘ ⇒’ needs a proof. Let f be monotonic at no
point. If f is not nowhere monotone of second species, then there exists m
such that f(x) − mx is monotone on some subinterval [a, b]. Without loss
of generality we assume that f(x) − mx is nondecreasing on [a, b]. Then
f(x)−mx, and therefore f is differentiable almost everywhere on [a, b]. Since
f is monotonic at no point, f ′(x) = 0 almost everywhere on [a, b]. Moreover,
since f(x) − mx is nondecreasing on [a, b], f+(x) ≥ m everywhere on [a, b].
Thus, f is nondecreasing on [a, b], which is a contradiction.

The following shows the nonreversibility of the implications in Proposi-
tion 2.3.

Example 2.4. (1) Every differentiable nowhere monotone function is not
nowhere monotone of second species. Indeed, if f is nowhere monotone, then

D = {x : f ′(x) = 0, f ′ is continuous at x},

is residual. Given m > 0, for every x ∈ D there exists a neighborhood Nx of
x in which |f ′(y)| < m/2. Since f ′ is continuous at x, f(y) + my is increasing
on Nx.
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(2) Theorem 4.2 will give an absolutely continuous nowhere monotone func-
tion f of second species, but f is monotonic at each x with f ′(x) > 0 or
f ′(x) < 0.

(3) Let M ⊂ [0, 1] be a first category Fσ set. Then there exists a continuous
function f : [0, 1] → R such that f ′(x) = 0 for x ∈ M , f is nonmonotone at
each x ∈ M and f is of nonmonotonic type at each x ∈ [0, 1] \M [4]. Thus, f
is monotonic at no point, but f is monotonic type at each x ∈ M .

3 Properties of Nowhere Monotone Functions.

We now give some key properties of continuous and nowhere monotone func-
tions used in the paper.

Definition 3.1. A function f is nondecreasing (nonincreasing) on the right of
a point t if there exists a real number h > 0 such that f(x) ≥ f(t) (f(x) ≤ f(t))
for t < x < t + h. If f is neither nondecreasing nor nonincreasing on the right
of t, we say f is oscillating on the right of t or is O+ at t. The property that
f is oscillating on the left of t or is O− at t is defined in a similar way.

The following lemma may be found in [10]. Here we supply a simpler proof.

Lemma 3.2. If f : [0, 1] → R is continuous and nowhere monotone, then the
set of points at which f is both O+ and O− is residual in [0, 1]. In particular,
there exists a residual set G ⊂ [0, 1] such that

f−(x) ≤ 0 ≤ f−(x) and f+(x) ≤ 0 ≤ f+(x) if x ∈ G.

Proof. We show that E := {x ∈ [0, 1] :f is nondecreasing on the right of x}
is first category. Let En := {x ∈ [0, 1] : f(t) ≥ f(x) for x < t < x + 1/n}.
Then E =

⋃∞
n=1 En.

First, En is closed. Indeed, assume xk ∈ En and xk → x. For 0 < t− x <
1/n, when k is large we have 0 < t − xk < 1/n, so f(t) ≥ f(xk). By the
continuity of f we have f(t) ≥ f(x). Next, En is nondense in [0, 1]. Let I ′ be
an arbitrary interval contained in [0, 1], and J = [a, b] ⊂ I ′ with b− a < 1/n.
Since f is nowhere monotone in [0, 1], it is not nondecreasing in J , so there exist
points c, d ∈ J, c < d such that f(c) > f(d). Let m := min{f(t) : t ∈ [c, d]}.
Since f(c) > f(d) ≥ m, there exists c′ ∈ [c, d] such that f(x) > m if x ∈ [c, c′].
Choosing t ∈ [c, d] with f(t) = m we then have t > c′. If x ∈ [c, c′], then
0 < t−x < 1/n and f(t) = m < f(x), so x 6∈ En. Therefore En is nondense in
[0, 1]. Similar arguments show that the set of points at which f is nonincreasing
on the right is first category. Then f is O+ at a residual subset G+ ⊂ [0, 1].
If t ∈ G+, then (t, t + h) contains two points t1, t2 with f(t1) < f(t) < f(t2)
for every h > 0. As f is continuous, there exists x ∈ (t, t + h) such that
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f(x) = f(t). Therefore f+(t) ≤ 0 ≤ f+(t). Similarly, we obtain a residual
subset G− ⊂ [0, 1] such that f−(t) ≤ 0 ≤ f−(t) if t ∈ G−. Then the claim
holds on G− ∩G+.

Lemma 3.3. If f is continuous and nowhere monotone on [0, 1], then the set
of points at which f attains local minima is dense in (0, 1).

Proof. Take an arbitrary x ∈ (0, 1) and h > 0 such that [x−h, x+h] ⊂ (0, 1).
We will show that f has a local minimum in (x−h, x+h). Since f is nowhere
monotone in [x, x + h], it can not be non-increasing in [x, x + h], and so there
exist points c, d ∈ [x, x + h] such that c < d and f(c) < f(d). There exists
δ > 0 such that f(t) > f(c) on [d − δ, d] and d − δ > c. On [x − h, x]
the same arguments show that there exist c′ > d′ with c′, d′ ∈ [x − h, x]
such that f(c′) < f(d′). There exists δ′ > 0 such that f(t) > f(c′) on
[d′, d′ + δ′] and d′ + δ′ < c′. Hence the minimum of f on [d′, d] is attained in
(d′ + δ′, d− δ) ⊂ (x− h, x + h).

4 Rockafellar Type Functions.

In this section, we construct absolutely continuous functions on R such that
∂af = ∂cf ≡ R. We show that Rockafellar’s function is Dini subdifferentiable
only on a first category set. In the sequel, by a thick Cantor set we mean a
nowhere dense perfect set of positive measure. The following classical result
is well-known.

Lemma 4.1. The interval [0, 1] can be expressed as a disjoint union of mea-
surable sets, [0, 1] =

⋃∞
k=1 Bk, each of which has positive measure in every

subinterval of [0, 1].

Proof. We reproduce the simple proof given by Bruckner [6].
Let A1 be a thick Cantor set contained in [0, 1]. Let A2 := A0

2 ∪A1
2 where,

for i = 0, 1, Ai
2 is a thick Cantor set contained in (i/2, (i+1)/2) and such that

A1∩A2 = ∅. Inductively we obtain a sequence of sets {Ak} such that for each
k,

(i) Ak ∩ (A1 ∪A2 ∪ · · · ∪Ak−1) = ∅.

(ii) Ak is a union of thick Cantor sets, Ak := A0
k ∪A1

k ∪ · · · ∪Ak−1
k , with, for

each i = 0, 1, · · · , k − 1, Ai
k ⊂ (i/k, (i + 1)/k).

Such a sequence can be defined because for every k, the set A1∪A2∪· · ·∪Ak−1

is nowhere dense in [0, 1]. Now let A0 := [0, 1] \ (
⋃∞

k=1 Ak). Define a sequence
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of Bk by

B1 := A0

⋃
(
∞⋃

n=0

A2n+1), and Bk+1 :=
∞⋃

n=0

A2k(2n+1) for k ≥ 1.

By (i) the sequence {Ak} and therefore the sequence {Bk} is a disjoint sequence
of sets. Clearly, [0, 1] =

⋃∞
k=1 Bk. Let I ⊂ [0, 1] be a nondegenerate interval

and let |I| denote its length. Choose n0 so that 2/n0 < |I|. For each n ≥
n0, there exists a nonnegative integer in < n such that (in/n, (in + 1)/n) is
contained in I. It follows that the set An ∩ I has positive measure for every
n ≥ n0. Since for each k, the set Bk contains infinitely many of the sets An,
we infer that the set µ(Bk ∩ I) > 0.

Theorem 4.2. Let A := {a1, a2, . . .} be any sequence of real numbers. There
exists an absolutely continuous function F such that for every interval I ⊂
[0, 1] and every k, the set {x : F ′(x) = ak} ∩ I has positive measure.

Proof. Let Bk be a sequence of sets satisfying the conclusion of Lemma 4.1.
We may assume that |ak|µ(Bk) < 1/k2 for each k > 1. It follows that the
function f defined by f(x) := ak if x ∈ Bk is Lebesgue integrable, since∫ 1

0

|f(x)| dx ≤ |a1|µ(B1) +
∞∑

k=2

1
k2

< +∞.

Let F be defined by F (x) :=
∫ x

0
f(t) dt. Then F is absolutely continuous and

F ′(x) = f(x) a.e. in [0, 1] [36, pages 107–110]. In particular for each k, F ′

takes on the value ak at almost all points of Bk. The proof is completed since
Bk has positive measure in I.

Theorem 4.2 is very useful in constructing pathological examples. In the
sequel, by “infinitely many” we mean that the pairwise difference of these
functions is not a constant.

Corollary 4.3. There exist infinitely many strictly increasing and absolutely
continuous functions F such that ∂aF = ∂cF ≡ [0,∞). For each such a func-
tion F , the inverse function F−1 satisfies ∂aF−1 = ∂cF

−1 ≡ [0,∞) on the
range of F , which is F ([0, 1]).

Proof. Let A := {r ∈ (0,∞) : r is a rational number} = {ak}∞k=1. Note that
F (x) :=

∫ x

0
f(s) ds where f(x) := ak if x ∈ Bk. Let x, y ∈ [0, 1] and x < y.

Taking any rational ak > 0, we have

F (y)− F (x) =
∫ y

x

f(s) ds ≥
∫

(x,y)∩Bk

f(s) ds ≥ akµ(Bk ∩ (x, y)) > 0.
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Thus F is strictly increasing. In particular, ∂aF (x) ⊂ [0,∞). Theorem 4.2
and (2) imply [0,∞) ⊂ ∂aF (x). Thus ∂aF (x) = [0,∞) = ∂cF (x) for every
x ∈ [0, 1]. We proceed to compute ∂aF−1 and ∂cF

−1. Since F is absolutely
continuous, F maps sets of zero measure onto sets of zero measure and F (Bk)
is measurable. Because F is strictly increasing on [0, 1] and F ′(x) = ak at
almost every x ∈ Bk, we have

µ(F (Bk) ∩ [F (x), F (y)]) = µ(F (Bk ∩ [x, y])) = akµ(Bk ∩ [x, y]) > 0,

for any x < y ∈ [0, 1]. This shows that the range of F is a countable union
of disjoint measurable sets {F (Bk)}∞k=1, each with positive measure in every
subinterval of the range of F . On F (Bk) we have (F−1)′ = 1/ak almost
everywhere. The proof is completed by observing that {1/ak}∞k=1 is also dense
in [0,∞) and that F−1 is strictly increasing.

Corollary 4.4. There are infinitely many absolutely continuous functions
such that ∂aF = ∂cF ≡ R on [0, 1]. For each such a function F , there is
a residual set G such that ∂mpF (x) = R if x ∈ G.

Proof. Let A := {r ∈ R : r is rational}. Then for arbitrary rational r ∈ A,
Theorem 4.2 and (2) imply r ∈ ∂aF (x). Thus R ⊂ ∂aF (x) ⊂ ∂cF (x) ⊂ R. We
proceed to compute ∂mpF . For every r, the function Fr : [0, 1] → R defined
by Fr(x) := F (x) − rx is continuous. In every subinterval of [0, 1], there are
positive measure sets on which F ′

r > 0 and some positive measure sets on
which F ′

r < 0, thus Fr is a nowhere monotone function. By Lemma 3.2 the
sets

G−n := {x : F−(x) ≤ −n < n ≤ F−(x)}

and

Gn := {x : F+(x) ≤ −n < n ≤ F+(x)},

are residuals. The set G :=
⋂∞

n=1 Gn is residual in [0, 1], and at x ∈ G we
have F+(x) = F−(x) = +∞ and F+(x) = F−(x) = −∞. It follows from (4)
that F �(x; 1) ≥ +∞ and F �(x;−1) ≥ +∞, and so ∂�F (x) = R if x ∈ G.

Corollary 4.5. There exist infinitely many Lipschitz functions F on [0, 1]
such that ∂aF = ∂cF ≡ [−1, 1].

Proof. Choose A := {r ∈ [−1, 1] : r is a rational number}. For every x ∈
[0, 1] and r ∈ A, Theorem 4.2 and (2) imply r ∈ ∂aF (x). Since r is arbitrary
and ∂aF (x) ⊂ [−1, 1] is closed, we have ∂aF (x) = [−1, 1].
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When A = {−1, 1} the function F is called Rockafellar’s function. The
computation both of the approximate subdifferential and the Michel-Penot
subdifferential of Rockafellar’s function is not immediately clear. One indirect
way to compute its approximate subdifferential is to use the result given by
Borwein and Fitzpatrick [2]. Below we give a direct approach by using nowhere
monotone functions.

Theorem 4.6. Let f be Rockafellar’s function. Then:

(i) ∂cf = ∂af ≡ [−1, 1] on [0, 1].

(ii) The set G := {x : f+(x) = f−(x) = 1, f−(x) = f+(x) = −1} is a
residual set in [0, 1]. Thus, f is Dini subdifferentiable at most on a first
category subset.

(iii) For x ∈ G, ∂mpf(x) = [−1, 1].

Proof. (i). Choose − 1 < r < 1. Consider the function g defined by g(x) :=
f(x)+ rx. Since both {x : g′(x) = 1+ r > 0} and {x : g′(x) = −1+ r < 0} are
dense in [0, 1], g is nowhere monotone and so g has local minimizers densely on
[0, 1]. Let Sr denote those minimizers. If x ∈ Sr, we have f(y)+ry ≥ f(x)+rx
for y near by x. Then − r ∈ ∂−f(x). Since − 1 < r < 1 is arbitrary, we have
∂af(x) = [−1, 1].

(ii) and (iii). For n ≥ 2, both the functions given by f(x) + (−1 + 1/n)x
and f(x) + (1 − 1/n)x are continuous and nowhere monotone in [0, 1]. Thus
by Lemma 3.2

G−n := {x : f−(x) ≤ −1 + 1/n < 1− 1/n ≤ f−(x)},
Gn := {x : f+(x) ≤ −1 + 1/n < 1− 1/n ≤ f+(x)}.

are residuals in [0, 1]. If x ∈ G :=
⋂∞

n=2(Gn ∩ G−n), we have f−(x) ≤
−1, f−(x) ≥ 1, f+(x) ≤ −1, f+(x) ≥ 1. Since f has Lipschitz constant 1,
we deduce f−(x) = f+(x) = −1 and f−(x) = f+(x) = 1. Moreover, by (4),
1 ≥ f�(x; 1) ≥ max{f+(x), f−(x)} = 1, and

1 ≥ f�(x;−1) ≥ max{−f−(x),−f+(x)} = 1.

Hence ∂mpf(x) = [−1, 1].

One may compare Corollary 4.5 and Theorem 4.6 to Theorems 10.3, 10.4.
In many cases, Rockafellar’s function is the beginning point for building more
pathological Lipschitz functions. In the following, we give one of many such
applications.
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Lemma 4.7. Let F be continuously differentiable around z and g locally Lip-
schitz around F (z). Then ∂a(g ◦ F )(z) = F ′(z) · ∂ag(F (z)).

Proof. By Corollary 5.4 [20] we have ∂a(g ◦ F )(z) ⊂ F ′(z) · ∂ag(w) where
w = F (z). To prove the reverse inclusion, we consider two cases: (1) if
F ′(z) = 0: since g ◦ F is locally Lipschitz, ∅ 6= ∂ag ◦ F (z) ⊂ {0}. Thence
∂a(g ◦ F )(z) = {0}; (2) if F ′(z) 6= 0: By the inverse function theorem, F is
locally invertible around z. Write g(w) = g(F ◦ F−1(w)). Then

∂ag(w) ⊂ ∂a(g ◦ F )(F−1(w)) · (F−1)′(w) = ∂a(g ◦ F )(z) · 1
F ′(z)

,

That is, ∂ag(w) · F ′(z) ⊂ ∂a(g ◦ F )(z).

Theorem 4.8. Suppose f1 and f2 are continuous on R. There exists a locally
Lipschitz h : R → R with ∂ah(x) = conv{f1(x), f2(x)} for every x ∈ R.

Proof. Let f denote Rockafellar’s function. Let F (x) :=
∫ x

0
(f1(s)−f2(s)) ds,

k(x) := (f ◦F (x)+F (x))/2, and h(x) := k(x)+
∫ x

0
f2(s) ds. By Lemma 4.7 we

have ∂ak(x) = [0, 1] · (f1(x)− f2(x)), and so ∂ah(x) = conv{f1(x), f2(x)}.

5 The Michel-Penot Subdifferential on Null Sets.

We now show that given any null set there exists a Lipschitz function such that
its Michel-Penot subdifferential is large on that set. We start with a lemma
from [24, page 195].

Lemma 5.1. Let F ⊂ R be closed, T ⊂ R be measurable, F ∩ T = ∅, and let
ω be any real, positive increasing function on (0,+∞). Then there is an open
set U such that

T ⊂ U ⊂ (R \ F ) and µ((x− r, x + r) ∩ (U \ T )) ≤ ω(r),

whenever x ∈ F and r > 0.

Proof. Let dF be the distance function associated with the closed set F . For
n ∈ N we let Rn := {x ∈ R : dF (x) > 1/n}. For each n ∈ N there is an open
set Un ⊂ Rn such that

T ∩Rn ⊂ Un and µ(Un \ (T ∩Rn)) = µ(Un \ T ) < εn,

where {εn} is a sequence of positive numbers satisfying
∑∞

j=k εj < ω(1/k) for
each k ∈ N. We set U :=

⋃∞
n=1 Un. Obviously, T ⊂ U ⊂

⋃∞
n=1 Rn = R \ F.

Let x ∈ F and r > 0. There is a smallest n ∈ N for which 1 ≤ nr. Hence

µ((x− r, x + r) ∩ (U \ T )) ≤
∞∑

k=n

µ(Uk \ T ) ≤
∞∑

k=n

εk < ω(1/n) ≤ ω(r).



148 Xianfu Wang

Theorem 5.2. Let N ⊂ R with µ(N) = 0. Then there exists a Lipschitz
function H on R such that ∂mpH(x) = [0, 1] if x ∈ N .

Proof. The proof follows Lemma 1 [18]. Inductively, we define a sequence
{Gn}∞n=1 of open subsets of R in the following fashion.

(i) Choose an open set G1 ⊃ N such that µ(G1) < 1;

(ii) Once an open set Gn ⊃ N is defined, we choose an open set Gn ⊃
Gn+1 ⊃ N such that µ(Gn+1) < 1/(n + 1), and whenever x ∈ R \ Gn

and h > 0 we have

µ((x− h, x + h) ∩Gn+1) < h/(n + 1).

The existence of Gn+1 may be deduced as follows. After Gn has been defined,
we set F := R \Gn, T := N and ω(r) := r/(n + 1). Applying Lemma 5.1, we
obtain

N ⊂ Gn+1 ⊂ Gn and µ((x− r, x + r) ∩Gn+1) ≤
r

n + 1
,

whenever x ∈ R \Gn and r > 0. Moreover,

µ(Gn+1) ≤
∞∑

n=1

µ(Un) <
∞∑

n=1

εn < ω(1) =
1

n + 1
.

Now put P :=
⋃∞

n=1(G2n−1 \ G2n) and H(x) :=
∫ x

0
χ

P (t) dt. Clearly H is
1-Lipschitz function. We show that ∂mpH(x) = [0, 1] if x ∈ N . To this end,
we consider a positive integer k. Let (ak, bk) be the component of Gk which
contains x. By (ii), bk − ak < 1

k and

µ(Gk+1 ∩ (x, bk)) ≤ 1
k + 1

(bk − x), µ(Gk+1 ∩ (ak, x)) ≤ 1
k + 1

(x− ak). (5)

If k is odd, then Gk \Gk+1 ⊂ P and therefore (5) gives

H(bk)−H(x)
bk − x

=
µ(P ∩ (x, bk))

bk − x
≥ 1− 1

k + 1
and

H(ak)−H(x)
ak − x

=
µ(P ∩ (ak, x))

x− ak
≥ 1− 1

k + 1

If k is even, then P ∩ (ak, bk) ⊂ Gk+1 and therefore by (5) we have

H(bk)−H(x)
bk − x

≤ 1
k + 1

and
H(ak)−H(x)

ak − x
≤ 1

k + 1
.
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Since H is nondecreasing and 1-Lipschitz, we have H+(x) ≤ 1,H−(x) ≤ 1,
H+(x) ≥ 0,H−(x) ≥ 0, and so H+(x) = H−(x) = 1 and H+(x) = H−(x) = 0.
By (4), H�(x; 1) = 1 and H�(x;−1) = 0. Therefore ∂mpH(x) = [0, 1] if
x ∈ N .

When N ⊂ R is an Fσ set with µ(N) = 0, a generic result holds (See
Lemma 10.2).

Corollary 5.3. Let N be dense in R with µ(N) = 0. Then there exists
a Lipschitz function H on R such that ∂mpH(x) = [0, 1] on a residual set
containing N and ∂cH ≡ [0, 1] on R.

Proof. Let H be the function given in Theorem 5.2. The mean-value theorem
in Michel-Penot subdifferential form implies ∂cH(x) = lim supy→x ∂mpH(y)
[3]. When N is dense in R, we obtain ∂cH(x) ≡ [0, 1] for every x ∈ R. For
every n ≥ 2, both functions given by H(x)− x/n and H(x)− (1− 1/n)x are
nowhere monotone in R. By Lemma 3.2 the sets

G−n := {x : H−(x) ≤ 1/n ≤ 1− 1/n ≤ H−(x)}

and

Gn := {x : H+(x) ≤ 1/n ≤ 1− 1/n ≤ H+(x)},

are residuals. Since H is nondecreasing and has Lipschitz constant 1, the set

G :=
∞⋂

n=2

(G−n ∩Gn) = {x ∈ R : H+(x) = H−(x) = 0,H+(x) = H−(x) = 1},

is residual in R and N ⊂ G. If x ∈ G, we have ∂mpH(x) = [0, 1] by (4).

6 The Space of Nondecreasing Continuous Functions.

Consider the complete metric space

X := {f : f is continuous and nondecreasing on [a, b]}, with metric

ρ(f, g) := sup
x∈[a,b]

|f(x)− g(x)| for f, g ∈ X.

For ν ∈ R, we define f−ν : [a, b] → R by f−ν(x) := f(x)− ν · x.

Theorem 6.1. In (X, ρ), the set {f ∈ X : ∂cf = ∂af ≡ [0,+∞)} is residual.
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Proof. Let I denote an open subinterval of [a, b], and let

An
I := {f ∈ X : there exists ν ∈

[
1
n , n

]
such that f−ν is nondecreasing on I},

Bn
I := {f ∈ X : there exists ν ∈

[
1
n , n

]
such that f−ν is nonincreasing on I}.

(1). An
I is closed. Assume {fm} ⊂ An

I is Cauchy. Then fn → f uniformly
for some f ∈ X. For each k, there exists νk ∈ [1/n, n] such that fk(x)−νkx ≥
fk(y) − νky for all x ≥ y with x, y ∈ I. There exists an increasing sequence
{ki} such that {νki} converges to some ν ∈ [1/n, n]. Taking the limits, we
have f(x)− νx ≥ f(y)− νy for x ≥ y with x, y ∈ I. Similar arguments show
that Bn

I is closed.
(2). To show that An

I is nowhere dense, with f ∈ X we verify that every
open ball B2ε(f) contains points of X \ An

I . Fix x0 ∈ I, and define a non-
decreasing h by h(x) := f(x0) + ε + min{x − x0, 0}. Then h1 := max{f, h}
and h2 := min{f + 2ε, h1} are continuous and nondecreasing. As h1 ≥ f ,
f + 2ε ≥ f , we have f + 2ε ≥ h2 ≥ f . For δ > 0 sufficiently small, we have
f(x0) − ε ≤ f(y) ≤ f(x0) + ε for |y − x0| ≤ δ. For x0 + δ ≥ y ≥ x0,
h(y) = f(x0) + ε. Thus h1(y) = f(x0) + ε for x0 ≤ y ≤ x0 + δ. But
f(x0)+ε ≤ f(y)+2ε ≤ f(x0)+3ε for x0 ≤ y ≤ x0 +δ. Then h2(y) = f(x0)+ε
for x0 ≤ y ≤ x0 + δ. For every ν ∈ [1/n, n], on [x0, x0 + δ] we have
(h2(y) − ν · y)′ = −ν < 0 almost everywhere. Thus h2(y) − νy is decreas-
ing on [x0, x0 + δ], and h2 6∈ An

I .
To show that Bn

I is nowhere dense, we use similar arguments. Define
h ∈ X by h(x) := max{(n + 1)(x − x0), 0} + f(x0) − ε, h1 := min{f, h},
and h2 := max{f − 2ε, h1}. Then h2 ∈ X and f − 2ε ≤ h2 ≤ f . For δ > 0
sufficiently small, h2(x) = (n+1)(x−x0) on [x0, x0+δ]. For every ν ∈ [1/n, n],
(h2(x)−ν ·x)′ = n+1−ν > 0 almost everywhere. Thus h2(x)−ν ·x is increasing
on [x0, x0 + δ], and h2 6∈ Bn

I .
(3). Thus both An

I and Bn
I are nowhere dense and closed. The sets AI :=⋃∞

n=1 An
I and BI :=

⋃∞
n=1 Bn

I are first category of type Fσ in X. Let {Ik} be all
open subintervals of [a, b] having rational endpoints. The sets A :=

⋃∞
k=1 AIk

and B :=
⋃∞

k=1 BIk
are first category of type Fσ. It follows that the set

X \ (A ∪ B) is a residual set of type Gδ. If f ∈ X \ (A ∪ B), then for every
ν > 0, the function f−ν is not monotonic on every Ik; thus nowhere monotonic
on [a, b]. The set of points at which f−ν attains local minimum is dense in
[a, b]. We have ν ∈ ∂af(x) for every x ∈ [a, b]. Since ν ∈ (0,+∞) is arbitrary,
we have [0,+∞) ⊂ ∂af(x) ⊂ ∂cf(x) ⊂ [0,+∞), completing the proof of the
theorem.

Combining Lemma 3.2 and Theorem 6.1 we see that a typical nondecreas-
ing continuous real-valued function on [a, b] has a finite derivative only on a
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first category set on [a, b]. Compare this with Lebesgue’s Differentiation The-
orem [36, page 100]: If f is an increasing real-valued function on the interval
[a, b], then f has a finite derivative almost everywhere.

7 The Space of Automorphisms.

A function of bounded variation is called singular if it has almost everywhere a
zero derivative. As a singular function has almost everywhere a zero derivative,
all of its variation is centered at points of the complementary set of measure
zero. So it is the set of measure zero which contributes towards the entire
structure of a singular function.

Definition 7.1. A homeomorphism h of an interval [a, b] onto [a, b] that sat-
isfies h(a) = a and h(b) = b is called an automorphism on [a, b].

Note that an automorphism from [a, b] to [a, b] is simply a continuous sur-
jective and strictly increasing function. Let us recall that a metric space (X, ρ)
is called topologically complete if X can be remetrized with a topologically
equivalent metric so as to be complete. Alexanderoff’s Theorem [7, page 458]
asserts that a non-empty set of type Gδ contained in a complete metric space
can be remetrized so as to be complete.

Let H denote the family of strictly increasing continuous functions on [0, 1]
that fix the endpoints. Since a uniform limit of functions on H need not be
strictly increasing, H is not closed in C[0, 1] (see page 153). But H is of
type Gδ in the complete space H (the closure of H in C[0, 1]) and therefore
topologically complete. Consequently, Baire category arguments can still be
applied. The following lemma is from [7, pages 468–471].

Lemma 7.2. Let A be a first-category subset of [0, 1]. Let H1 := {h ∈ H :
µ(h(A)) = 0}. Then H1 is residual in the topologically complete space H.

Now let A be a first category subset of [0, 1] with µ(A) = 1. For h ∈ H1,
µ(h(A)) = 0. Since h is differentiable almost everywhere, we have h′(x) = 0 for
almost every x ∈ [0, 1] [38, page 323]; so every h ∈ H1 is a strictly increasing
continuous singular function.

Lemma 7.3. If a singular function f is continuous and strictly increasing,
then, for every real number r > 0, the function f(x)−rx is nowhere monotone.

Proof. Assume the derivates of f are bounded from above in some interval
J ⊂ [0, 1]. As f is increasing, its derivates are ≥ 0 throughout J . For a
continuous function, the lower and upper bounds of each its derivates are the
same as those of the difference quotient (f(y) − f(x))/(y − x) with x, y ∈ J ,
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x 6= y [5]. It follows that f is Lipschitz on J . Since f has zero derivative
almost everywhere in J , f is constant in J . This contradicts the fact that f
is strictly increasing in [0, 1]. Hence the derivates of f are unbounded from
above in every subinterval of [0, 1]. Assume r > 0. Define the function Fr by
Fr(x) := f(x)− rx. Fr has derivates > 0 at points everywhere dense in [0, 1].
Moreover, since f is singular, the function Fr also has a derivative − r < 0 at
an everywhere dense set of points in [0, 1]. This shows Fr is nowhere monotone
on [0, 1].

Theorem 7.4. The set H1 := {f ∈ H : ∂cf = ∂af ≡ [0,+∞)} is residual
in the topologically complete space H. Moreover, for every f ∈ H1 we have
∂mpf(x) = [0,+∞) on a residual set of [0, 1].

Proof. In Lemma 7.2, we chose A to be of first category and µ(A) = 1.
As indicated, each f ∈ H1 is a continuous and strictly increasing singular
function. For fixed r > 0, Lemma 7.3 shows Fr is nowhere monotone. Each
nowhere monotone continuous function has everywhere dense sets of maxima
and minima by Lemma 3.3. At each minimal point x ∈ (0, 1), we have 0 ∈
∂−Fr(x) and so the set {x ∈ [0, 1] : r ∈ ∂−f(x)} is dense in [0, 1]. This implies
r ∈ ∂af(x) for every x ∈ [0, 1]. Since r > 0 is arbitrary and ∂af(x) ⊂ [0,+∞),
we have [0,+∞) = ∂af(x) = ∂cf(x).

Next, given an f ∈ H1 and a natural number n, since the functions Fn

and F1/n are both nowhere monotone in [0, 1], by Lemma 3.2 there exists a
residual set Gn in [0, 1] such that when x ∈ Gn we have

f−(x) ≤ 1
n

< n ≤ f−(x), f+(x) ≤ 1
n

< n ≤ f+(x).

If x ∈ G :=
⋂∞

n=1 Gn, then f−(x) ≤ 0, f+(x) ≤ 0, f+(x) = f−(x) = +∞.
Since f is increasing, its derivates are all non-negative. Then f−(x) = f+(x) =
0. The proof is complete by using (4) to obtain

f�(x; 1) ≥ {f+(x), f−(x)} = +∞ and
0 ≥ f�(x;−1) ≥ max{−f+(x),−f−(x)} = 0.

The Cantor function f : [0, 1] → [0, 1] is continuous and nondecreasing
[38, pages 129–130]. Besides, almost everywhere on [0, 1], we have f ′(x) = 0.
The most usual strictly increasing continuous singular function on [0, 1] or R is
constructed from Cantor’s function [38, page 210]. It is interesting to compute
∂af and ∂cf on the Cantor ternary set K associated with f . Because f is not
strictly increasing, Lemma 7.3 does not apply.

Theorem 7.5. Let f be the Cantor function [0, 1] → [0, 1] associated with the
Cantor ternary set K. Then ∂af(x) = ∂cf(x) = [0,+∞) if x ∈ K.
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Proof. Fix x ∈ K and r > 0. Assume I ⊂ [0, 1] is an arbitrary open
subinterval with x ∈ I. Theorem 7.20 [7] shows that {x : f ′(x) = +∞, x ∈ I}
is uncountable. But it is not true that f ′(x) = +∞ at all two-sided limit points
of K. By Morse’s theorem [5] for every α > 0 the set {x : f+(x) = α, x ∈ I}
has cardinality c. Choose y ∈ I with f ′(y) = +∞. Consider Fr defined by
Fr(x) := f(x) − r · x. Then F ′

r(y) = +∞, and for sufficiently small δ > 0
we have Fr(z) > Fr(y) if z ∈ (y, y + δ). Since F ′

r = −r almost everywhere,
we may choose ŷ < y with F ′

r(ŷ) = −r, and so there exists δ̂ > 0 such that
Fr(z) > Fr(ŷ) if z ∈ (ŷ − δ̂, ŷ). It follows that Fr has a local minimizer
in (ŷ − δ̂, y + δ) ⊂ I. Then 0 ∈ ∂−Fr(z) for some z ∈ (ŷ − δ̂, y + δ); that
is, r ∈ ∂−f(z). Because I is arbitrary, we have r ∈ ∂af(x). But r > 0 is
also arbitrary. Thus [0,+∞) ∈ ∂af(x). Since f is nondecreasing, ∂af(x) ⊂
[0,+∞). Hence ∂af(x) = [0,+∞). Now ∂af(x) ⊂ ∂cf(x) ⊂ [0,+∞) implies
∂cf(x) = [0,+∞).

When f ′(x) = +∞, ∂−f(x) = ∅. Every open interval I ⊂ [0, 1] containing
points of the Cantor set K has uncountably many such points. Theorem 7.5
shows ∂af(x) = ∂cf(x) = [0,+∞) at these points of K. We see that f is not
regular at uncountably many points on every open interval containing points
of the Cantor set.

8 The Space of Continuous Functions C[0, 1].

Let C[0, 1] denote the Banach space of real-valued continuous functions f
defined on [0, 1] with the uniform norm ‖f‖ := sup0≤x≤1 |f(x)|. We will
show that a typical f ∈ C[0, 1] is an antiderivative of a constant Clarke,
approximate and Michel-Penot subdifferential map; i.e., the set-valued map
defined by T (x) :≡ R for every x ∈ R. Moreover for every such f , its Dini
subdifferential is non-empty only on a set which is Lebesgue null and first
category, and its minimal Jeyakumar’s convexificator may be chosen as the
empty set almost everywhere.

For a Lipschitz function, its Clarke subdifferential ∂cf has a closed graph,
but for a continuous function f , this might fail. However, the following result
helps when we compute the Clarke subdifferential for continuous functions.

Proposition 8.1. Assume {xk}∞k=1 are local minimizers of g on a general
Banach space X. If xk → x, g(xk) → g(x), and g is lower semicontinuous
around x, then 0 ∈ ∂cg(x).

Proof. Suppose 0 6∈ ∂cg(x). We consider two cases: (1). If ∂cg(x) = ∅, by
Theorem 2.9.1[9], g↑(x; 0) = −∞; (2). If ∂cg(x) 6= ∅, by the strong separation
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theorem [17], there exists h ∈ X such that

g↑(x;h) = sup{〈x∗, h〉 : x∗ ∈ ∂cg(x)} < 0.

In either case, g↑(x;h) < 0 for some h ∈ X. Since

g↑(x;h) = sup
ε>0

lim sup
y→x,g(y)→g(x)

t↓0

inf
‖w−h‖<ε

g(y + tw)− g(y)
t

,

for every ε > 0 and tk ↓ 0 we have

0 > lim sup
tk→0
xk→x

inf
‖w−h‖<ε

g(xk + tkw)− g(xk)
tk

. (6)

Since xk is a local minimizer of g and ‖w‖ ≤ ε + ‖h‖ (thus w is bounded), we
may take 0 < tk < 1/k such that g(xk + tkw) ≥ g(xk) for every ‖w − h‖ < ε.
For such (tk)k∈N we have

lim sup
tk→0
xk→x

inf
‖w−h‖<ε

g(xk + tkw)− g(xk)
tk

≥ 0.

But this contradicts equation (6). Hence 0 ∈ ∂cg(x).

Definition 8.2. The function f is said to have Jeyakumar’s convexificator,
∂∗f(x), at x if ∂∗f(x) is closed and for each v ∈ R we have

f−(x; v) ≤ sup
x∗∈∂∗f(x)

〈x∗, v〉, and f+(x; v) ≥ inf
x∗∈∂∗f(x)

〈x∗, v〉.

In term of classical Dini derivatives, a closed set ∂∗f(x) is Jeyakumar’s
convexificator of f at x if

max{f+(x), f−(x)} ≤ sup
x∗∈∂∗f(x)

x∗ and min{f−(x), f+(x)} ≥ inf
x∗∈∂∗f(x)

x∗.

Obviously one can always choose ∂∗f(x) = R. A convexificator, ∂∗f(x), of f
yields both an upper convex approximation and a lower concave approximation
to f at x. The Clarke subdifferential and Michael-Penot subdifferential are
convexificators when f↑(x, ·) and f�(x, ·) are lower semicontinuous. Moreover,
if f is locally Lipschitz, then the approximate subdifferential and Treiman
linear generalized subdifferential are convexificators [22]. The interesting thing
is to find minimal convexificators.

Define

E(f) := {x : f+(x) = f−(x) = +∞, f−(x) = f+(x) = −∞} for f ∈ C[0, 1].

Our main result is the following.
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Theorem 8.3. There exists a residual set of functions f ∈ C[0, 1] for each of
which:

1) The set E(f) is residual in (0, 1) and µ(E(f)) = 1.

2) If x ∈ E(f), every closed set in R, including the empty set, may be
chosen as ∂∗f(x).

3) For every x ∈ E(f), ∂−f(x) = ∅.

4) For every x ∈ [0, 1], we have ∂af(x) = ∂cf(x) = R.

5) For every x ∈ (0, 1), we have ∂mpf(x) = R and ∂mpf(x) 6= ∂−f(x).

Proof. We prove Theorem 8.3 by piecing together results from [5, 16, 29].
Recall that a function f is called nonangular at x if f−(x) ≤ f+(x) and
f+(x) ≤ f−(x).

Lemma 8.4. The functions of nonmonotonic type form a dense subset, de-
noted by S1, of type Gδ in C[0, 1].

Lemma 8.5. The nonangular functions form a dense set, denoted by S2, of
type Gδ in C[0, 1].

The proofs of Lemma 8.4 and Lemma 8.5 may be found in [5, pages 212–
213]. If f ∈ S1 ∩ S2, then f is nowhere differentiable. Assume ∂−f(x) 6= ∅ at
x ∈ (0, 1). If x∗ ∈ ∂−f(x), then f−(x) ≤ x∗ ≤ f+(x). Since f is nonangular at
x, we have f+(x) ≤ f−(x). This means ∂−f(x) = {x∗ : x∗ = f−(x) = f+(x)}.
Hence every f ∈ S1 ∩ S2 is nowhere differentiable and ∂−f(x) is either a
singleton or empty at x ∈ (0, 1).

Lemma 8.6. If f ∈ S1, then f
′
(x) = +∞ and f ′(x) = −∞ if x ∈ (0, 1).

Proof. Fix x ∈ (0, 1) and ν ∈ (−∞,∞). Since f is of nonmonotonic type at
x, for every n there exists xn ∈ (x− 1/n, x) and yn ∈ (x, x + 1/n) such that

f(yn)− f(x)
yn − x

≥ ν and
f(xn)− f(x)

xn − x
< ν, or

f(yn)− f(x)
yn − x

< ν and
f(xn)− f(x)

xn − x
≥ ν.

As n →∞, we have either f+(x) ≥ ν or f−(x) ≥ ν, so that f
′
(x) ≥ ν. Also,

either f−(x) ≤ ν or f+(x) ≤ ν, so that f ′(x) ≤ ν. Since ν is arbitrary, it

follows that f ′(x) = −∞, while f
′
(x) = +∞.
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Lemma 8.7. There is a residual subset S3 ⊂ C[0, 1] such that for every
f ∈ S3,

µ({x ∈ [0, 1] : f+(x) = f−(x) = +∞ and f+(x) = f−(x) = −∞}) = 1.

Proof. See [16, page 453].

Now we let
C0 := S1 ∩ S2 ∩ S3. (7)

Lemma 8.8. For every f ∈ C0 the set E(f) is residual in (0, 1).

Proof. Let f be a continuous nowhere monotone function of the second
species in [0, 1]. Given a positive integer n, as the functions f(x) + n · x and
f(x) − n · x are both nowhere monotone in [0, 1], it follows from Lemma 3.2
that there exists a residual set Gn ⊂ [0, 1] such that for each x ∈ Gn,
f+(x) = f−(x) ≤ −n < n ≤ f+(x) = f−(x). Then set G =

⋂∞
n=1 Gn

is residual in [0, 1] and at each x ∈ G we have f+(x) = f−(x) = −∞,
f+(x) = f−(x) = +∞.

Lemma 8.9. For each r ∈ R, if f ∈ C0, then Dr = {x ∈ (0, 1)| ∂−f(x) = {r}}
is dense in (0, 1). In particular, every f ∈ C0 is Dini subdifferentiable at c-
dense set of points (i.e., its cardinality is c in each subinterval of [0, 1]).

Proof. For every r we will show that

Dr := {x : f+(x) = r = f−(x), f+(x) = +∞, f−(x) = −∞},

is dense in [0, 1]. Since f is nowhere monotone of second species, for every
r ∈ R the function g : [0, 1] → R defined by g(x) := f(x)−r·x is continuous and
nowhere monotone. By Lemma 3.3, g has minima at a set S being everywhere
dense in (0, 1). At x ∈ S we have f−(x) ≤ r ≤ f+(x). Lemma 8.6 shows that
[f−(x), f−(x)] ∪ [f+(x), f+(x)] = [−∞,+∞]; whence f−(x) = −∞, f+(x) =
+∞, and f+(x) ≤ f−(x). This shows f−(x) = r = f+(x), so S ⊆ Dr.
Fixing an arbitrary nondegenerate subinterval I ⊂ [0, 1], for every r ∈ R we
have Dr ∩ I 6= ∅ because Dr is dense. The c-dense result follows from the
observation that Dr1 ∩Dr2 = ∅ if r1 6= r2.

To finish the proof of Theorem 8.3, we observe that Lemma 8.7 and
Lemma 8.8 give parts 1), 2), and 3). By Lemma 8.9 for every r ∈ R we
have r ∈ ∂af(x), this means R ⊂ ∂af(x) ⊂ ∂cf(x) ⊂ R, which is part 4). By
Lemma 8.6 and (4), f�(x, 1) = +∞ and f�(x,−1) = +∞ for every x ∈ (0, 1).
Thus ∂mpf(x) = R, but ∂−f(x) is singleton whenever it exists, this gives
5).
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Remark 8.10. Katriel has shown that for every lower semicontinuous func-
tion f defined on R the approximate subdifferential and the Clarke subdif-
ferential agree on a Gδ set of R [23]. Our result shows that in C[0, 1] the
functions which share the same trivial Clarke subdifferential and approximate
subdifferential map form a dense Gδ subset of C[0, 1]. There are many re-
sults on the integrability of subdifferentials of non-locally Lipschitz functions
[31, 33, 39, 32]. Unless one assumes stringent conditions on the function or the
subdifferential map, one can not recover the function from its subdifferential
uniquely up to an additive constant.

Remark 8.11. In order to study the integration of proximal subdifferentials,
Poliquin has introduced a class of “primal lower-nice” functions which can
be uniquely determined, up to a constant, by their proximal subdifferentials.
If f is primal lower-nice at x, then ∂pf(x) = ∂cf(x) [31]. If f ∈ C0 (see
Equation (7)), we see that ∂pf(x) is either empty or a singleton, whereas
∂cf(x) ≡ R. Thus each function f ∈ C0 is not primal lower-nice at any
x ∈ (0, 1). If f ∈ C0, then ∂−f(x) is either a singleton or empty, whereas
∂af(x) = ∂cf(x) = R. Hence each f ∈ C0 is neither Clarke nor approximate
subdifferentially regular at each point in (0, 1). Furthermore, every f ∈ C0 is
not directionally Lipschitz at each x ∈ (0, 1).

Example 8.12. Let S be a nonempty closed subset of Rn and x ∈ S. Then
the distance function dS : Rn → R defined by

dS(y) := inf{‖y − s‖ : s ∈ S}, (8)

is regular at x if and only if S is regular at x [1]. If f ∈ C0, then epi f is not
regular at any (x, f(x)) for x ∈ (0, 1). With S := epi f , dS is not regular at
any point of its boundary.

Example 8.13. (1). The nowhere differentiable Weierstrass function W :
[0, 1] → R is defined by W (x) :=

∑+∞
n=0 an cos(bnπx) where 0 < a < 1, b is

an odd positive integer, and ab > 1 + 3π/2. Set E(W ) := {x : W+(x) =
W−(x) = +∞,W+(x) = W−(x) = −∞}, and

Ec1 :={x : W ′
+(x) = +∞,W ′

−(x) = −∞},
Ec2 :={x : W ′

+(x) = −∞,W ′
−(x) = +∞},

E1 :={x : W ′
+(x) = +∞,W−(x) = +∞,W−(x) = −∞},

E2 :={x : W ′
+(x) = −∞,W−(x) = +∞,W−(x) = −∞},

E3 :={x : W ′
−(x) = +∞,W+(x) = +∞,W+(x) = −∞},

E4 :={x : W ′
−(x) = −∞,W+(x) = +∞,W+(x) = −∞}.
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For r ∈ R, we define

E1r := {x : W+(x) = r, W+(x) = −∞,W−(x) = +∞,W−(x) = −∞},
E2r := {x : W+(x) = +∞,W+(x) = r, W−(x) = +∞,W−(x) = −∞},
E3r := {x : W+(x) = +∞,W+(x) = −∞,W−(x) = r, W−(x) = −∞},
E4r := {x : W+(x) = +∞,W+(x) = −∞,W−(x) = +∞,W−(x) = r}.

In [15] Garg has shown that the sets E(W ), Eci (i = 1, 2), Ei (i = 1 to 4),
and Eir (i = 1 to 4, r ∈ R) cover all the points of (0, 1), and that the points
of these sets are distributed in the interval in the following manner:

(i) E(W ) is residual in (0, 1) with µ(E(W )) = 1.

(ii) Eci (i = 1, 2) are both enumerable and everywhere dense in (0, 1).

(iii) each of the sets Ei (i = 1 to 4) and Eir ( i = 1 to 4, r ∈ R) is of the first
category with measure equal to zero and has the power of the continuum
in every subinterval of (0, 1).

Then ∂−W (x) = R = ∂pW (x) if x ∈ Ec1 and ∂−W (x) = ∅ = ∂pW (x) if x ∈
(0, 1)\Ec1, while ∂−(−W )(x) = R = ∂p(−W )(x) if x ∈ Ec2 and ∂−(−W )(x) =
∅ = ∂p(−W )(x) if x ∈ (0, 1) \ Ec2. This means both W and − W are only
countably Dini or proximally subdifferentiable on (0, 1).

Now equation (2) shows ∂aW (x) = R = ∂cW (x) and ∂a(−W )(x) = R =
∂c(−W )(x) for every x ∈ [0, 1]. Since W

′
(x) = +∞ and W ′(x) = −∞ for every

x ∈ (0, 1), ∂mpW (x) = R for each x ∈ (0, 1). Thus W is only subdifferentiably
regular on Ec1 and −W is only subdifferentiably regular on Ec2 and nowhere
else. Let ] stand for − or p. For every k > 0,

∂](kW )(x) = ∂]W (x) = R if x ∈ Ec1,

∂](kW )(x) = ∂]W (x) = ∅ if x ∈ (0, 1) \ Ec1,
∂](−kW )(x) = ∂](−W ) = R if x ∈ Ec2,
∂](−kW )(x) = ∂](−W ) = ∅ if x ∈ (0, 1) \ Ec2.

But kW −W = (k− 1)W is not constant if k 6= 1. This answers the following
question negatively.

Let f and g both be continuous on (0, 1). Assume ∂]f(x) =
∂]g(x) and ∂](−f)(x) = ∂](−g)(x) for every x ∈ (0, 1). Is f − g
constant on (0, 1)?

Let ∂∗mW denote the minimal convexificator map of W .
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(i) If x ∈ E(W ), then every closed set, including the empty set, may be
chosen as ∂∗W (x). Thus ∂∗mW (x) = ∅.

(ii) If x ∈ Ec1 ∪ Ec2, then every nonempty closed set, unbounded from
above and below, may be chosen as ∂∗W (x). Thus there is no minimal
convexificator.

(iii) If x ∈ E1∪E3, then every nonempty closed set unbounded above may be
chosen as ∂∗W (x), so there is no minimal convexificator. If x ∈ E2∪E4,
then every nonempty closed set unbounded below may be chosen as
∂∗W (x), so there is no minimal convexificator.

(iv) Fix r ∈ R, if x ∈ E1r∪E3r, then every closed nonempty set with infimum
less than or equal to r may be chosen as ∂∗W (x), so ∂∗mW (x) = {r̂} as
long as r̂ ≤ r; if x ∈ E2r ∪ E4r, then every nonempty closed set with
supremum greater than or equal to r may be chosen as ∂∗W (x), so
∂∗mW (x) = {r̃} as long as r̃ ≥ r.

Observe that the minimal convexificator on Eir ( i = 1 to 4, r ∈ R) is not
unique.

(2). Let φ be the function on R defined by φ(x) =: |x| if |x| ≤ 2 and
φ(x + 4p) = φ(x) if x ∈ R and p ∈ Z. φ is in fact the distance function
φ(x) = dA(x) where A := {4m| m ∈ Z}. Setting fn(x) := 4−nφ(4nx), the van
derWaerden function is defined by f(x) :=

∑∞
n=1 fn(x), and f is continuous

and nowhere differentiable [38, pages 174–175]. Hence nowhere monotone of
the second species. Therefore ∂af(x) = ∂cf(x) = R for every x ∈ R.

(3). Choosing any nondifferentiable function f : R → R we define F (x, y) :=
f(x) + f(y). Then ∂aF (x, y) = ∂af(x)× ∂af(y). Since ∂af(x) = R for every
x ∈ R, we have ∂aF (x, y) = R2 = ∂cF (x, y) for every (x, y) ∈ R2.

9 Such Pathological Behavior is Actually Prevalent!

What happens measure theoretically if we consider the nondifferentiable func-
tions in C[0, 1] with supremum norm? The set of nowhere differentiable func-
tions in the metric space C[0, 1] forms a set that is co-analytic; that is, the
complement of an analytic set, and not Borel, but universally measurable [7].

Definition 9.1. A function f ∈ C[0, 1] is M -Lipschitz at a point x ∈ [0, 1] if
there exists a constant M such that for all y ∈ [0, 1], |f(y)−f(x)| ≤ M |y−x|.
We say f is Lipschitz at x if it is M -Lipschitz for some M .

The concept of M -Lipschitz at x is called calmness at x in optimization.
See [35, pages 322, 351] for characterizations and applications. One can prove
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that if f : [0, 1] → R is Lipschitz at every point in [0, 1], then f is densely
locally Lipschitz on [0, 1].

Let

An := {f ∈ C[0, 1] : f is n-Lipschitz at some x ∈ [0, 1]}.

Then An is closed and nowhere dense. The nowhere Lipschitz functions A :=⋂∞
n=1 C[0, 1] \ An are a dense Gδ in C[0, 1]. Let g(x) :=

∑∞
k=1 1/k2 cos 2kπx,

and h(x) :=
∑∞

k=1 1/k2 sin 2kπx. Hunt showed [19] the following.

Proposition 9.2. For all f ∈ C[0, 1], {(α, β) : (αg + βh) ∈ f +
⋃∞

n=1 An}
has Lebesgue measure zero in R2.

From this we see that
⋃∞

n=1 An is Haar null. Since the set of nowhere
differentiable functions B contains A, we have C[0, 1] \ B ⊂

⋃∞
n=1 An, so

C[0, 1] \B is Haar null. One may now say almost every function in C[0, 1] has
trivial Clarke and approximate subdifferentials. A self contained arguments,
using nowhere monotone functions, come as follows:

If f is not nowhere monotone of the second species on [0, 1], then for some
r we have f(x) + rx monotone on some subinterval I ⊂ [0, 1]. Let r ∈ R and
define fr by fr(x) := f(x) + rx. Let I be a subinterval of [0, 1]. Define

AI := {f ∈ C[0, 1] : there exists a r ∈ R with fr being nondecreasing on I}.

For each n ∈ N , let An denote those functions f ∈ C[0, 1] for which there
exists r ∈ [−n, n] such that fr is nondecreasing on I. Then AI =

⋃∞
n=1 An.

We show that for each n ∈ N the set An is closed and C[0, 1] \An is dense.
To verify that An is closed, let fk be a sequence of functions in An such

that fk → f uniformly. Then f ∈ C[0, 1], and we must show that f ∈ An. For
each k, there exists rk ∈ [−n, n] such that fk(x) + rkx ≥ fk(y) + rky if x ≥ y
and x, y ∈ I. There exists an increasing sequence ki from N such that {rki}
converges to some r ∈ [−n, n]. Then f(x)+rx ≥ f(y)+ry. Thus f ∈ An, and
An is closed in C[0, 1]. To show that An is nowhere dense, we verify that An

has no interior. Take a continuous nowhere differentiable function g defined on
[0, 1]. For every ε > 0, we claim f + εg 6∈ An if f ∈ An. Suppose f + εg ∈ An.
Then for some r1 we have h(x) := f(x)+ εg + r1x being monotone on I. Since
f ∈ An, there exists another r2 with f(x) + r2x being monotone on I. But

h(x)− r1x + r2x = (f(x) + r2x) + εg(x),

implies g(x) = [h(x) − (f(x) + r2x) − r1x + r2x]/ε. Hence g is differentiable
almost everywhere on I, a contradiction. Thus An is nowhere dense and closed.

Now we show that An is Haar null. Let g be a nowhere differentiable
function. Define a Borel probability measure by λ(E) = µ{t ∈ [0, 1] : tg ∈ E}.
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We will verify λ(f + An) = 0 for every f ∈ C[0, 1]. In fact, the set {t ∈ [0, 1] :
tg ∈ An + f} is either empty or a singleton. If not, we may find t1 6= t2
such that t1g ∈ f + An and t2g ∈ f + An. Then there exists r1, r2 ∈ [−n, n]
such that h1(x) := t1g(x) − f(x) + r1x and h2(x) := t2g(x) − f(x) + r2x are
nondecreasing on I. It follows that g(x) = [h1(x)−h2(x)−(r1−r2)x]/(t1−t2)
is differentiable almost everywhere on I, a contradiction.

Since AI =
⋃∞

n=1 An, AI is Haar null and a countable union of nowhere
dense closed sets. The same is true of the set BI := {f ∈ C[0, 1] : −f ∈ AI}.

Let {Ik} be all the subintervals of [0, 1] with rational endpoints. Define
A :=

⋃
k AIk

and B :=
⋃

k BIk
. It follows that each of A and B is Haar

null and a countable union of nowhere dense closed subsets in C[0, 1]. Then
C[0, 1] \ (A ∪ B) is a residual set of type Gδ and A ∪ B is Haar null. If
f ∈ C[0, 1] \ (A∪B), then for every r ∈ R the function fr is not monotonic at
any subinterval of [0, 1]. Thus it is nowhere monotonic of the second species.
Each nowhere monotonic function of the second species f has ∂af = ∂cf ≡ R,
and ∂−f exists only on a first category set of [0, 1]. Hence, we have proved
the following theorem.

Theorem 9.3. The set

D := {f ∈ C[0, 1] : ∂af = ∂cf ≡ R and ∂−f exists only on a first category set}.

is prevalent and residual in C[0, 1].

This follows from that C[0, 1] \ (A ∪ B) ⊂ D. Nondifferentiable functions
constitute a proper subclass of the class of continuous nowhere monotone
functions of the second species.

10 Typical Lipschitz Functions Have Constant Subdif-
ferentials.

How should we consider the subdifferentials of Lipschitz functions instead of
nowhere monotone functions of the second species? Three spaces come into
mind right away:

(1). The space of all Lipschitz functions with supremum norm. Because
nowhere differentiable functions are uniform limits of polynomials, the space
is not complete.

(2). The space of all Lipschitz functions with the norm given by

‖f‖ := |f(0)|+ sup{|f(y)− f(x)|/|y − x| : x, y ∈ [0, 1], x 6= y},

is a Banach space [25]. It is too big in the following sense: (i) the differentiable
functions are not dense. Under the Lipschitz norm, if fn → f , for every ε > 0
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we have

∂fn ⊂ ∂(fn − f) + ∂f ⊂ εB + ∂f, and ∂f ⊂ ∂(f − fn) + ∂fn ⊂ εB + ∂fn.

Let f be the Rockafellar function. Then ∂fn ⊂ εB+[−1, 1], [−1, 1] ⊂ εB+∂fn.
If fn is differentiable, we may take x0 such that ∂fn(x0) = {f ′n(x0)}. Then
1 = ε + f ′n(x0) and − 1 = f ′n(x0)− ε. If ε < 1, we obtain a contradiction; (ii)
Lipschitz functions with constant subdifferential maps are not dense. To see
this, we define f(x) = 0 if 0 ≤ x ≤ 1/2, and f(x) = x − 1/2 if 1/2 ≤ x ≤ 1.
If fn → f in Lipschitz norm and ∂cfn ≡ [an, bn] on [0, 1], then ‖fn‖ → 0 on
[0, 1/2] and ‖fn‖ → 1 on [1/2, 1], a contradiction.

(3). It is in the space of Lipschitz functions with uniformly Lipschitz
constant in the topology of uniform convergence that we show typical functions
have constant Clarke and approximate subdifferential map. More precisely, we
consider the space

LipM := {f : [0, 1] → R : |f(x)− f(y)| ≤ M |x− y| for all x, y ∈ [0, 1]},

with the metric

ρ(f, g) := max
x∈[0,1]

|f(x)− g(x)| for f, g ∈ LipM .

The following lemma may be found in [38, page 165].

Lemma 10.1. Suppose the metric space Y is complete and that (fn)∞n=1 is an
equicontinuous sequence in C(X, Y ) that converges at each point of a dense
subset D of the topological space X. Then there is a function f ∈ C(X, Y )
such that (fn)∞n=1 converges to f uniformly on each compact subset K of X.

As functions in LipM are equicontinuous, Lemma 10.1 shows in LipM the
topology of pointwise convergence and the topology of uniform convergence
are the same.

Lemma 10.2. Let E ⊂ [0, 1] be an Fσ set of measure 0. Then there is a
residual set S ⊂ LipM such that for every f ∈ S and x ∈ E we have

lim sup
y→x

f(y)− f(x)
y − x

= M and lim inf
y→x

f(y)− f(x)
y − x

= −M.

In particular, ∂mpf(x) = [−M,M ] whenever f ∈ S and x ∈ E.

Proof. (1). Let E be a nonempty closed set of measure zero. Let Gk be the
set of those f ∈ LipM for which one can find δ > 0 with the property that for
every x ∈ E there is y ∈ [0, 1] such that δ < |y − x| < 1/k and

f(y)− f(x)
y − x

> M − 1
k

+ δ.
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We will show that Gk is open in LipM . Assume f0 ∈ Gk. By definition, for
some δ > 0, for each x ∈ E, there exists 1/k > |y − x| > δ such that

f0(y)− f0(x)
y − x

> M − 1
k

+ δ.

For this y, there exists 0 < ηx < δ and |y − x| + ηx < 1/k such that for each
z ∈ [x− ηx, x + ηx] we have

f0(y)− f0(z)
y − z

> M − 1
k

+ δ.

Then {(x−ηx, x+ηx) : x ∈ E} covers E. By compactness, we may take a finite
number of them to cover E, say {(xi − ηxi

, xi + ηxi
)}m

i=1. Set η := max{ηxi
}.

For every x ∈ E, there exists xi with x ∈ [xi − ηxi
, xi + ηxi

] such that

1/k > ηxi + |yi−xi| > |yi−xi|+ |x−xi| ≥ |yi−x| ≥ |yi−xi|−|xi−x| > δ−η,

f0(yi)− f0(x)
yi − x

> M − 1
k

+ δ.

Since (f0(yi)−f0(z))/(yi−z) is continuous on [xi−ηxi , xi +ηxi ], its minimum
exists denoted by mi > M − 1/k + δ. Setting m := min{mi}, we have m >
M − 1/k + δ. Now, assuming ρ(f, f0) ≤ ε, for x ∈ (xi − ηxi

, xi + ηxi
) with

y = yi we have 1/k > |y − x| > δ − η and

f(y)− f(x)
y − x

=
f(y)− f0(y) + f0(x)− f(x)

y − x
+

f0(y)− f0(x)
y − x

>
−2ε

δ
+

f0(y)− f0(x)
y − x

> −2ε

δ
+ m.

If ε is sufficiently small, then − 2ε/δ + m > M − 1/k + δ > M − 1/k + δ − η.
For this ε, we have Bε(f0) ⊂ Gk. Thus Gk is an open set.

To prove G :=
⋂∞

k=1 Gk is a residual subset of LipM , it suffices to show that
it is dense. Whenever f ∈ LipM , let fj(x) := f(0)+

∫ x

0
φj(t) dt, where φj(t) =

f ′(t) if dE(t) > 1/j and φj(t) = M if dE(t) ≤ 1/j (See (8) for the definition
of dE). Since E is a closed subset of [0, 1] with measure 0,

⋂∞
j=1 Ej = E and

Ej ⊂ Ej−1, we have limj→∞ µ({t ∈ [0, 1] : dE(t) ≤ 1/j}) = µ(E) = 0. Now

|fj(x)− f(x)| = |
∫ x

0

φj(t)− f ′(t) dt| ≤ 2Mµ({t ∈ [0, 1] : dE(t) ≤ 1/j}),

shows fj uniformly converges to f . For fixed j, fj ∈ Gk for every k because if
k < j, we set δk = 1/(2j); if k ≥ j, we set δk = 1/(2k). Thus fj ∈ G, and G is
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residual in LipM . Then the set S := G∩{f ∈ LipM : −f ∈ G} is also residual
in LipM . If f ∈ S and x ∈ E, then for every k there exists δk < |yk−x| < 1/k
such that (f(yk)− f(x))/(yk − x) > M − 1/k + δk. Letting k →∞, together
with f ∈ LipM , we have lim supy→x(f(y)− f(x))/(y−x) = M . Applying the
same arguments to − f , we obtain lim infy→x(f(y)− f(x))/(y − x) = −M.

(2). Let E =
⋃∞

n=1 En with En being closed sets measure 0. We may apply
(1) on each En to get a residual set Sn. Then

⋂∞
n=1 Sn is the desired residual

set.
By (4), we have f�(x, 1) = f�(x,−1) = M for every x ∈ E. Then

∂mpf(x) = [−M,M ] at x ∈ E.

Define E := {r : r ∈ (0, 1) ∩ Q}. Then E is countable and dense in [0, 1],
in particular, of measure zero and Fσ. Thus ∂cf = ∂af ≡ [−M,M ]. We have
proved the following.

Theorem 10.3. The typical f ∈ LipM has the following property:

(1) ∂cf = ∂af ≡ [−M,M ] on [0, 1].

(2) ∂mpf(x) = [−M,M ] for every x ∈ (0, 1) ∩Q.

Clearly, the same arguments apply on R. One may also deduce Theo-
rem 10.3 via nowhere monotone functions:

Theorem 10.4. In Lip1, the set

{f : f(x)− r · x is nowhere monotone on [0, 1] for every |r| < 1} is residual.

Proof. Let I denote an open subinterval of [a, b], and let

An
I := {f ∈ Lip1 : there exists some r ∈ [−1 + 1/n, 1− 1/n] with f(x)− r · x

being nondecreasing on I}.

To verify that An
I is closed, let {fk} be a sequence of functions in An

I such that
fk → f uniformly. Then f ∈ Lip1, and we must show that f ∈ An

I . For each
k ∈ N , there exists rk ∈ [−1+1/n, 1−1/n] such that fk(x)−rkx ≥ fk(y)−rky
for x ≥ y ∈ I. There exists an increasing sequence {ki} from N such that {rki}
converges to some r ∈ [−1 + 1/n, 1 − 1/n], then f(x) − rx ≥ f(y) − ry for
x ≥ y ∈ I. Then f ∈ An

I and An
I is closed in Lip1.

To show that An
I is nowhere dense, we verify that every ball in Lip1 contains

points of Lip1 \ An
I . Let Bε(f) be an open ball in Lip1. If f 6∈ An

I , there is
nothing to prove, so assume f ∈ An

I . Let (x0 − ε, x0 + ε) ⊂ I. We define

φε(t) :=


− 1 if t ∈ (x0 − ε, x0],
1 if t ∈ (x0, x0 + ε],
f ′(t) otherwise and provided f ′(t) exists.
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Let fε(x) := f(0) +
∫ x

0
φε(t) dt. Then fε ∈ Lip1 and

|f(x)− fε(x)| =
∣∣∣ ∫ x

0

f ′(t)− φε(t) dt
∣∣∣ ≤ ∫ 1

0

|f ′(t)− φε(t)| dt = 4ε.

On I, for every r ∈ [−1+1/n, 1−1/n], the function fε(x)−rx is not nondecreas-
ing on I because on (x0− ε, x0) the function fr has derivative −1−r ≤ −1/n.
Thus An

I is nowhere dense, and so AI :=
⋃∞

n=2 An
I is of first category. Now

let {Ik} be an enumeration of those open subintervals of [0, 1] having rational
endpoints. Set A :=

⋃∞
k=1 AIk

. Then A is a first category set. Similarly, we
show that

B := {f ∈ Lip1 : f(x)− rx is nonincreasing on some open subinterval of [0, 1]
for some r ∈ (−1, 1)},

is of first category in Lip1. If f ∈ Lip1 \ (A ∪ B), then for every r ∈ (−1, 1)
the function f(x)− r · x is nowhere monotone on [0, 1].

This naive result shows that a typical f ∈ Lip1 has ∂af = ∂cf = [−1, 1].
For every such f , ∂−f exists only on a first category set by Lemma 3.2. Hence,
a typical function in Lip1 is only differentiable on a first category set. This
generalizes the classical known fact (exercise 7.9.4 [7]): There exists a Lipschitz
function for which the set of points of differentiability is first category.

Now we consider

X := {f : |f(x)− f(y)| ≤ |x− y| for x, y ∈ [a, b] and f is nondecreasing},

endowed with the supremum metric ρ.

Theorem 10.5. In (X, ρ), the set

{f ∈ X : ∂af = ∂cf ≡ [0, 1] and f is strictly increasing},

is residual.

Proof. Fix x ∈ (a, b). Consider

Gk := {f ∈ X :
f(x + t1)− f(x)

t1
− 1 > −1

k
and

f(x + t2)− f(x)
t2

<
1
k

for some 0 < t1, t2 < 1
k}.

(1). Gk is open. Let f0 ∈ Gk. If ε > 0 is sufficiently small, for every f ∈ X
satisfying ρ(f, f0) < ε, we have

f(x + t1)− f(x)
t1

− 1 >
−2ε

t1
+

f0(x + t1)− f0(x)
t1

− 1 > −1
k

,
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f(x + t2)− f(x)
t2

<
2ε

t2
+

f0(x + t2)− f0(x)
t2

<
1
k

,

for the same t1, t2 associated with f0.
(2). Gk is dense. Given f ∈ X and ε > 0. Define f̃(x) := f(0) +

∫ x

0
φδ(t) dt

with

φδ(t) :=


f ′(t) if t 6∈ [x, x + δ]
0 if t ∈ (x, x + δ̃)
1 if t ∈ (x + δ̃, x + δ),

where min{ε/2, 1/k} > δ > δ̃ > 0 such that δ−1[f̃(x + δ) − f̃(x)] = 1 − 1/k2

and δ̃−1[f̃(x + δ̃) − f̃(x)] = 0. Then f̃ is nondecreasing, 1-Lipschitz, f̃ ∈ Gk

and
|f(x)− f̃(x)| =

∣∣∣ ∫ x

0

f ′(s)− φδ(s) ds
∣∣∣ ≤ 2δ < ε.

Then Gx :=
⋂∞

k=1 Gk is a dense Gδ set in X. If f ∈ Gx, then f+(x) =
1, f+(x) = 0, so

1 ≥ f0(x, 1) ≥ f�(x, 1) ≥ f+(x) = 1

and

0 ≤ −f0(x,−1) ≤ −f�(x,−1) ≤ f+(x) = 0.

Thus ∂mpf(x) = ∂cf(x) = [0, 1]. Let {xk} be dense in [a, b] and set G :=⋂∞
k=1 Gxk

. Then G is a dense Gδ in X. If f ∈ G, we have ∂mpf(xk) =
∂cf(xk) = [0, 1] for every xk, so ∂cf(x) = ∂af(x) = [0, 1] for each x ∈ [a, b].
Moreover, every f ∈ G must be strictly increasing, otherwise f would be
constant on some subinterval I. Hence ∂cf = {0} on I, a contradiction.

Of course, as in Theorem 10.4, we can deduce Theorem 10.5 via nowhere
monotone functions. The advantage of the above proof is that it can be ex-
tended to Rn or separable Banach spaces.

11 Can the Pseudo-Regular Points Generate the Subd-
ifferential?

One of the open problems in Sciffer’s thesis [37] is: “For a locally Lipschitz
function φ on a separable Banach space, do the pseudo-regular points generate
the subdifferential?”. See page 139 for the definition of pseudo-regularity. The
answer is seen to be ‘no’ by using nowhere monotone differentiable functions.
Observe that a Gâteaux differentiable function φ is pseudo-regular at x if and
only if ∂cφ is a singleton.
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A function f : [0, 1] → R is said to be a bounded derivative function if f
is bounded on [0, 1] and there exists F : [0, 1] → R such that F ′(x) = f(x) for
every x ∈ [0, 1]. The space of bounded derivative functions on [0, 1], denoted
by M4′, with metric

ρ(f, g) := sup
x∈[0,1]

|f(x)− g(x)|

is complete. Let M4′
o = {f ∈ M4′ : f = 0 on a dense set}.

Lemma 11.1 (Weil). The set of functions in M4′
o which are positive on

one dense subset of [0, 1] and negative on another dense subset of [0, 1] forms
a residual subset of (M4′

o, ρ).

For the proof of Lemma 11.1, see [38]. For f ∈ M4′
o, we define F (x) :=∫ x

0
f(s) ds. Then F is globally Lipschitz and f ′ = f on [0, 1]. Lemma 11.1

shows the following.

Proposition 11.2. Let 4o denote the set of differentiable functions F on
[0, 1] such that F (0) = 0 and F ′ ∈ M4′

o. For F , G ∈ 4o, let ρ(F,G) =
supx∈[0,1] |F ′(x)−G′(x)|. Then

(i) (4o, ρ) is a complete metric space.

(ii) If F ∈ 40, then 0 ∈ ∂aF (x) = ∂cF (x) for every x ∈ [0, 1].

(iii) A typical F ∈ 4o has a ∂cF which is not a singleton on a positive
measure subset of each nondegenerate subinterval I ⊆ [0, 1].

Choose F ∈ 4o satisfying (iii). As 0 ∈ ∂cF (x) for each x ∈ [0, 1], F is
pseudo-regular at x if and only if ∂cF (x) = {0}. The cusco generated by
pseudo-regular points is identically {0}. Since ∂cF 6≡ {0}, ∂cF can not be
generated by the pseudo-regular points.

12 A Comparison to Convex Analysis.

For a sequence of convex functions {fi} defined on A ⊂ Rn, if sup{fi(x) :
i ∈ N} < +∞ for every x ∈ A, then {fi} are locally equi-Lipschitz. Thus
fi converges uniformly to f on each compact convex subset of A when {fi}
converges to f pointwise on A [34, page 90]. Our typical results may be
compared with the following result in convex analysis [34, page 233].

Proposition 12.1 (Rockafellar). Let f be a convex function on Rn, and let
A be an open convex set on which f is finite. Let f1, f2,. . . , be a sequence
of convex functions finite on A and converging pointwise to f on A. Let
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x ∈ A, and let x1, x2,. . . , be a sequence of points in A converging to x.
Then, for any y ∈ Rn and any sequence y1, y2, . . . , converging to y, one has
lim supi→∞ f ′i(xi; yi) ≤ f ′(x; y). Moreover, given any ε > 0, there exists an
index i0 such that ∂fi(xi) ⊂ ∂f(x) + εBRn for all i ≥ i0.

Because every C1 function is a uniform limit of nondifferentiable functions
from A, Theorems 6.1, 8.3, and 10.3 show that Proposition 12.1 fails dramat-
ically for nonconvex continuous functions and Lipschitz functions. In order to
pose open questions, we recall [5, page 47].

Theorem 12.2 (Denjoy-Young-Saks). Let f be an arbitrary finite function
defined on [a, b]. Then almost every x ∈ [a, b] is in one of the following four
sets:

(i) A1 on which f has a finite derivative;

(ii) A2 on which f+ = f− (finite), f− = ∞, f+ = −∞;

(iii) A3 on which f− = f+ (finite), f+ = ∞, f− = −∞;

(iv) A4 on which f− = f+ = ∞, f− = f+ = −∞.

From (i) to (iv), we see that ∂−f must be either empty-valued or single-
valued a.e.. In fact, on the line, for any real function f : R → R, the set of
points at which ∂−f(x) is a non-degenerated interval is countable [5, page 45].

Problem 12.3. What is the analogue of the Denjoy-Young-Saks theorem in
terms of ∂af or ∂cf in nonsmooth analysis?

Problem 12.4. Let A be an open subset of Rn with n > 1. For each contin-
uous or locally Lipschitz function f : A → R, is {x ∈ A : ∂af(x) = ∂cf(x)}
residual in A?
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set, Ann. Univ. Sci. Budapest, Eötvös Sect. Math., 5 (1962), 173–177.

[11] K. M. Garg, On nowhere monotone functions, III (Functions of the first
and second species), Rev. Math. Pures Appl., 8 (1963), 83–90.

[12] K. M. Garg, Generalized derivatives and derivatives of typical continuous
functions, Real Anal. Exch., 22 (1996/97), 36–38.

[13] K. M. Garg, On a residual set of continuous functions, Czech. Math. J.,
20 (1970), 537–543.

[14] K. M. Garg, On singular functions, Rev. Roumaine Math. Pures Appl.,
14 (1969), 1441–1452.

[15] K. M. Garg, On asymmetrical derivates of nondifferentiable functions,
Can. J. Math., 20 (1968), 135–143.

[16] K. M. Garg, Theory of Differentiation, A Unified Theory of Differenti-
ation via New Derivative Theorems and New Derivatives, Wiley Inter-
science, New York, 1998.

[17] J. R. Giles, Convex Analysis with Application in Differentiation of Convex
Functions, Research notes in mathematics, 58, 1982.



170 Xianfu Wang
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